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1. Introduction 

I t  is well known tha t  under certain conditions a random walk on a two- 
dimensional lattice is almost sure to hit each point of the lattice. Certain classes of 
such random walks are considered here in the discrete t ime parameter  (d.p.) and 
continuous time parameter  (c. p.) cases. The main problem is to determine the 
behaviour of the distribution of the first hitting time of a given point as the distance 
between that  point and the starting point of the random walk becomes large. The 
method used is also shown to give an analogous result for plane Brownian motion. 
The random walk result is also applied to a restricted class of three-dimensional 
random walks : in the latter case, for a given axis of lattice points, the respective 
behaviours of the distribution of the first hitting place and the joint distribution 
of the first hitting place and time are examined. The statements of the main results 
with various preliminaries are now given and proofs follow in the later sections. 

For d = 2, 3 let the state space of the d-dimensional random walk be the set 
R~ consisting of all ordered d-tuples with integer components. For any ordered 
d-tuples 0 = {Oi} and O' = {0~} with real components let 

d 

o.o' = ~ o4o~, I 0l = (0.0)+, 0, = (01 . . . .  ,0~_1). 
i = 1  

The d-dimensional d.p. random walk is denoted by a family of random variables 
{X (n)}, where n runs through the positive integers. In  the customary notation the 
one-step transition probabilities {Pxy} are assumed to satisfy 

y Pxy = 1 ,  pxz = PO, z x ,  x, z E R a .  
yeR ,~  

The d-dimensional c.p. random walk is similarly denoted by a family of random 
variables {X(t)}, where t runs through the non-negative real numbers. The c.p. 
transition probabilities {Pxy (t)} are uniquely specified in terms of the transition 
rates 

/ 

qzy = Px~(O) , x, y e Rd  , 

assuming tha t  
qxy >- O, x # y ,  

q x y  ~ -  - -  q x x  < ~ , qxy ~ qo, y-:v �9 

y4-x  

For the two-dimensional processes the following conditions, (ld) and (2d) in 
the d.p. case, and analogously (lc) and (2c) in the e.p. case, are assumed. 
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(1 d) For each x and y in R2 there is an integer n such tha t  the n-step transition 
probabili ty P~u is positive. 

(2d) ~ p x y y = O  and ~pxy ly l2+~ < oo 
Y Y 

for some positive number  (~. 
(1 c) For each x and y in R2 there exists a finite sequence x l ,  . . . ,  xn of points in R2 
such tha t  

xl  =-x , xn---- y 

(2 c) ~, qoyY -~ 0 
y:~0 

for some positive number  ~. 

and qxlx~...qx,-lx~ > O. 

and ~q0~]Y]2+~ < o o  
Y 

The transition probabilities {pxy(t)} of the two-dimensional c.p. process are 
obtained later in a form which shows tha t  they are continuous functions of t and 
that  lira Pxy (t) ~ ~xy, where (~xy is Kronecker 's  symbol. Under these conditions it 

t-->0 
is known tha t  it is permissable to consider the process X (t) to be Borel measurable 
and well separable (see CHU~G [1], I I .  4). For either type of process it is shown 
later tha t  the respective conditions (1) and (2) together imply tha t  each lattice 
point is almost surely visited. Now let the random variable T (x) denote the time at  
which either type of process first hits the origin starting from the non-zero lattice 
point x. 

Theorem 1. P ( T ( x )  > u} - -  [1 + h(x,u)]H(x) logu , x : ~ 0 , u ~ l ,  

where the/unctions H and h are defined later and satis/y 
(i) lim h (x, u) -~ 0 /or  each fixed non-zero x, 

u - - >  c ~  

(ii) h(x, u) -+ 0 I x I - +  uniformly/or aU u >= I x 
(iii) [H (x) --  2 log]x  [] is bounded/or all non-zero x. 

Corollary. I /  under the same hypotheses as Theorem 1, T (x) denotes the first 
hitting time o/ any finite set o/ points in R2, 

P ( T(x)  > u) --  [1 + o(1)] 2log/x/ 
log u , u ~ 1 

where the term. o (1) tends to zero as Ix I ---> c~ uni/ormly /or all u >= Ix/2. I n  particular 
/or each fixed real number o: such that ~ >: 2 

P ( T ( x ) > I x l  cr -1,  as Ix l - -~oo .  

The behaviour of P ( T ( x )  ~ u} when x is fixed has been investigated for a 
wider class of d.p. random walks by SPITZER [10], and a more precise result with x 
fixed is given in [10] for the simple symmetric d.p. random walk. 

The method used in the main part  of the proof of Theorem I provides the 
following analogous result for plane Brownian motion. Let  Tr now denote the first 
hitting time of a disc in the plane of radius a when the Brownian motion process 
starts at  a distance r ( ~  a) from the centre of the disc. 
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[1 -~ h*(r, u)] 21og(r/a) 
Theorem 2. P { T r  > u} . . . .  ]og-u -- , u > 1, 

where (i) lira h* (r, u) = 0/or  each fixed r, 
u--> ~ 

(ii) h* (r, u) ---> 0 as r -> oo uni/ormly /or all u >= r 2. 
The behaviour of P { T r  > u} when r is fixed has been obtained for a more 

general hitting set by  Hv~T [5]. 
For the three-dimensional processes the following conditions, (3d), (4d) and 

(5d) in the d.p.  ease, and (3e), (4c) and (5c) in ~he c.p. case, are assumed. 
(3d) I fp0y  > 0, one o f y ,  and ya is zero. 
(4d) The two-dimensionM process X (n), satisfies (1 d) and (2d). 

(5d) ~PoyYa  = O, ~ p o y ( y s )  e = a 2 , 
yeRa yeRa 

where a u is finite and positive. 
(3c) Ifq0y > 0, one o f y ,  and Ys is zero. 
(4c) The random walk on R2 defined by the transition rates {qzw:z, w e R2} 
satisfies (l c) and (2e) when 

qzw = qxy, z * w, x = (zl, z2, 0), y = (wl, w2, 0), 
" ~.q" 

~4-Z 

(5c)  ~ qoyYa = O, ~ qov (Ya) 2 = a 2 , 
y~Rs yez'v~z. 

where ~2 is finite and positive. 
I t  is shown later tha t  such a c.p. process may be considered to be Borel 
measurable and well separable. I t  is also shown tha t  both types of process almost 
surely hit the x3 axis. Now for either type of process let the random variables T 
and Z denote respectively the time and coordinate of the first hit on the xa axis, 

9 2 1 assuming tha t  the starting point is (Xl, x2, 0) with r = (x i + x2)~. 
Lemma 1. For each fixed real number 

v { z  - .  , a s  r 

The following results are deduced from this connection between Z and T. 
Theorem 3. For each fixed real number fi such that fi >= 1, 

p { [ z  I > r ~ } - > / ~ - l ,  as r - + o o .  

Theorem 3 was first proved directly by DopEY [2] for the simple symmetric 
d.p. random walk. The next  result and its proof were kindly communicated by 
Dox~y.  

Theorem 4. For each pair o/fixed real numbers ~ and fl such that ~ >= 2 and fl ~ 1 

P { T  > r~;[Z] >r~}-->[max(~(/2,/~)] -1,  as r-->oo. 

2. Proof  of T h e o r e m  1 (d. p. ease) 

Two lemmas are obtained before the mMn par t  of the proof. Firstly let 

a n ( x ) ~ - P { T ( x ) > n } ,  and A ( x , ~ ) : ~ a n ( x ) ~ n ,  x ~ R e ,  x g = 0 , 0 < ~ < l ,  
n = O  

14" 
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and for each ordered pair  of real numbers  0 = (0,, 02) let 

(0) = ~, poye i~ 
ye-R2 

[" 1 - -  eiO.x 

Lemma2. A ( x , ~ ) =  J ~ ~ ~0(o) d0 4=0, 0 < ~ < 1 ,  j" dO , x 

where the integration is with respect to the components 01 and Oe o[ O, and is taken over 
the square [ 0i[ =< ~, i = 1, 2, ]rom now on in this section unless otherwise stated. 

Proo]: Let  {pxny} be the n-step transit ion probabilities on Re, and let 

/ ~ y - - P { X ( v )  . y , O < v < n , X ( n ) = Y l X ( O ) = x  } x, y e R 2 ,  n > O  

]oy = O, x, y z Re . 

I t  is well known tha~ 

~ ~' �9 (6) Y / ~ o ~ = ~ p x o ~ / Z p o o ~ ' ,  x ~ R ~ ,  x , o ,  o < ~ < 1  
n = 0  n = 0  r = 0  

c o  

I t  is shown independent ly  in Lemma 3 (15) tha t  ~ P~o = 0% and it  is well known 
n = 0  

tha t  this with condition (1 d) implies tha t  ~ /~0 = 1 for each x in R2. Hence 

so tha t  by  (6) 

(7) 

n = O  

c o  

A (~, ,)  = ~ ~ ,  (~) ~" 
n = 0  

n = O r = n - F 1  

o o  

= Y ~ l ~ o ( 1  - ~1/(1 - r 

A(z, ~) = { ~ P~oC' - -  .., p7oC~}/(1 --  C) ~Poo~  -' 
r = O  n = 0  r = O  

But [~(0)] n = ~ p~ue i~ so t ha t  
y e R z  

Hence 

(8) 

n 1 
P~y = ~ S [~ (O)]~e-i~ dO, x, y e R 2 .  

n = 0  n = 0  

_ 1 ~0(0)] ~ e_~O.(y_~)dO 
47~2 n =  

-;;;~ o <  < ,  4z~ 2 ( ' , 
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where the order of s u m m a t i o n  and  in tegra t ion m a y  be in terchanged since the  
funct ion considered has modulus  a t  mos t  ~n and is therefore absolutely convergent  
under  these operations.  L e m m a  2 is now comple ted  on subst i tu t ing the  last  
formula  in (7). 

L e m m a 3 .  I / x  ~: 0 , 0 < ~ <  l a n d ~ = l - -  

A (x, ~) ~- ~ P { T ( x )  > n} ~n ~__ H(x) -- log(1 § V Ix[ 2) § g(x, 7) 
n=0 *l[-- log~ + O(1)J ' 

where H and g are defined later and satis/y 
(i) [H (x) - -  2 log ] x]] is bounded; 

(ii) g (x, ~) is bounded/or all x and ~l, and lim g (x, ~) --~ 0 / o r  each fixed x; 
7--+0+ 

(iii) the term 0(1) is bounded/or all x and ~. 
Proo[: Following a me thod  used b y  SelTZ~l~ [9] it  can be shown t h a t  

(9) 9 0 ( 0 ) = 1 - ~ Q ( 0 ) + 0 ( ] 0 ] ~ + ~ ) ,  as 101 - + 0 ,  

where Q (0) is the posit ive definite quadrat ic  fo rm ~ Poy (0. y)2 and c~ is chosen as 
Y 

in (2 d), assuming wi thout  loss of  general i ty  t h a t  ~ < 1.�89 Q (0) m a y  be reduced to 
the  form r 2 b y  making  a suitable t r ans format ion  in the 0 plane, say 

(10) 01 ---- r [ y l  cos ~o cos ~p ~- y2 sin ~o sin ~0] 

02 ---- r [ - -  ~1 sin ~0o cos %0 ~- ~2 cos ~Po sin ~o], 

where r and ~p are polar  coordinates,  and yl ,  y2 and %oo arc constants  with ~1 and  ~2 
both  positive. Hence  f rom (9) 

(11) 90(0) -~ 1 - -  r 2 -F 0(r2+6), 

1 1 

for all sufficiently small  posi t ive r and  all ~ in (0, 1). Also it  is easily shown t h a t  

( 1 3 )  O.x = erIx] cos( - 
where c and  F1 depend on x bu t  not  on r and F, and c lies be tween y l  and y2. 

Consider now the denomina to r  and the  numera to r  of  the expression for A (x, ~) 
obta ined  in L e m m a  2, assuming f rom now on t h a t  x =~ 0 and 0 < ~ < 1. Le t  the 
posit ive cons tant  r0 be chosen such t h a t  (11) and (12) hold for all r in (0, r0] and 
such t h a t  the  region for which r =< r0 is contained in the square ] 0i] ~ ~, i = 1, 2. 
I t  is known t h a t  condition ( ld)  implies t h a t  90(0) ~ 1 only ff bo th  01 and 02 are 
mult iples  of  27~ (see SP~TZ~ [10], T. 7.1), so t h a t  since 90 is cont inuous 

]90(0) l < c o n s t a n t < l ,  ff I O ~ ] < z , i = l , 2  and  r > r 0 .  

Hence  on dividing the  range of  in tegra t ion and  using (12) 

dO __ ro 2~ 
(14) f 1 - - ~ ( 0 )  f f [(~-~-r2)-~-~O(r6-2)]ryxy2drdw~-O(1) 

~ = 0 ~ p ~ 0  

= zy~y2[- -  log ~ ~- 0 (1 ) ] ,  

where ryzy~ is the J acob ian  of the  t r ans fo rmat ion  (10), and f rom now on t e rms  
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0 (1) are assumed to be bounded independently of x and ~ (or ~). Hence from (14) 

(15) P~o = lira ~Poo~n = lim f dO -- oo 
oo 

n=o ~ 1 -  n=o ~ 1 -  ,1-- ~0(0) ' 

which is the condition required in Lemma 2. By using (12) again 

1 - -  e iO.:v ro 2n 
(16) f l_~q~(o) d O :  f f (1--ei~ 

r = O ~ = O  

But from (13) 

2:z 2~ 

f (1 - ~~ ~)~w = 2 ~  - f e x p  [ ~ ,  I xl cos (~ - ~)3 ~ 
~ = 0  ~ = 0  

n]2 

= 2 ~ - 4 S cos (~r Ix I cos ~)  a ~  
V ~ 0  

: 27~[1 - J 0 ( ~ l x I ) ] ,  

where J0 is a Bessel function of the first kind (see WATSO~ [11]). Now since 

Jo(u)=l~-O(u2) ,  as u-+O+,  and Jo(u)=O(u-~),  as u - + §  

and since c lies between 7t and 72, 
to 27t 

(17) f f (1 -- e i~ (~ + r2)-lrdrdy~ 
z = O ~ = O  

~'o 

= 2 ~  j" [1 - J o ( ~  I~[)] (~ + ~)-!~dr 
r ~ O  

crolx[ 
= 2z~ ~[1 --  Jo(u)] (u 2 -k c2~ [x]2)-ludu 

u ~ 0  

= z [2  log Ix[ -- log(1 -k ~ Ix[ 2) -k 0(1)] .  

Let  H (x) be defined by 

(18) z~7172H(x ) = lira f 1 -  eio.~ dO 
r  1 - -  ~ T(O) ' 

where the limit exists by virtue of (11). Then if g (x, V) is defined by 

f 1 - -  eio.z (19) 1 -- ~ ~(0) dO = ~7172 [H (x) -- log (1 ~- V Ix ]2) ~_ g (x, V)], 

the required properties of H and g follow from (16), (17) and (18). The lemma is 
completed on combining (14) with (19). 

Main Pro@ In the Tauberian theorems 98 and 100 in HAI~gY [4] a method 
due to KA~A~ATA is used to obtain the behaviour under certain conditions of a 
function B(t), say, as t - +  -~r from the behaviour of its Laplace-Stieltjes trans- 

oo 

form fe-~tdtB(t) as 2 - + 0 + .  Now let 
0 

B ( x , t ) = ~ a n ( x ) ,  t > O ,  xeR2,  x 4 0 .  
n<t  
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B y  using a modificat ion of the  me thod  of KA~AMATA the behaviour  of  B (x, t) as I x [ 
and  t -+ + cr is now obta ined  f rom the behaviour  of  its Laplace-Stiel t jes  t r ans form 

r  

A ( x , e  -a) = [e -a td tB(x , t ) ,  2 > O, 
o 

as Ix] -~ oo and 2 - ~  0 + .  The behaviour  of an(x) then  follows f rom the mono- 
tonic i ty  of B (x, t) as t varies. 

I t  is known t h a t  ff g is a given real funct ion which is l~iemann integrable on 
(0, 1) and  e is a given posit ive number ,  there  exist  polynomials  

j k 

s = 0  s = 0  

such t h a t  

(20) p < g < q and  ~. e-t [q (k-t) -- p(k-t)] (it < e. 
0 

Hence,  since B (x, t) increases as t increases, 
o o  ~ 

( 2 1 )  .[ e -at g (e -at) d t B  (x,t) ~= ~ e -at p (e -at ) d tB  (x, t) 
o o 

= ~p~ f~-(~+~)a~d~B(x, t) 
s = O  0 

] 
= Z Ps A {x, e-(s+l)a}. 

s = 0  

But  b y L e m m a 3 f o r 0 ~ _ s _ ~ ]  

(22) A {x, e-(s+l) a} = H(x) [1 + h~(x, ~)] 
-- (s + 1) ~log~ ' 0 < ~ < 1 ,  

where lira hs (x, 2) = 0 for each fixed x, and  hs (x, 2) ~ 0 as Ix ] -+ oo uni formly  
2--+0+ 

for 2 sat isfying ~ [ x ]2 ~ 1. Now let g (u) = u -1 when e -1 _~ u --~ 1 and  0 otherwise, 
and  let polynomials  p (u) and q (u) be chosen as in (20). Then  

j co i 

s = 0  0 s = 0  
c o  

= f e -t p (e -t) dt 
o 

~l--s. 

Since B (x, 0) = 0, i t  follows f rom (21) and (22) t h a t  if  0 < ~ < 1 and 21 x] 2 ~ 1, 
o o  

B(x,  2 -1) = .[ e-at g(e -at) dtB(x,  t) 
o 
i psH(x)  [1 + hs(x, 2)] 

s=0L' - - - (S+  1)~log 

> H(~) 1 - - ~ +  ~ T g J "  
- -  - -  ~log). s = 0  



1 9 4  C . J .  I ~ ] [ D L E R - I ~ O W E :  

Hence on replacing ~-1 by t it follows that  

B(x ,  t) > (1 -- 2s)tH(x) 
log t 

for (i) all large enough t when x is fixed, and (fi) all large enough [ x l provided that  
t > I x 12. By making a similar calculation based on the inequality 9 < q in (20) it 
follows that  

(1 + 2e) tH(x) 
B (x, t) =<= log t 

under either of the last conditions (i) and (ii). Since a n ( x ) =  P { T ( x ) >  n} 
decreases as n increases 

B(x,n) > an(x) > B(x, nl+o) -- B(x,n) 
$b ~ ---  Tb 1+6  

for each positive number 8. Theorem 1 now follows in the d. p. case on applying 
the above estimates for B(x ,  t) to the last inequality and noting that  e and 
may be chosen arbitrarily small. 

3. Proof of Theorem 1 (e. p. ease) 

I t  is shown the theorem may be proved in this case by methods similar to those 
used in the d. p. case. 

Since the transition rates qzy are bounded, it follows from the theory of 
semigroups of linear operators that  if P ( t ) = { p z y ( t ) }  and Q--{qx~},  P(t)  is 
determined uniquely and P (t) = e tQ. Hence if 

r (0) = ~ qo~ e ~~ 
x 

pxy (t) = ~ 1  Sexp[t  qs(0 ) _ iO.(y --  x)]dO x, y e R 2 ,  

where the integration is with respect to the components 01 and 0~ of 0 and is 
taken over the square I 0i[ ~ 7~, i ~ 1, 2, from now on in this section unless 
otherwise stated. Then since the real part  of ~b (0) is not positive 

o o  1 f e--iO.(Y--X) 
(23) S e-~t Pxy (t) dt = ~ j ~ _  ~0(0 i dO, ~ > O, x, y ~ R2. 

0 

I~ow consider a d. 10. random walk defined on R2 by the one-step transition 
probabilities 

t 
Pxy = qxy(1 -- ~x~) (--  qxx) -1 , x, y C R2. 

(lc) implies that  (ld) holds for this new process and it follows that  

~ ~P ~iO.y Foy ~ ---- 1 
Y 

only ff both 01 and 02 are multiples of 2 7~ (see SPITZE~ [10], T. 7.1). Hence q5 (0) ~ 0 
only if both 01 and 02 are multiples of 2z.  By using methods similar to those 
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which obta ined (15) in L e m m a  3 it  follows f rom (2e) and (23) t ha t  
c o  c o  

[. poo ( t ) dt = lira f e-at Poo ( t ) dt = co. 
0 ~-~0+ 0 

Also by  ( lc) ,  for each x and y in R2 there  exists t such t ha t  pxy(t) ~ O. These last  
two facts  imply  t h a t  the  process is recurrent  and t h a t  P {T (x) < oo} = 1 for each 
x in R2 (see C~u~G [1], I I .  10). Now let 

c o  

pxo ()~) = ] e -xt pxo (t) dt, 3. > O, x e R2,  
0 
co 

F z o ( t ) = P { T ( x ) ~ t } ,  Fzo( ) . )=~e-~ . td tFxo( t ) ,  2 > 0 ,  x ~ R 2 ,  x # O .  
0 

I t  is known (see C~u~G [1], I I  (12.4)) t h a t  

= 

so t h a t  
c o  

f e -~t P { T (x) ~ t} dt = po0(~) -- pxo(~) 
o ,~oo(~)- -' x # O .  

By using (23) and (2c) the proof  proceeds f rom this point  by  methods  similar to 
those used for L e m m a  3 and the ma in  proof  in the  d .p .  case. 

4. Proof  of Corollary of Theorem 1 

I n  this section let X (t) denote the posit ion a t  t ime t of ei ther a discrete or a 
continuous p a r a m e t e r  process, and for convenience pu t  

P x { A }  = P { A ] X ( O )  = x} 

for any  x in 1~2 and any  event  A. Le t  L be any  fixed finite set of points  in 1~2 and 
select any  point  y in L. Then b y  Theorem 1, i f  x 6 L 

(24) P z { X ( t ~ L f o r a l l t i n ( O , u ] }  ~ P x ( X ( t ) ~ : y f o r a l l t i n ( O , u ] }  

_ [1 + o(1)]2~oglx i 
- -  l o g  u , u ~ 1 ,  

where the  t e r m  o(1) tends to zero as I x [ - ~  co uni formly  for all u such t h a t  
u ~ I xl 2. Conversely, b y  applying the  strong Markov  p rope r ty  (see C~u~G [1], 
I .  13 and I I .  9), if  Y0 is some fixed point  not  in L and u > 1 

(25) P x ( X ( s )  = Yo for some s in (0, 2u]} 

P z { F o r  some t in (0, u], X(~) ~ L  for all ~ in (0, t) and X(t )  ~L ;  
X ( t  @ s) = Yo for some s in (0, u]} 

= ~ P x { F o r  some t in (0, u], X(v)  ~ L  for all ~ in (0, t) and X(t )  = y; 
yet  

X (t @ s) = Y0 for some s in (0, u]} 

= ~ Px  {For some t in (0, u], X (v) 6 L for all v in (0, t) and X (t) = y} • 
ye]5 

X P y  { X  (8) : Yo f o r  s o m e  s in (0, u]}. 
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But  by Theorem 1 

P y { X ( s ) - - y o f o r s o m e s i n ( O , u ] } = - l + O [ ( l o g u ) - l ] ,  as u--~ oo, 

so that  from (25) 

Px{X(s)  -= Y0 for some s in (0, 2u]} 

> Px IX (t) ~ L for some t in (0, u]} + 0 [(log u) - l ] ,  u > 1, 

where the terms 0 [. ] are independent of x. Hence by  applying Theorem 1 again 

(26) Px {X (t) ~ L for all t in (0, u]} 

> Px{X(s)  4-Yo for all s in (0, 2u]} + O[(log u) -1] 

_ [1 +o(1)]21oglx I 
- -  log u , u > 1 ,  

where the term o(1) tends to zero as Ixl--->co uniformly for all u such tha t  
u ~ Ix 12. The corollary follows on combining (24) with (26). 

5. Proof of Theorem 2 

For the Brownian motion process in the plane let Tr denote the first entrance 
time of a disc of radius a when the starting point of the process is at  a distance 
r ( >  a) from the centre of the disc. In  [8] SrlTZEI~ showed tha t  

o o  

Se-~t p { T r  < t}dt -- K~ 
0 

where Ko is a modified Bessel function of the second kind. Since 

K0 (u) ---- - -  log u + constant + 0 (u), as u --> 0 + ,  

it is then easily shown tha t  

c o  

~e-'~t p { T r  > t}dt = go (a] /22)-  K0 (rV22) 
o 2 Ko (a 1/2 2) 

= log(r/a) + O(r V2) if r / 2  --< constant. 
2[-- log2 + O(1)] ' 

Theorem 2 now follows by applying the same method as used in the main proof 
for the discrete parameter  random walk. 

6.  P r o o f  of  L e m m a  1 (d.  p. ea se )  

Let  the process be initially at (xl, x2, 0) with r = (x~ + x2) 1/2. Of the random 
number  T of steps taken before the x3 axis is first hit, let H be the total  number  
of zero steps and steps parallel with the XlX2 plane, and let V be the total  number  
of non-zero steps parallel with the x3 axis. Thus from (3d) T = H + V. Also 
let the random variable Vn be the total  number  of the first n steps which are 
non-zero and parallel with the x3 axis. 

By (3d) the one-step transition probabihties {Pxy : x, y ~ R3} may  be denoted 
by  (i) P*ab for zero steps and steps parallel with the xlx2 plane, where the suffices 
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of P*ab are in R2, and (ii) Pwz for non-zero steps parallel with the xa axis, where the 
suffices of Pwz are integers. Then by (3d) and (bd) 

(27) ~ o z z = - O ,  a 2 = ~ o z z  2<r and 0 < 5 < 1 ,  
z z 

where 9 = ~ P0z. Also if the process is initially at (xi, x2, 0) and a =- (xi, x2) 
z 

(28) P { H = h ; Z = z ;  V = v }  

~ . o o  

at ~-0 " V Paa~ Pa~a~ Pah-~O POz~Pz~z~ " "" Pz~-~z " 

Let 51 and 52 be chosen such that  0 < 91 < 5 < 92 < 1. Then for each fixed real 
number 

(29) P { Z ~ V T } ~ P { Z ~ / T ;  V>51T}+P{V~blT} 
P{Z ~ ~a~V/b i ;  V > 51T} + P{V <= 51T} 

<= P{Z ~ ~ar } + P{V <= o lT} ,  

(30) P{Z <=~aVT} ~ P{Z ~ a V T ;  V <=5~T } 

> P{Z <= ~.VY/5~; v <= 5~T} 

>__ P{Z <= ~VV]~2} -- P{V > 52T}. 

Consider firstly the inequality 

(31) P{V <= 5iT} ~ P{V <= 5 iT ;  T > r~} ~- P { T  ~ rZ}. 

By observing only the process X (n), it  follows from (4d) and Theorem 1 that  

(32) P { T < c o } = l ,  l i m P { V ~ r  2 } = 0 .  

Also 
{V_--<biT; T >  r2}_-C U{V~ g @1~i, 

n ~ T  ~ 

and the probability of the latter event tends to zero as r -~ r by the strong law 
of large numbers, since in fact V = VT and Vn is the sum of n independent identi- 
cally distributed random variables each having expectation 5. Thus 

P{V <=biT; T>r2}-~O,  asr- . r  
Hence from (31) and (32) 

(33) P{V ~ 9 i T } - ~ 0 ,  as r - + ~ .  

Similarly it can be shown that  

(34) P { V > 92 T} -~ 0, as r ~ oo. 

From (28) it is easily shown that  

P { Z = z [ V = v } = ~ P { H = h ; Z = z ;  V = v } / ~ P { H = k ; Z = w ;  V = v }  
h k,w 

= ~, (Po~.ls)"" (P~o_.,15), 
Zl 
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where the terms (q2wz/~) are the conditional one-step transition probabilities of 
non-zero steps parallel with the x3 axis. I t  follows from (27) that  the conditional 
distribution of Z given tha t  V --~ v is the same as the distribution of the sum of v 
independent identically distributed random variables, each having zero expecta- 
tion and finite variance ~/~o. Hence by  the central limit theorem (see G~D~NI~o 
and KOLMOGO~OV [3], w 35, Th. 4) 

~r 

oo 

for each fixed real number ~.'. From (32) and (33) it follows tha t  P { V  ~ co} = 1, 
and V -+ co as r =+ + in probability. Hence for each fixed real number ~' 

P (Z <= :' oVv /e }  = ~ P (Z ~ : '  ~ V v / e  [ v = v} P ( V = v} 
~d 

~r 

---> ~1 ~ e-~/2 dfl , as r -+ co 

The Icmma is now completed in the d.p. case by  applying the last limit, (33) and 
(34) to (29) and (30), and noting that  ~1 and Q2 may  be chosen arbitrarily close 
to ~. 

7. Proof of Lcmma 1 (c. p. case) 

For any ordered triple of real numbers 0 --~ (01, 02, 03) let 

T(O) = ~ qou e i~ 
y ~ 3  

Then by the same argument as used in the two-dimensional case the transition 
probabilities {Pxy (t)} are given by 

1 
(35) pxy(t)~-- ~ ~ e x p [ t ~ ( O ) - - i O . ( y - - x ) ] d O  x , y~ I~3 ,  t ~ O ,  

where the integration is with respect to the components of 0 and is taken over the 
cube I 0~] =< ~, i = 1, 2, 3. By  (3 c) 

(36) T(0)  ~- h(O,) -[- v(03), 

where h(O,) and v (0~) are respectively functions of 0, only and 08 only, and are 
defined by  

h(O.) = ~ qoy(e i~ --  1), 
(37) v, *0 

v (03) = ~. qoy ( ei~ -- 1). 
Ya#O 

I{ence from (35) and (36) Pay (t) can be expressed as the product of two transition 
probabilities, i.e. 

(3S) 

where 

(39) 

pxv (t) = apxy ( t) • vpx v (t) 

hpxy (0 = 4 ~  SexP[  th(~ --  tO . .  (y. - -  x.)]dO~, 

1 ~exp[ t v (Os ) - - i03  (ya--xa)]d03,  vP~v (t) = 2 ~ 
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the integration being firstly with respect to 01 and 02, taken over ]0il < ~, 
i = 1, 2, and secondly taken over 103 [ ~ 7c. Thus aPxu (t) depends on x, and y, 
only and Vpx u (t) depends on xs and Y3 only. Let  these transition probabilities 
specify processes (X (t)l, X (t)2) on R2 and X (t)s on the integers, where as in the 
earlier two-dimensional e. p. case it may  be assumed tha t  these processes are each 
Borel measurable and well separable. From (38) it follows tha t  the two processes 
are independent, and the proof of the lemma proceeds from this fact. 

A continuous parameter  central limit theorem is now applied to X (t)3. From 
(39), and by  the uniqueness of the characteristic function, 

{exp [i ~ X (t)s] [ x (0)3 = 0} = ~v(~) 

for each real number  u. Furthermore from (5 c) and (37), and by  using say Theorem 
2.3.3 in Lu~AcS [7], it can easily be shown tha t  

v (u) = - �89 ~2 u2 + o ( u 2 ) ,  a s  u --~ 0 .  

Hence for each fixed real number  u 

E{exp[ iuX( t )~ /a~ t ]  I X(0)3 ~- 0} = exp[tv(u/a/-t)] -~ e -u~'2 , as t --> c~, 

where the limit is the characteristic function of the normal distribution with zero 
expectation and unit variance. I t  follows from the continuity theorem for charae- 
teristic functions (e. g. see LVKACS [7], Th. 3.6.1, where the method of proof 
holds for the e. p. case) tha t  for each fixed real number ~. 

C~ 

1 ~e_~/Odfi, as t -> r (40) P{X( t )3  G ga[/ t  ] X(0)a = 0} -> l/-~ -co 

Let  the process X(t)  be initially at (xl, x2, 0) and let r = (x~ @ x~) 1/2. Suppose 
tha t  Da and ~v are the respective spaces of events generated by the independent 
random variables ( X ( t h ,  X(t)2) and X(t)a. Let  T be the time at which ( X ( t h ,  
X (t)2) is first zero, and let Z = X (T)a. Suppose tha t  g is any fixed real number and 
consider the event 

in the product space Dh • ~2v. The left hand side of (40) is the probabili ty measure 
of the section of the event (41) at  any 'elementary event '  in the space f2h for which 
T - -  t. Also from (4c), and by applying Theorem 1 to the process (X( t ) l ,  X(t)2), 
it follows that  P { T  < ~ }  ~ 1, and T - ~  as r - +  ~ in probability, tIenee 
from (40) and the product measure theorem (e. g. see L o i r e  [6]) 

8. Proofs of Theorems 3 and 4 (d. p. and c. p. cases) 

These theorems can now be proved as consequences of Theorem 1 and Lemma 1. 
Let  Z and T be the random variables defined in Lemma 1, supposing tha t  the 
process is initially at  (xl, x2, 0) with r = (x~ @ x~) 1/2. Then for each positive 
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e and 2 

C. J. RIDL~R-Row~: 

< 

=< 

P{[Z l > u) >--> 

>= 

>= 

p{]z]  > u;  T ~ u2,~ -2} + P{T > u 2 i  -2} 

P{IZI > 2j/T} + P{Z > u~2-~}, 

P{lZl > el~T; T > u2e-2} 

I t  follows f rom condi t ions (4) and  Theorem 1, and  by  observing only  the  x 1 and 
x2 components  of  the  process,  t h a t  the  t e rms  P{T > u 2 i  -2} and  P{T > u2e -2} 
are of the  form 

[1 -t- o(1)] log r 
logu - -  , u >  1, 

where the  t e rm  o (1) depends  respect ive ly  on ~ and  e, and  tends  to zero as r -+  c~ 
un i formly  for all u sa t is fying u ~ r. According to  L e m m a  1 the  te rms  

l i m P { ] Z ]  > 2~/T}, l i m P { [ Z ]  =< el/T-} 

can be made  a rb i t r a r i ly  small  b y  making  sui table  choices of t and  e. Hence  

P{lZl  > u} = [1 + o(1)]aogr 
- l o g u  ....... + o ( 1 ) ,  u >  1 ,  

where the  t e rms  o(1) tend  to  zero as r -+ ~ un i formly  for all u sat isfying u ~ r. 
Theorem 3 follows immedia te ly .  

To prove  Theorem 4 suppose f i rs t ly  t h a t  ~ > 2/3 >_ 2. Then by  Theorem 1 

P { T  > r~; [Z] > r~} = P{T > r~}-- P{T  > r~; [Z] <= r~} 

--~ 2 0' .-1 ~ as r ---> o o ,  

since by Lemma 1 

P{T > r% ]Z 1 ~r~) ~ P{IZ[ ~ r~-~/~)-~0, as r-~oo. 

Similarly if 2fl > a ~ 2, by Theorem 3 

P{T > r~-; IZI > r~} = P{IZI > r~}-- P{T  ~ r~; tZI > r~} 
_ ~  f l - I  a s  r - -~  o o  ~ 

since by  L e m m a  1 

P { T  ~ r~; ]Z] > rZ} ~ P{]Z[ > rB-~/2~T}->O, as r--> r 

This completes  the  proof  of  Theorem 4. 
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