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1. Introduction

It is well known that under certain conditions a random walk on a two-
dimensional lattice is almost sure to hit each point of the lattice. Certain classes of
such random walks are considered here in the discrete time parameter (d.p.) and
continuous time parameter (c.p.) cases. The main problem is to determine the
behaviour of the distribution of the first hitting time of a given point as the distance
between that point and the starting point of the random walk becomes large. The
method used is also shown to give an analogous result for plane Brownian motion.
The random walk result is also applied to a restricted class of three-dimensional
random walks: in the latter case, for a given axis of lattice points, the respective
behaviours of the distribution of the first hitting place and the joint distribution
of the first hitting place and time are examined. The statements of the main results
with various preliminaries are now given and proofs follow in the later sections.

For d = 2, 3 let the state space of the d-dimensional random walk be the set
R4 consisting of all ordered d-tuples with integer components. For any ordered
d-tuples § = {6;} and 6’ = {6;} with real components let

d
0.0’:2&(9;, |0] = (60.0)%, Ox = (01, ..., 041).
i=1
The d-dimensional d.p. random walk is denoted by a family of random variables
{X (n)}, where n runs through the positive integers. In the customary notation the
one-step transition probabilities {pz,} are assumed to satisfy
pryzlz Pxz = P0o, 22> x,z€Rq.
yeRg ;
The d-dimensional ¢.p. random walk is similarly denoted by a family of random
variables {X (f)}, where ¢ runs through the non-negative real numbers. The c.p.
transition probabilities {pgy (£)} are uniquely specified in terms of the transition
rates
Gzy = pxy(o) ’ z, Y€ Rq,
agsuming that
q:&y Z O > x + ?/ >
ZQxyz—‘Im<°°= 9zy = 90, y—z -
yEx
For the two-dimensional processes the following conditions, (1d) and (2d) in
the d.p. case, and analogously (1¢) and (2¢) in the c.p. case, are assumed.
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(1d) For each z and y in Rs there is an integer » such that the n-step transition
probability py, is positive.

(2d) D Peyy=0 and > pyyly|?t < oo
Yy Yy
for some positive number §.
(1c) For each z and y in Ry there exists a finite sequence z1, ..., z, of points in Ry
such that

1=, Lp=1Y and ER TR >0.

2c) Sqoyy=0 and > goy|y|20 <o

y+0 y

for some positive number 4.
The transition probabilities {psy(f)} of the two-dimensional c.p. process are
obtained later in a form which shows that they are continuous functions of ¢ and

that im pgy (t) = O4y, where dzy is Kronecker's symbol. Under these conditions it
{0
is known that it is permissable to consider the process X (t) to be Borel measurable

and well separable (see CHUNG [I], IL. 4). For either type of process it is shown
later that the respective conditions (1) and (2) together imply that each lattice
point is almost surely visited. Now let the random variable 7' (x) denote the time at
which either type of process first hits the origin starting from the non-zero lattice
point z.

1 ke, w)] H
Theorem 1. P{7T (x) >u}=[-—~1(;;—ulz]n(xl, x=0,u>1,
where the functions H and h are defined later and satisfy

(1) lim % (x, w) = O for each fixed non-zero x,
U—>c0
(i) A (z, %) 0 as || = oo uniformly for oll u = |z|2,
(iii) [H (x) — 2log |x|] is bounded for all non-zero x.
Corollary. If wunder the same hypotheses as Theorem 1, T (x) denotes the first
hitling time of any finite set of points in Ry,

{1 +o(1)] 2logjz|
log u

P{T(z) > u} = , u>1,
where the term o (1) tends to zero as | x| — oo uniformly for all w = | z|2. In particular
for each fized real number o such that o = 2

P{T(z) > |[z]|*} >2a7L, as |x]|—>o0.

The behaviour of P{T (x) > u} when z is fixed has been investigated for a
wider class of d.p. random walks by SpITZER [10], and a more precise result with x
fixed is given in [70] for the simple symmetric d. p. random walk.

The method used in the main part of the proof of Theorem 1 provides the
following analogous result for plane Brownian motion. Let 7' now denote the first
hitting time of a disc in the plane of radius @ when the Brownian motion process
starts at a distance r (> a) from the centre of the disc.
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[1 -+ h*(r, w)] 2log (rfa)

Theorem 2. P{T > u} = Toz u , u>1,
where (1) lim A* (r, u) = O for each fixzed r,
®—>co

(i) A*(r, u) — 0 asr — oo uniformly for all u = r2.

The behaviour of P{7T; > u} when r is fixed has been obtained for a more
general hitting set by Huwt [5].

For the three-dimensional processes the following conditions, (3d), (4d) and
(5d) in the d.p. case, and (3¢), {(4¢) and (5¢) in the c.p. case, are assumed.
(3d) If poy > 0, one of y= and ys is zero.
(4d) The two-dimensional process X (n)« satisfies (1d) and (2d).
(5d) DPoyys=0, > poy(ys)?=o?,

yER3 yERs

where ¢2 is finite and positive.
(3¢) If goy > 0, one of y« and y3 is zero.
(4c) The random walk on Ry defined by the transition rates {g,,:z,we Rs}
satisfies (1¢) and (2¢) when

QZ,'LU = Qwy > 2 & w, ¥ =(21,22,0), ¥y = (w1, w2,0),
Qz,z = z q,;w .
w2
(5¢) 2 qoyy3 =0, > doy (y3)2 = o2,
yeRs yels

where ¢2 is finite and positive.
It is shown later that such a c.p. process may be considered to be Borel
measurable and well separable. 1t is also shown that both types of process almost
surely hit the 3 axis, Now for either type of process let the random variables 7'
and Z denote respectively the time and coordinate of the first hit on the xg axis,
assuming that the starting point is (1, ze, 0) with r = (2§ - 22)%.

Lemma 1. For each fixed real number o

= 1 F o py
P{ZgaGVT}—%'mI: Frag as r— oo .
The following results are deduced from this connection between Z and 7.
Theorem 3. For each fixed real number § such that § = 1,
P{lZ| >rB} -1, as r—co.

Theorem 3 was first proved directly by DoNrY [2] for the simple symmetric
d.p. random walk. The next result and its proof were kindly communicated by
Doxry.

Theorem 4. For each pair of fixed real numbers o and f such that o = 2 and f = 1

P{T > r%;|Z| > rf} - [max(«/2, f)]L, as r—>o0.

2. Proof of Theorem 1 (d. p. case)

Two lemmas are obtained before the main part of the proof. Firstly let
ap(x) = P{T(x) >n}, and Ad(z,7Q) :zan(x)én, xely,2+0,0<<1,
n=0

14%
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and for each ordered pair of real numbers 8 = (81, 02) let
@(0) = ZPOyew'y-

yeRz
1 — eifz
/1_¢¢( %
:)/

where the inlegration is with respect to the components 01 and 0s of 0, and is taken over
the square | 0;| < 7, © = 1, 2, from now on in this section unless otherwise stated.
Proof : Let {py,} be the n-step transition probabilities on Rz, and let

Lemma 2. Az,

z+0,0<l<1,

n=P{Xu *y, 0<y<n, X(n)=y|X(0)=ux}, z,94€ Ro, n >0,

fxy—(): x,yeRg.
Tt is well known that
(6) meoC" proé /Zpooéf xeRy, v %0, 0<L <.

It is shown independently in Lemma 3 (15) that z Pop = oo, and it is well known
n=>0

that this with condition (1d) implies that Z fzo = 1for each zin Ry. Hence
#n=0

§) = > an(x)in
fn=10
== z ZfzoC”

n=0r=n-+1
= D/l —Mia—10),
r=1
so that by (6)
(7) A, 0) = { D pholr — 2 Pt} (1 —0) zopgocr.
=0 =0 pe=
But [¢(0)]* = > pl,e® so that
YER:
pZy:LTiﬁf [p(B)]ne~®w=2) 4, x,yeRa.
Hence
$ e S [ igpmpe oo
n=0 n=0
1 S n —i0.(y —z
®) —ur | {gom(en } L

1 e— 0.y —2)
=i [y 4. 0<I<1,
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where the order of summation and integration may be interchanged since the
function considered has modulus at most {” and is therefore absolutely convergent
under these operations. Lemma 2 is now completed on substituting the last
formula in (7).

Lemma 3. Ifx =+ 0,0 <{<landn=1-—7¢

S w_ H@ —log(14+7]z[?) +g(@,n)
40 Z;P{T(xbn}é = u—Tlogy + 0(1)] ’

where H and g are defined later and satisfy
(i) [H (x) — 21og |x|] is bounded;
(il) g(x, n) is bounded for all x and n, and lim g (x, n) = O for each fixed x;
n—>0+
(iii) the term O(1) is bounded for all x and x.

Proof: Following a method used by Se1TzEr [9] it can be shown that
9 @(0) =1—3Q(0) + 0(|0]29), as |0| =0,
where @ (0) is the positive definite quadratic form z Poy (0 . ¥)2 and & is chosen as

v
in (2d), assuming without loss of generality that ¢ < 1. 1 @(f) may be reduced to
the form r2 by making a suitable transformation in the 0 plane, say

(10) 01 = r[y1 cos yo cos yp + g sin g sin p]
02 = r[ — y1sin g cos p + y2 cos Yo sin ],

where 7 and g are polar coordinates, and y1, y2 and g are constants with y1 and y2
both positive. Hence from (9)

(11) @) =1—1r2 O(r2+d),
1 1
12) r=te® g+ T

for all sufficiently small positive r and all  in (0, 1). Also it is easily shown that
(13) 0.2=cr|z|cos(y —y1),

where ¢ and y; depend on z but not on r and y, and ¢ lies between 7 and 5.

Consider now the denominator and the numerator of the expression for 4 (z, )
obtained in Lemma 2, assuming from now on that  + 0 and 0 << ¢ < 1. Let the
positive constant g be chosen such that (11) and (12) hold for all # in (0, 7] and
such that the region for which r =< ¢ is contained in the square | 0;| < &, ¢ = 1, 2.
1t is known that condition (1d) implies that ¢ (6) = 1 only if both 6; and 65 are
multiples of 25 (see SerTzER [10], T. 7.1), 30 that since @ is continuous

|p0)] < constant << 1, if |0;] =@, ¢=1,2 and r>rg.
Hence on dividing the range of integration and using (12)
a9 - 70 2n . g
(14) fﬁ;(e‘)*  J g+ 1+ 0 )]ry1yedrdy + 0(1)

r=0p=0
= ayiy2[—logn 4 O(1)],

where ry1y2 is the Jacobian of the transformation (10), and from now on terms
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0(1) are assumed to be bounded independently of  and ¢ (or ). Hence from (14)

(15) Z Do = lim poOC _"hm.fl C<P(9)

{—=1— n=0 {—1—

which is the condition required in Lemma 2. By using (12) again

(16) fll—elox 6_f f (1 — €29 (g + r2)Lryypedrdy + O(1).

r=0yp=0
But from (13)
27 2a
(1 —e%5)dy = 205 — [explicr|e|cos (p — p1)] dp
p=0 v=0
72
= 27 — 4 [cos (cr|z| cosy) dy
p=0

=2a[l — Jo(er|x|)]
where J is a Bessel function of the first kind (see WaTson [11]). Now since
Jom)=1-+-0(2), as u—0-4, and Jo(u)=0(m"%, as u-—>-too,

and since ¢ lies between y; and ys,

ro 2m

(17) [ [ — %)+ )y lrdrdy
r=0y=0

= 2x J'“[l — Jo(er|x|)](n + r2)yLrdr
r=0
cro|z

=27 [[1— Jo(u)](u2+ 2 |z|?)Ludu
#=0

= [2log|z| —log (1 + 5|x[2) + 0(1)].
Let H (x) be defined by

(18) wy1y2H (x) =C_1)1§Ii T o) e,

where the limit exists by virtue of (11). Then if g (x, %) is defined by
] — eibz
(19) '/T:mgd6=ﬂy1yz[ﬂ(x)-log +nlx|2) + g n)],

the required properties of H and g follow from (16), (17) and (18). The lemma is
completed on combining (14) with (19).

Main Proof: In the Tauberian theorems 98 and 100 in HArDY [4] a method
due to Karamata is used to obtain the behaviour under certain conditions of a
function B(¢), say, as t —> -co from the behaviour of its Laplace-Stieltjes trans-

form fe—/”dtB(t) as 1 —>0-. Now let
0

xt)r_zan(x), t=0, zeRo, z 0.

nst
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By using a modification of the method of KaramarTa the behaviour of B (x, t) as | z|
and ¢ —> —+ oo is now obtained from the behaviour of its Laplace-Stieltjes transform

Az, e 4) = J'e—ltd,B(x, ty, A>0,
0
as |#]| —> oo and 1 — 0. The behaviour of a,(x) then follows from the mono-
tonicity of B(z, t) as { varies.
It is known that if g is a given real function which is Riemann integrable on
(0, 1) and ¢ is a given positive number, there exist polynomials

Zpsus and g(u quus

such that

(20) p<g<q and [et[g(et)— plet)]di <e.
0

Hence, since B(z, t) increases as ¢ increases,

@1 Twﬂmrm@B@@gTmerm@B@@
0 0

J

=2 ps [e DM d,B(x, 1)
s=0 0

-

=D ps A {x, e T2},
0

But by Lemma 3 for 0 <s <j
H(x)[1 + hs(z, A)]
s+ Dilogi °

where lim %; (%, 1) = 0 for each fixed &, and hs(z, 1) - 0 as |x| — oo uniformly
A—>0-+

for A satisfying A|x|2 < 1. Now let g () = u~! when e < u < 1 and 0 otherwise,
and let polynomials p(u) and ¢ (u) be chosen as in (20). Then

0<i<l,

(22) A, e-+DhA} =

J o0 4
Zps(s + 1)t = fe_tzpse_“dt
s=0 0 §=0
:fe—tp(e*t) de
0
=1—c.

Since B(x, 0) = 0, it follows from (21) and (22) that if 0 < 1 < 1 and A|z|% < 1,

Bz, 21) = [e-dg(e-i)d,B(x, 1)
4]

~ L pH@) [+ hs(w, 2]

- —(s+1)Alog A

§=0
H(z) _ Pshs (x,
= —Zogx |1 T zo G+1
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Hence on replacing A1 by ¢ it follows that

(1 — 2¢) ¢t H(2)
Bz, ) Z oy

for (i) all large enough f when « is fixed, and (ii) all large enough || provided that
t = | |2. By making a similar calculation based on the inequality ¢ < ¢ in (20) it
follows that

(1+2¢e)tH(x)

- logt
under either of the last conditions (i} and (ii). Since an(®) = P{T (%) > n}
decreases as » increases

Be,) =

Bz, n1t%) — B(x,n)
nito

B )
280 2 0(0) 2

for each positive number 8. Theorem 1 now follows in the d. p. case on applying
the above estimates for B(x,f) to the last inequality and noting that ¢ and §
may be chosen arbitrarily small.

3. Proof of Theorem 1 (c. p. ease)

Tt is shown the theorem may be proved in this case by methods similar to those
used in the d. p. case.

Since the transition rates g5y are bounded, it follows from the theory of
semigroups of linear operators that if P(f)={pzy ()} and Q= {gay}, P(f) is
determined uniquely and P () = ¢'9. Hence if

D(0) =S gos e,

1 .
pw(t):mfexp[t@w)—@6.(y—x)]d0, z, y€ Ry,

where the integration is with respect to the components 61 and 02 of 6 and is
taken over the square |6;] <&, ¢ =1, 2, from now on in this section unless
otherwise stated. Then since the real part of @(6) is not positive

& it _ 1 [e-ibw-m
(23) _!e Z)my(t)dt—m -—ﬂ.—@(e) d@; A>O, x,yeRg.

Now consider a d.p. random walk defined on Rz by the one-step transition
probabilities
Py = Goy(l — 0p,) (— quea)™t, @, y€ Ra.

(1c) implies that (1d) holds for this new process and it follows that
Z p(’) ’ eie.y =1
v

only if both 6; and 63 are multiples of 2z (see Sp1rzER [10], T. 7.1). Hence @ (§) =0
only if both 61 and 63 are multiples of 27. By using methods similar to those
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which obtained (15) in Lemma 3 it follows from (2¢) and (23) that

fpoo t)dt = lim fe—“poo( Ydt = 0.
A0+ 0
Also by (1e), for each = and y in Ry there exists ¢ such that pgy (f) > 0. These last
two facts imply that the process is recurrent and that P{1'(x) < oo} = 1 for each
x in Ry (see Couxe [1], IT. 10). Now let

[

Do (2) = [eM pgo(t) dt, A>0, ek,
0

Faolty = P{T(@) St}, Fao(h je #d,Fao(t), A>0, wveRy, w+0.

It is known (see CHUNG [1], IT (12.4)) that

Fao(A) = Pro(A)/Do0(A)
so that

Te‘“ P{T(2) >t}dt = é“)-ov(—l),\" ﬁxo@) -, z+0.
0 A poo(4)

By using (23) and (2¢) the proof proceeds from this point by methods similar to
those used for Lemma 3 and the main proof in the d.p. case.

4. Proof of Corollary of Theorem 1

In this section let X (t) denote the position at time ¢ of either a discrete or a
continuous parameter process, and for convenience put

Py{4} = P{4]|X(0) = a}

for any z in R3 and any event 4. Let L be any fixed finite set of points in Re and
select any point y in L. Then by Theorem 1, if x ¢ L

(24) Py{X (¢ L foralltin (0,u]} < Py{X(t)+y for all {in (0, u]}
_ [ 4+oM)]2log|z|
- log » ’ w>1,

where the term o(1) tends to zero as |z| — co uniformly for all w such that
u = |x|2. Conversely, by applying the strong Markov property (see CrunG [1],
I. 13 and II. 9), if ¥, is some fixed point not in L and « > 1

(25)  Pz{X(s) = yo for some s in (0, 2u]}

= Py {For some ¢ in (0, u], X (») ¢ L for all y in (0,¢) and X () e L;
X (t 4 s) = yo for some s in (0, u]}
= > Py {For some ¢ in (0, %], X (v) ¢ L for all » in (0,#) and X (t) = y;
yels
X (t - s) = yp for some s in (0, u]}

—sz{For some £ in (0, w], X () ¢ L for all » in (0,t) and X (f) = y} X

yel
X Py{X (s) = yo for some s in (0, u]}.
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But by Theorem 1

Py {X (s) = yo for some s in (0, u]} = 1 4 O[(log u)1], as ¥ — oo,
so that from (25)

Py {X (s) = yo for some s in (0, 2u]}
= P;{X(f)e L for some £in (0,u]} + Oflogw)~t], u>1,
where the terms O[.] are independent of x. Hence by applying Theorem 1 again
(26) Py {X ()¢ L for all ¢ in (0, u]}
> Py{X (s) +yp for all sin (0, 2u]} 4 O[(log u)~1]

_ (4 o()]2log|z|

log % ’ w>1,

where the term o(1) tends to zero as || — co uniformly for all u such that
% = |«|2. The corollary follows on combining (24) with (26).

5. Proof of Theorem 2

For the Brownian motion process in the plane let 7, denote the first entrance
time of a disc of radius @ when the starting point of the process is at a distance
r(> a) from the centre of the disc. In [§] Sp1TzER showed that

Ko(ry22)

e—lt_P T ét dt:*v,_ =, Z>1’
of Ir =t = )

where Ky is & modified Bessel function of the second kind. Since
Ko(u) = — log u - constant + O (u), as u—>0 -,
it is then easily shown that

e P{T, > tydt = Ko(@V22) — Ko (ry27)
0

AKy (a)y24)
— log(r/a) + O(ry3) if r1/2
A —Togh - O] * if }/2 < constant.

Theorem 2 now follows by applying the same method as used in the main proof
for the discrete parameter random walk.

6. Proof of Lemma 1 (d. p. case)

Let the process be initially at (z1, z2, 0) with r = (27 + 23)1/2. Of the random
number T of steps taken before the x3 axis is first hit, let H be the total number
of zero steps and steps parallel with the x;x2 plane, and let V be the total number
of non-zero steps parallel with the w3 axis. Thus from (3d) 7'=H 4- V. Also
let the random variable ¥, be the total number of the first » steps which are
non-zero and parallel with the 3 axis.

By (3d) the one-step transition probabilities {pzy : x, y € R3} may be denoted
by (i) py, for zero steps and steps parallel with the x5 plane, where the suffices
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of p,, are in R, and (i) fy, for non-zero steps parallel with the 3 axis, where the
suffices of fy,, are integers. Then by (3d) and (5d)

27) > Pozz=0, 02=7 Poz?<oo and 0<p<I,
z k4

where ¢ = ZﬁoZ. Also if the process is initially at (z1, zg, 0) and e = (x1, x2)
z
(28) PH=hZ=z2 V=u}

h 4+ v — 1 * * ® - = -
= Z Z v pam pmaz e pah—lo p021p21z2 vt p2v~12 .

a+0 2z

Let p1 and g2 be chosen such that 0 < g1 < ¢ < g2 < 1. Then for each fixed real
number ¢ :

29) PZ=ZaofT}<PZ<ac)T; V>oT}+ P{V<0:T}
SP{Z=ac)V]e; V>0T}+ P{V<ouT}
S P{Z=Zac)V]o}+ P{V=0.T},

(30) PZ=wo)T}=ZP{Z=ac)T;V =0T}
=P{Z<ac)V]ge; V =027}
=P{Z <ac)V]es} — P{V>0sT}.

Consider firstly the inequality

(31) PlV=oaT}=sP{V=o1T; T>r2} + P{T =r2}.
By observing only the process X (n),_ it follows from (4d) and Theorem 1 that
(32) P{T<ew}=1, limP{T'<r2}=0.

r—>o0
Also

{V =oT; T>7'2}(=: U{Vnéan}w

n>r?

and the probability of the latter event tends to zero as r — co by the strong law
of large numbers, since in fact ¥V = V7 and ¥V, is the sum of » independent identi-
cally distributed random variables each having expectation p. Thus

PV <o:T; T>12} -0, as r —00.
Hence from (31) and (32)

(33) PV =0T}—0, as 7 — o0,

Similarly it can be shown that

(34) P{V >0 T}—0, as 7 —» 00,

From (28) it is easily shown that

P{Z:z[V:’v}———ZP{H:h;Z:z; V:v}/ZP{H:k;Z:w; V =1}
P ko

= Z (T-’Ozl/Q) T (ﬁ2y~1 z/Q) s
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where the terms (fy./p) are the conditional one-step transition probabilities of
non-zero steps parallel with the z3 axis. It follows from (27) that the conditional
distribution of Z given that V = v is the same as the distribution of the sum of »
independent identically distributed random variables, each having zero expecta-
tion and finite variance o2/p. Hence by the central limit theorem (see GNEDENKO
and Kormocorov [3], § 35, Th. 4)

o

' 77 1 —pB2
P{Zgocal/V/glvzv}_>ﬁ fe=#2dp,  asv—oo,

for each fixed real number «’. From (32) and (33) it follows that P{V < oo} =1,
and V — oo as r -—> oo in probability. Hence for each fixed real number o'

PiZ < o)fVie} =D P{Z <o o/ V|o|V =v} P{V =1}

.
s AT
T
— 00

The lemma is now completed in the d.p. case by applying the last limit, (33) and
(34) to (29) and (30), and noting that g; and gs may be chosen arbitrarily close
to o.

7. Proot of Lemma 1 (e. p. case)

For any ordered triple of real numbers 6 = (01, 02, f3) let
Y(6) = ZQOy ey

yERs
Then by the same argument as used in the two-dimensional case the transition
probabilities {pgy ()} are given by

1 .

(35) Pey(f) = gz JexpBP(0) —i0.(y —2)id0  w,yecBs, t=0,
where the integration is with respect to the components of § and is taken over the
cube |0;] =&, i =1,2,3. By (3¢)
(36) Y(0) = h(0+) + v(03),
where A (6:) and v(f3) are respectively functions of 0+ only and 63 only, and are
defined by

h{0+) = ey 1),

9(63) = quy (ei"'y -— ].) .

Y30

Hence from (35) and (36) P4y (f) can be expressed as the product of two transition
probabilities, i.e.

(38) Py (F) = PPy (£) X Py (1)
where
(39) Mpay (1) = 4oz [exPIth(0:) — iBs . (y= — w:)]d0e

Yy (1) = 5 | exp[tv(0s) — i 05 . (ya — w3)] b,
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the integration being firstly with respect to 61 and 0, taken over |0;| =< =,
i = 1,2, and secondly taken over | 03| < m. Thus #pzy (t) depends on z+ and y«
only and *pgy(f) depends on xs and ys only. Let these transition probabilities
specify processes (X (1)1, X (£)2) on Rp and X ()3 on the integers, where as in the
earlier two-dimensional c. p. cage it may be assumed that these processes are each
Borel measurable and well separable. From (38) it follows that the two processes
are independent, and the proof of the lemma proceeds from this fact.

A continuous parameter central limit theorem is now applied to X (¢)3. From
(39), and by the uniqueness of the characteristic function,

E{expliuX(t)s]| X (0)3 = 0} = eto®

for each real number u. Furthermore from (5¢) and (37), and by using say Theorem
2.3.3 in Luxacs [7], it can easily be shown that

v(u) = — L o2u? + o (u?), asu-—=>0.

Hence for each fixed real number «

E{expliuX (t)3/0)/t]| X (0)3 = 0} = exp[tv(u/c)/t)] —ev"2, ast— oo,

where the limit is the characteristic function of the normal distribution with zero
expectation and unit variance. It follows from the continuity theorem for charac-
teristic functions (e.g. see Luraocs [7], Th. 3.6.1, where the method of proof
holds for the c. p. case) that for each fixed real number o

(40) P{X(t)ggow]/ﬂX(O)3=O}—>v%n [e~P2dB,  ast—oo.

Let the process X (t) be initially at (21, z2, 0) and let r = (27 - 3)1/2. Suppose
that £25 and £, are the respective spaces of events generated by the independent
random variables (X (£)1, X (£)2) and X (f)3. Let 7' be the time at which (X (£)1,
X (t)2) is first zero, and let Z = X (T')3. Suppose that « is any fixed real number and
consider the event

(41) {Z <ao)T}

in the product space £2j, x £2y. The left hand side of (40) is the probability measure
of the section of the event (41) at any ‘elementary event’ in the space 2y, for which
T =t. Also from (4¢), and by applying Theorem 1 to the process (X (f)1, X (£)2),
it follows that P{T << oo} =1, and 7 —~ oo as r — oo in probability. Hence
from (40) and the product measure theorem (e. g. see Lokva [6])

— 1 SN
P{Z§owl/T}+~sznf_£f Fizdg, as r—>o00.

8. Proofs of Theorems 3 and 4 (d. p. and e¢. p. cases)

These theorems can now be proved as consequences of Theorem 1 and Lemma 1.
Let Z and T' be the random variables defined in Lemma 1, supposing that the
process is initially at (21, 29, 0) with r = (2§ + 23)1/2. Then for each positive
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¢and A
PlZ| >u} S P{Z| >u; T <u2i 2} + P{T > w212}

SP{Z|>WT; T<u2i 2} + P{T > u2)2?}
S P{Z|> 3T} + P{T > u2}2},
P{Z|>u}=P{{Z| >u; T >u2e?}
=z P{|Z|>e/T; T >u?e?}
= P{T >u?e2} - P{|Z| < ¢)/T}.
It follows from conditions (4) and Theorem 1, and by observing only the #; and

@2 components of the process, that the terms P{7T > 212} and P{T > u2¢2}

are of the form
[+ o(l)]logr

logu ’ w>1,

where the term o (1) depends respectively on 1 and ¢, and tends to zero as r — oo
uniformly for all « satisfying u = r. According to Lemma 1 the terms

lim P{|Z| > YT}, limP{|Z| <¢/T}
F—>00 r—>oe

can be made arbitrarily small by making suitable choices of 4 and ¢. Hence

(1 +o(1)]logr

P{[Z]>u}: TTog u

+o(l), uw>1,

where the terms o(1) tend to zero as r — co uniformly for all » satisfying « = r.
Theorem 3 follows immediately.
To prove Theorem 4 suppose firstly that « > 2 = 2. Then by Theorem 1

P{T > 1% |Z]| > rb} = P{T >r*} — P{T >r%; |Z]| =18}
— 2071, as r — oo,
since by Lemma 1
P{T>r°‘;]Z]grﬁ}gP{IZl§¢ﬁ‘°‘/2[/T}—>0, asr —oo.
Similarly if 28 > « = 2, by Theorem 3
P{T > 1% |Z| > r8} = P{|Z| > r8} — P{T <r%; |Z| > rf}
—~p1, as r —>oo,
since by Lemma 1
P{T <% |Z| > rf} < P{|Z| > rf-22)/T} >0, as r—»oo.

This completes the proof of Theorem 4.
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