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1. Introduction 

The concentration function Q (X; 2) of a random variable X is defined by 

Q(X;2) = s u p P ( x  ~=X ~ x  + ~), 2 > 0.  
- - o o ~ x ~ o o  

I f  X and Y are independent random variab]es it is easily seen that  

(1.1) Q(X ~- Y;2) gmJn(Q(X;2);Q(y;,~)). 
Let X1, X~ . . . .  be a sequence of mutual ly independent random variables and 

set 
S~ = X1 § X2 §  § Xn. 

An inequality which relates the concentration function of Sn to the concentration 
functions of the summands Xk and which is much deeper than  (1.1) has been given 
by KOL~OGOROV [1], [2]. ROGOZ~ [3] has obtained the following refinement of the 
KoLMoaonov inequality: For any positive Z =~ L, one has 

(1.2) Q(Sn;L) ~__ ~-r [k~=l~ ~ (1 - -  Q(X~;~))} -1/2 

where C is an absolute constant. (In the following we shall denote by  C absolute, 
in general different positive constants.) R o G o z ~  [4] has also generalized the 
inequality (1.2). His result is expressed by  the following theorem. 

Theorem 1. For any positive ~1 . . . . .  Zn ~ L, one has 

(1.3) Q(Sn;L) ~ CL ~(1 - -  Q ( X k ; ~ ) )  �9 
k 

As is well known the characteristic function is an important  tool in studying 
properties of Sn. The proofs of KOLMOGO~OV and RoGoz~ ,  however, are based on 
quite different methods. A combinatorial lcmma of SP]~RNE~ is for instance 
fundamental in RoGozI~'S refinement of the ](o]~Moao~ov inequality. The pur- 
pose of the present paper  is to give a new proof of Theorem 1 using characteristic 
functions. I t  will also be shown tha t  the multi-dimensional case can be treated in 
the same way, at  least if a certain symmetry  condition is satisfied. I t  should be 
remarked tha t  R o s ~  [5], using characteristic functions, has proved the inequality 

Q(Sn;L) ~= C(L;F)n -1/2 
in the case of identically distributed summands. Here C (L; F) is a quanti ty inde- 
pendent of n but  depending on L and on the distribution function F of the sum- 
mands. ~qo explicit determination, however, of this dependence is given in the 
paper of R o s ~ .  
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2. Proof of the Inequality 

We introduce auxiliary continuous functions H (x) and h (t) defined for all real x 
and t and satisfying the conditions 

o o  

a) H(x)>__O, b) X H ( x ) d x - = 2 ~ ,  c) h ( t ) -=0  for It] ~ 1 ,  

o o  

Thus d) h (t) ---- (2 •)-i ~ e-ltzH (x) dx. 
- - o o  

(2 .1)  [h ( t ) ]  __< l ,  - ~  < t < ~ .  

Functions satisfying the above conditions are for instance 

{sinx/2~2 {10-- I t ' ,  It' ~ 1 
(2.2) I t (x)---- \~/2 ] ' h(t)---- , I t [ > 1 "  

Let the characteristic function of X~ be ]~ (t). Then the characteristic function 
n 

of Sn is ~ [ / ~  (t). The distribution function of Sn will be denoted by F~* (x). Our 

starting point is the easily proved relation 

(2.3) Sg(~(x  - ~))dF*(x) = ~- ~(t) h(t/~)~-~tedt 

where a and ~ are real parameters and a is positive. 
By  (2.1) and (2.3) we get 

f H (a(x -- 8))clF* (x) <= a-~ I ~-[ I /~(t) ] dr. 
--oo - - a  ~=i 

Now let H (x) be chosen such that 

(2.4) rain H (a x) ~ # > 0 
--Z,/2<=x<=L]2 

and denote by I the closed interval [~ -- L/2, $ + L/2]. Then 
o o  

.[ H (a (x -- ~) ) dF* (x) ~ # P (Sne I) 
- -co  

g n 

or P (S~ ~ h <= (c~ff)-~ [. ~ I I~ (t) 1 gt. 
- - a  k ~ l  

Since $ is arbitrary we thus obtain 

(2.5) o(s ;L) <_ 
- - a  k=l 

From now on we choose H(x) according to (2.2). Then (2.4) is satisfied by 

(2.6) a L  = 2~ ,  f f  = 417e~. 
From (2.5) and (2.6) we get 

2~[I-, n 

(2.7) Q(Sn;L) <=CL~ ]-[]/~(t)ldt. 
- - 2 ~ / L  k = 1 

Thus far our arguments correspond to those of Ros]~l~ [5]. Our estimation of 
the right hand side of (2.7) will, however, be quite different. Applying the inequality 

~ l / , ~ ( t ) [  [i ( ]  I / ~ ( t ) l ~ ) ]  ' / ~  " = - - < e ~ p  - ] - l / ~ ( t ) [ ~ )  , 
k= l  = 



212 C.G. EssE~x: 

we get from (2.7) 
2ztlL ( I n ! 

(2.8) Q(Sn;L) <= C L S e x p { - - ~  ( 1 -  d,. 
J -2~IL [ k=l 

# 
Let X k be a random variable independent of Xk and with the same distribution. 
Then X k -  X~ is symmetrically distributed with the characteristic function 
I/~ (t) ls. Denoting the corresponding distribution function by Gk (x) we have 

co 

( 2 . 9 )  1 - I l k ( t ) I  ~ = y ( ~  - costx)aa~(~) >__ f ( 1  - costx)dak(x). 
- ~ o  ix] > ,~/2 

From the definition of the concentration function and from (1.1) it  follows that  
# 

(2.10) f d~k(x)  > 1 - Q(x~  - x~;  i~) > 1 - Q(x~;  tk ) .  

(In the following we assume that  Q (X~; 2~) < 1; it  is easily seen that  this does 
not imply any loss of generality.) Let  e, sk be small but  fixed positive quantities 

and s : ~ ek. I t  is easily seen that  the right member of (2.9) may be uniformly 
k = l  

approximated for [ t ] < 2 :~/L by a finite sum in the following way: 
N ~  

(2.11) f (1  -- costx)dGk(x) = ~pvk(1 -- costxvk) ~- Ok 
Ixl  > ~,~/2 v = l  

where 

(2.12) 

and 

(2.13) 

I~,,~1 > ,~k12, I okl G ~ ,  P,k > o 

( 2 . 1 4 )  

Set 

pvk >= 1 - Q (Xk; ik) - ek. 
v = l  

The last inequality follows from (2.10). 
Combining the inequalities (2.8), (2.9) and (2.11) we get 

2nIL n N~ 
Q(Sn;L)  < C i e ~  1~ l ~ e x p {  - �89 -- costxvk)}dt. 

--2a/Lk=l v=l 

)1 2 2 = / ~  Pvk A-1 ~vk ~- /,~ pvk k Pvk 
k l v  

where from (2.13), and since L > max/k ,  
k 

N ~  n 

~ p ~  _>- ~ / 2 ( 1  - Q(Xk ; ~k) ) - sLY.  (2.15) A = 7~ 2 
k = l  v = l  k ~ l  

We now apply the H61dcr inequality to the right member of (2.14) and obtain 

n .N,e f 2~/L ~v~ 
(2.16) Q ( S . ; L )  < C e ~ I ~  ~ [  ~ L  S e x p { - - � 8 9 1 7 6  " 

k=l v=it --2~/L 

Let us estimate the integrals 
2~]L 

(2.17) J~k = L ] exp  {-- �89 A/~2 (1 -- cos tx~k)} tit. 
--2~[L 
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We m a y  of course suppose t h a t  x~k > 0. Then 
2nx~/L  

Jvg = Lx,-~ ~ e x p { - -  �89 2~2(1 - -  eost )}dt .  
- 2 ~ x~k/15 

Two cases m a y  occur: 

1. x~k ~ L. Then  

J ~  =< L x;~ f exp {--  �89 A 2~ 2 (1 - -  cos t)} dt 

.n/4 ~/4 
< C L x;~ ] exp {--  �89 A 2; 2 (1 - -  cos t) dt <= C L x,-~ ~ exp {- -  ~ A 2~ 2 t 2} dt 

-~/4 -~14 
c o  

1-A 2~"t }dt < CLA-1 /2(x ;~2e)  < C L A  -1/2 CLx , , ,  exp - - ~  = = . 
- -  c x ~  

The last  inequal i ty  follows f rom (2.12). 

2. x~k > L. Denot ing by  Ix] the  integer pa r t  of  x we obtain  
2n([xv~L-a] + l) 

J ~  ~ [x~/~ L-~]-~ ~ e x p { - -  �89 2~(1 - -  eost)}dt  
--2~([x~L-~]+l) 

2n 
=< 2 f e x p { - -  1 A  2~2(1 - -  cost)}dt  <= C2~A-~/~ <= C L A  -~/2 . 

In  bo th  cases 

(2.18) J,,l~ <= C L A  -1/2 �9 

F r o m  (2.16), (2.17), (2.18) and (2.15) we finally obtain  

(2.19) Q(Sn; L) <= Ce~L (1 - -  Q(Xe;  2k)) - e L 2 
k 

Since, however ,  e is a rb i t rar i ly  small  and C is an absolute constant  we m a y  set 
s = 0 in (2.19) and  the KOLMOGO~ov-RoGozIN inequal i ty  (1.3) is proved.  

1~ e m a r k .  F r o m  the proof,  especially f rom (2.10), i t  follows t h a t  1 - -  Q (Xk;  )~) 
in (1.3) m a y  be replaced by  1 - -  Q ( X  k - X2; 2/~) which general ly gives a be t te r  
es t imate .  

3. The Multi-dimensional Case 

I n  this section we consider r andom vectors  X ~ ( X 1 , . . . ,  Xr). The following 
definitions and  nota t ions  will be used: Set 

Q (X;  ]tl . . . . .  ~r) ~ sup  P (xl  _-~ X1 ~- x l  -}- ,~1, . . . ,  Xr ~= X r  ~_ Xr @ )~r) 
2 g  

where x = (Xl . . . .  , Xr). The domain  / )(~;  21 . . . . .  ),r) is defined by  ] x e -  $~I 
> 2~/2 (k = 1 . . . . .  r) where ~ = ($1 . . . .  , ~r) is fixed. The complement  o f / )  is 
denoted b y  D(~;  21 . . . . .  2r). Set 

Q ( X ;  D ( ) ~ I , . . . ,  2r)) = sup  P ( X  c D ( ~ ;  21 . . . .  , ~ r ) ) .  

B y  C (r) we denote different posit ive constants  depending only on r. A r andom 
vector  independent  of  X and with  the  same dis tr ibut ion will be denoted by  X ' .  
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Consider a sequence of mutually independent random vectors 

X (k) = (X (~) . . . . .  X} k)) with sum Sn = X (1) + "'" + X (n) . 

We want to estimate 

Q(Sn;L1  . . . . .  Lr) where L t > m a x ~ !  k) ( k - ~ l , . . . , n ; i = 1  . . . .  ,r) 

and where ~ k ) . . . ,  2~.k) are given sequences of positive quantities. Applying 
Theorem 1 we at once obtain 

Q(Sn; L1, . . . ,  Lr) =< Q(x~ 1) + . . .  + X (.n).~ , L~) 

~))2(1 _ , k))) < CL~ ~ Q(X~ ~)" ~ 
k =  

An inequality containing the concentration functions of the random vectors 
themselves can be obtained in the following way. Our starting point is the inequality 

Q (Sn ; L1 . . . .  , Lr) 
2xt/L1 2~/Lr  ( n r  

(3.2) < C ( r ) L 1 . . . L r y . . . y e x p l - - : ~ l  y . . . . y ( l _ _ e o s ( t l x l ~ _ . . . _ ~ t r X r ) )  X 

X dGk (xl . . . . .  xr)} d h . . .  dtr 

where Gk is the distribution function of X(k) - -  X(k) '. This inequality is analogous 
to (2.8) and is proved in a similar way by  means of the auxiliary function 
h (tl) ... h (tr), h (t) being defined by  (2.2). A straight forward generalization of the 
method of proof used in the one-dimensional case yields 

Theorem 2. For any positive 2~a) < Lt ,  one has 

Q (#,~; ~1,..., Lr) 

(3.3)  < c ( r ) ~ i  . . .  L~ a i ~ )  . . .  Z~)) ~ (1 - -  Q(X(~);  D( ,~ i  k) . . . . .  ~k ) ) ) )  
k 

R e m a r k .  As in the one-dimensional ease, Q(X(~); D) in (3.3) may  be replaced 
by  Q (X(~) - X(k)'; D). 

I f  the random vectors are identically distributed and Lt = 2~ k) = 2, the right 
member  of (3.3) is of order n -1/e. From the example r ~ 2, X(~) = (1, 1) wil~h 
prob. 1/2, X(k) = (--  1, - -  1) with prob. 1/2 it is seen tha t  

P(S2n : O )  = ( 2 : )  2-2n ,,~ (~n) -1/2 

and hence tha t  the inequality (3.3) cannot generally be improved. In  the above 
example, however, the distribution of X(k) is actually one-dimensional. I f  the 
distributions of the random vectors X(k) are non-degenerate, the inequality (3.3) 
is not satisfactory. This may  be seen from the case where the vectors X(~) have the 
same non-degenerate multinomial distribution. Then sup P (Sn ~ x) ~ 0 (n-r/2). 

Z 

Thus, if the random vectors X(~) have non-degenerate r-dimensional distributions 
we want  to replace (3.3) by  an inequality the right member  of which is of order 
n -r/2 in the case of identicMly distributed vectors. 
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I n  a special case an inequal i ty  of  the desired type  is easily obta ined by  our 
method .  The r a n d o m  vector  Y = (Y] . . . . .  Yr) is called s ign-invariant  if  all the 
r a n d o m  vectors  ( •  Y] . . . . .  ~ Yr) have  the same distr ibution.  We now introduce 
the following s y m m e t r y  condit ion (S) : The random vector X satisfies the condition 
(S) i / X  -- X '  is sign-invariant. 

Theorem 3. Let X(1), . . . ,  X(n) be mutually independent random vectors with r 
components. I /  all the X(~) satis]y the condition (S) then/or any positive ),!~) <= L~ 
( i = 1, . . . ,  r; k = 1 . . . . .  n) one has 

Q (S~; L1 . . . . .  L,) 

(3.4) . -r/2. 
~ C(r) L1 .. Lr . . .  2(~k))2/r(1 - -  Q(X(~); D(2~ k) . . . . .  2~)))) 

1 

Pro@ For  the sake of s implici ty we confine ourselves to the case where the 
vectors  are identical ly distr ibuted,  r = 2, L1 = L2 ~ L, 2~ k) = 2(2 ~') = ~ (k = 1 . . . . .  n), 
L ~ 2. The inequal i ty  (3.2) then  becomes 

2zt/L 2 ~ / L  

Q(Sn;L ,L)<=CL2~ f • 
-- 2 u / L  -- 2z~]L 

(3.5) 

• exp - -  ~ -oo f ( 1 - - c o s ( t l x l d - t 2 x 2 ) ) d G ( x l , x 2 )  dhdt2. 
- - o o  

In  analogy to (2.9), using the condit ion (S), we get uni formly for ]h i  <=2~/L, 
It~l < 2~/L 

~ (1 - cos(t~x~ + t~))dG(x~,  x~) 
- - c o  - -  c r  

(3.6) >= f f (1- -cos( t lx l@t2x2))dG(xz ,x2)  
I x l  ] > )~/2 I x2 ] > ,~12 

M N 

= 2 ~ ~ p,,~,,~ (2 - cos ( t l X . ,  + t~ x~.~) - cos (tl ~ . ,  - t2 ~2,,~) ) + 0 
V l = l  v ~ = l  

w h e r e  

(3.7) P r ~ , ~ > 0 ,  xlv~=>2/2,  x 2 , , ~ 2 / 2 ,  [01 =<2e /n .  

(We assume of course t ha t  Q(X; D(2, 2)) < 1, X having the same distr ibution 
as the r andom vectors  X(~).) Fur the r  

M N 
(3.8) 4 ~ ~ p v ~ v ~ > I - - Q ( X - - X ' ; D ( 2 , 2 ) ) - - e > I - - Q ( X ; D ( ) , , , ~ ) ) - - e .  

~1=1 v2=1 

From (3.5), (3.6) and (3.7) i t  follows that 
2z~/L 2 n / L  

Q ( S n ; L , L ) < C L 2 e  ~ f f ~ X 
(3.9) -2~/~ -2"/L ..... 

x e x p { - -  npv~v~(2 -- cos(tlx]v~ @ t2x2v~) ~ c o s ( t l x z v ~ -  t2x2v~))}dtldt2. 

Sett ing 
M N 
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where on account  of  (3.8) 

(3.10) 4 A  > 1 - -  Q(X;D(A,~) )  -- t ,  

we get  f rom (3.9) and  the  HSlder  inequa l i ty  

(3.11) Q(Sn; L, L) =< C e~ l ~  cJ, ~1~,~ ..... 
Vl~P2 

where 
2 z t x l v l ] L  2 ~ x ~ v l / L  

L 2 
J .... - -  f f • 

X l  v 1 X2v2 _ 2 :~xi r i l l  - -  2 ~X.z v2 /L  

• e x p { - -  h A ( 2  - -  cos(t1 + t2) - -  c o s ( t 1 - -  t2))}dtldt2. 

Making the  t r ans fo rma t ion  tl -~ t2 ~ ul ,  tl -- t2 ~ u2 we easily f ind as in the  
one-dimensional  ease t h a t  

(3.12) J~,'2 ~ C L2 A-2 A - l  n-1. 

Since e is arbitrat~ily small  i t  follows f rom (3.11), (3.12) and  (3.10) t h a t  

Q(Zn; L, L) <= C L2{n ~ 2 (1 - -  Q(X; D()., A))} -1 

which is the  desired inequal i ty .  
R e m a r k .  I n  Theorem 3 we m a y  replace Q(X(k); D) b y  Q(X(~) --X(~) ';  D). 
I f  the  r a n d o m  vectors  have  non-degenera te  d i s t r ibu t ions  b u t  the  condi t ion  (S) 

is no t  satisfied i t  seems difficult  to  ob ta in  a general  and  a t  the  same t ime  simple 
inequa l i ty  analogous to (3.4) using the  above  me thod  of proof.  As in (3.6) we have  
to add  r app rop r i a t e ly  chosen t e rms  of the  form p .  (1 - -  cos ( t l x l  ~- .-" -[- trxr)) 
in order  to ob ta in  the  desired order  of magni tude .  U n d e r  a more general  condi t ion 
t h a n  (S) one can in th is  w a y  ob ta in  an  inequa l i ty  where 1 - -  Q (X;  D) is rep laced  
b y  a cer ta in  Hel l inger- in tegral .  I t  m a y  also be convenient  to  consider  r ec tangu la r  
regions the  sides of which are no t  para l le l  wi th  the  coordina te  axes. I t  is also easy 
to generalize the  m e t h o d  of  l ~ o s ~  to the  mul t i -d imens iona l  case. This  leads,  
however,  to  t y p e s  of inequal i t ies  no t  conta in ing the  concent ra t ion  funct ions and 
thus  ex t raneous  to  the  subjec t  of this  paper .  
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