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Given a subset S of the product of two probability spaces ( X , N ( X ) , P  0 and 
(Y,N(Y)0P2), Strassen (1965) asked when there was a law P concentrated on S 
having P~ and P2 as marginals; he obtained results for the case of closed 
subsets of the product of Polish spaces using Choquet's theory of capacities; a 
proof based on a game-theoretic argument has been given by Hansel and 
Troallic (1978). We offer a new argument extending this theorem to a large 
class of measurable spaces (Theorem 1) and then generalize it beyond the 
context of products (Theorem 2). Next, the case of more than two factor spaces 
is taken up in Theorem 3 and finally that of a countable collection of such 
spaces in Theorem 4. 

Hansel and Troallic (1978) also proved a result somewhat "inverse" to 
Strassen's Theorem (Corollaire 3), and it is this proposition that we generalize 
to several and finally countably many spaces in Theorems 5 and 6. 

The fundamental structures underlying most of what follows are what we 
shall term separable spaces; by this we mean measurable spaces (X,~)  with 
countably generated and countaining singletons. We shall often suppress the 
notation of a a-algebra, calling the space X alone and indicating its measur- 
able structure with N = N(X). If A is a subset of a measurable space (X, ~), we 
shall always consider A as a measurable space with relative a-algebra N(A) 
= {Ac~B: BEN}; under this convention, subsets of separable spaces are again 
separable. Also, a product of countably many separable spaces is again separ- 
able when endowed with the product a-algebra. 

If X is a separable metric space with Borel a-algebra N, then (X, N) is a 
separable space. Furthermore, there is a well-known technique due to Mar- 
czewski (1938) by which one may introduce metrics on separable spaces com- 
patible with the measurable structure: 

Lemma 1. I f  (X, ~)  is a separable space and ~ is a countable subset of N, there 
is a metric d on X such that: 

1. (X,d) is a totally disconnected metric space with compact completion 
((X,d)  is totally bounded and hence separable), 
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2. ~ is the Borel a-algebra for (X,d); we say d is a metric for (X,N) 
whenever this happens, 

3. the elements of c~ are " clopen" (both closed and open) in (X,d), and 

4. if ~ generates ~,  cg is a base of clopen sets for the topology of (X, d). 

Let J be a countable, non-empty index set, let Xj, jcJ,  be separable spaces, 
and put ~ = I I { X j : j ~ J } .  A subset S of 2~ is Borel-closed in N if it is the 
complement of a countable union of measurable rectangles, each depending on 
finitely many coordinates. Lemma 1 and the LindelSf property for separable 
metric spaces imply that a subset S of ~ is Borel-closed if and only if it is 
possible to choose metrics d; for Xj, jeJ,  making S closed in the corresponding 
product topology on .~. 

A separable space (X,N) is standard if there is a metric d for X such that 
(X, d) is a complete, separable metric space (the topology of such a space is 
called Polish); we allow S=~b. The isomorphism types of standard spaces are 
completely classified by cardinality: every standard space X is Bore1 isomor- 
phic either with a finite set, the integers, or the real line according as the 
cardinality of X is finite, countably infinite, or uncountable (see Cohn (1980) 
p. 275). 

We use the terms "probability measure" and "law" interchangeably. If 
(X,N,P) is a probability space, denote by P, and P* the inner and outer 
measures formed from P; a subset A of X is P-completion measurable if P,(A) 
= P f - a ( A )  for A ~ 4 ;  f (P)  is the image of P under f Given any A c X  and 
measurable for all laws P on (X, N). Suppose that f :  X---,Y is a measurable 
function between two measurable spaces (X,N) and (Y,,d) and that P is a 
probability on (X,N); then we define f (P)  on (Y,,sd) by the rule f (P)(A) 
= P f - I ( A )  for Ae~ / ;  f (P)  is the image of P under f Given any A c X  and 
probability measure P on (A,N(A)), B(A)={Bc~A: B ~ ( X ) } ,  we define the 
probability fi induced by P on X by the rule fi(B)=P(Bc~A). A separable 
metric space (S, d) is universally measurable (u.m.) if it is universally measurable 
in its completion S. If the Borel structure on S is standard, Christensen (1974) 
Theorem 2.6 implies that S is Borel in S and hence is u.m. It is not hard to 
establish that a separable metric space (S, d) is u.m. if and only if every law P 
on S is tight (for each ~>0, there is a compact K ~ S  with P (K )>  1-~).  See e.g. 
Varadarajan (1961) p. 224. This would seem to say that the u.m. property for 
(S, d) depends on the metric d only through its topology; in fact, more is true. 

Lemma 2. Let X be a set and let d 1 and d 2 be separable metrics on X generating 
the same Borel a-algebra. Let Y1 and Y2 be completions of X for these respective 
metrics; then X is u.m. in Y1 if and only if it is u.m. in Y2. 

Proof See Shortt (1983) Theorem 1. 

Thus the u.m. property is invariant under choice of metric, depends only on 
Borel structure, and is therefore properly an attribute of separable measurable 
(not metric) spaces. We shall call a separable space X u.m. if there is a metric d 
for X for which (X, d) is u.m. 
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Lemma  3. A separable space X is u.m. if and only if for every law P on X, there 
is a set S e ~ ( X )  with (S, ~(S)) standard and P(S)= 1. 

Proof See Shortt (1983) Lemma 4. 

A subset A of a separable space X is analytic if it is the measurable image 
of a standard space (we allow A = qS). It is well-known that analytic spaces are 
u.m. (cf. Cohn (1980) p. 281 (8.4.3)). 

Lemma  4. Let X be a f ixed uncountable standard space; a separable space Y is 
u.m. if and only if every law P on X x Y has the following property: if P1 is the 
marginal of P on X, and A c X is such that PI*(A)= 1, then P*(A x Y ) = I .  

Proof See Shortt (1983) Theorem 3. 

By convergence P , ~ P  of (Borel) probability measures on a metric space S 
we mean convergence "in law" or "weak convergence" defined by bounded 
continuous functions on S. We shall make use of 

Le Cain 's  Theorem. Let S be a separable u.m. metric space with laws P,--*P on S. 
Then the sequence P1, P2 .... is uniformly tight. 

Proof See Le Cam (1957) Theorem 4 or Dudley (1972) p. 10.2. 

Lemma  5. Let X be a metric space on which laws P~--*P. I f  A c X  and P~*(A) 
= P * ( A ) = I  for all n, then P~*--* P* as laws on A. 

Proof Closed subsets of A are of the form Fc~A, where F is closed in X. For 
such a set, l imsupP~*(Fc~A)=limsupP,(F)<P(F)=P*(Fc~A).  Q.E.D. 

Lemma  6. Let X be a separable metrisable space. Then there are, for each 
positive integer k, partitions zk(X ) of X into finitely many Borel sets such that if 
P, Pk are laws on X with Pk(A)=P(A) for each A in ~k(X), then Pk ~ P .  

Proof Since X is separable, there is a totally bounded metric d for the 
topology on X. For  each k, choose points x~ . . . .  , x, (depending on k) such that 

the open balls B ( x ~ ; ~ . ) , . . . , B ( x , ; ~ ) c o v e r  all of X. Put Al=B(x~; l l~) ,  and 
/ q k  

k n ~ /  

in general 

A j = B ( x j ; l k ) \ ( A ~ u A 2 u . . . u A j _ O  for j < n .  

Let ~k(X)= {A a . . . .  ,A,}. We use criterion ii) of Billingsley (1968) Theorem 2.1 
to prove convergence Pk--,P. Let g be d-uniformly continuous on X and put c~j 
=inf{g(x): x~Aj}, flj = sup {g(x): x~Aj}. Then 

If gdPk -- f gdPI <= ~ If gdPk-- f gdPI < supj(fi 2 -  ~j), 
A A 

where the sum is taken over all A in ~rk(X ). Since g is uniformly continuous 
and since the diameter of the A in zk(X ) is less than 2/k, s u p j ( f i j - % ) ~ 0  as 
k~oo .  Q.E.D. 

We are now ready to begin our study of laws with given marginals and 
supports;  the starting point will be the following result for discrete distri- 
butions; while it is a special case of Strassen (1965) Theorem 11 or Hansel and 
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Troallic (1978) Corollaire 2, its proof is new, and it will enable us to generalize 
their work to the context of separable spaces. 

Lemma 7. Let X be a finite set over which are defined two algebras d and N; 
suppose that #o: ~4uN--olR is a finite measure when restricted either to d or to 
~. Then a necessary and sufficient condition that I~o extend to a measure kt on 
a (d ,  N) is the following: 

(*) ~ B ~ A  with A e d ,  BeN, then #o(B)=<#o(A). 

Proof Condition (*) is clearly necessary. To prove sufficiency, we may write X 
= X t u . . . u X , ,  where the X~ are the atoms of d c ~ N :  solving the problem on 
each Xj separately, we may and do assume that d c~ N is the trivial algebra 
{~,x}. 

Let E be the space of real a(d ,  N)-measurable functions on X and let P be 
the cone of everywhere non-negative functions in E. Define F =  { f + g :  f is d -  
measurable, g is B-measurable}, a subspace of E. Let l be the linear functional 
on f given by l ( f + g ) = ~ f d # o + S g d # o ;  if f + g = f ' + g ' ,  then f - f ' = g ' - g  is 
constant, since ~ c ~ N =  {~b,X}. From this it follows that l is well-defined on F. 

We now claim that l is non-negative on P c~ F, equivalently, if f >  g > 0, then 
l(f) > l(g): but 

(3O OO 

l ( f )=~ f d#o= ~ #o{t: f ( t )>r}  dr> I #o{ t :g ( t )> r}  dr=~ gd#o=l(g), 
0 0 

from condition (*). The Eidelheit Extension Theorem (Kelley and Namioka 
(1963) 3.3 on p. 20) now applies to give a linear extension of l to all of E which 
is non-negative on P. If Aea(sg, N), then #A=l(1a) defines a measure on 
a ( d , N )  with the desired properties. Q.E.D. 

Theorem 1. Let S be a non-empty Borel-closed subset of the product X x Y of 
two separable spaces, one of which, say Y, is u.m. Let P1 and Pz be laws on X and 
Y, respectively. Denote by fx and f2 the projection maps from X x Y onto the 
respective co-ordinates X and Y In order that there exist a law P on S with 
marginals fl(P)=P1 and f2(P)=P2, it is necessary and sufficient that for 
Ae~(X) ,  BeN(Y),  

(,) (Ax Y ) ~ S ~ ( X  • implies Pi(A)<P2(B). 

Proof Necessity is immediate. For  sufficiency, we shall first assume that both 
X and Y are u.m., then treat the general case. 

Case I. Both X and Y are u.m. Choose metrics on X and Y making S closed in 
the corresponding product topology. Now use Lemma 6 to obtain, for each 
positive integer k, finite partitions Uk(X ) of X and nk(Y) of Y into Borel sets 
such that if laws P1 (k) on X and P2 (k) on Y satisfy: 

1. PI(k)(A)=PI(A) for all Aertk(X), and 

2. Pz(k)(B)=P2(B) for all Berck(Y ), then p(k)_+p, and Pz(k)~Pz as k+oo.  

Using Lemma 7, it becomes possible to construct atomic laws Pk (i.e. laws 
with finite support) on S such that, for k>3,  Pk((A x Y) c~ S)= PI (A ) and Pk((X 
•  ) for Aeuk(X), Ber~k(Y ) and all k: holding k fixed, let X o be the 
collection of all non-empty sets of the form (A x B)c~S, A srckiX), Beuk(Y), with 
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d generated by sets of the form {(AxB)~SeXo: B~k(Y)} for some fixed 
A~rck(X ) and with N generated by sets of the form {(A x B)c~S~Xo: A erck(X)} 
for some BSrck(Y ). Define #o{(AxB)c~SeXo" B~rCk(Y)}=PI(A) for each 
A~rck(X ) and #o{(A • B)~SEXo: A~rck(X) } =P2(B) for each BS~k(Y); it follows 
from condition (*) that #o may be further defined on all of d w ~  so as to be a 
probability when restricted to d or to N and so that the hypothesis of 
Lemma 7 obtains. Therefore, #0 extends to a probability # on a ( ~ ' , ~ ) = 2  x~ 
Let Pk now be an atomic law on S such that Pk((A • x B ) ~ S }  for 
(AxB)c~SeXo, Ae~zk(X), Be~k(Y), noting that the sets in question are non- 
empty. 

Thus the marginals PI (~) and P2 (~J of Pk satisfy 1 and 2 above and so converge 
to P~ and P2, respectively. Since X and Y are u.m., Le Cain's Theorem implies 
that the families p(k) and P2 (k) are uniformly tight; the same then holds for the 
sequence Pk on X x Y. 

Consider now the metric completions J~ of X and Y of Y; since the Pk are 
atomic, they are also naturally defined on the complete space X x Y and are 
again uniformly tight on X x Y; by Prohorov's Theorem (see Billingsley (1968) 
Theorem 6.1), there is a subsequence P~(k)~P0 for some law P0 on X x Y. 

Claim. Pd*(X x Y)= 1, and P=Po ~ is the law on S sought. Given e>0,  choose 
compact sets K 1 c X  and K 2 c  Y such that Pk(K1 x K2)=Pk((K 1 x K2)c~S)>I 
- e :  since S is closed in X x  Y, (K 1 xK2)c~S is compact and so is closed in )( 
x f': then by the Portmanteau Theorem (Billingsley (1968) Theorem 2.1), 
Po((KlXK2)r~S)>I-e; letting e ~ 0  proves that (Po),(S)=(Po)*(S)=I. By 
Lemma 5, P,(k)--'P on X x Y. Since the marginals of P,(k) converge to PI and P2, 
there are the marginals of P. 

Case II. Only Y is assumed u.m. Again choose metrics for X and Y making S 
closed for the product topology. If J( is the metric completion of X, l e t / ]  be 
the law induced by P1 on )(. We have S=(X x Y)~S, where S is a closed 
subset of J~ x Y. Now S, X, Y,~, and Pz satisfy the hypotheses of Case I, and so 
there is a law/5 on J? x Y having ~ and P2 as marginals and such that/5(S-) = 1. 

Claim. /5*(Xx Y)=I:  this follows from Lemma 4 and the fact that ~*(X) 
=P~(X)= 1. 

Thus we may take P =/5* as a law on X x Y; then P(S)=P(S)= 1, and the 
marginals of P are P1 and P2. Q.E.D. 

The following two examples demonstrate that the hypotheses on S and Y 
cannot simply be eliminated. 

Example 1. Let X and Y be copies of the open unit interval (0, 1) under its 
usual Borel structure and let S={(x,y)~Xx Y:x>y}: there is no law on S 
with marginals equal to Lebesgue measure on X and Y; condition (.) of Theo- 
rem 1 is, however, satisfied. For  details, see Kellerer (1954) p. 196. (S is not 
Borel-closed.) 

Example 2. Let Y be a subset of the interval (0,1) with outer Lebesgue measure 
P* (Y)=I  and inner measure P.(Y)=0. Put X - ( 0 , 1 ) \ Y  and S={(x,y)eX 
x Y', x>=y}. Let P~ and P2 be P* on X and Y, respectively: then as in the 

previous example, noting that ((x, x)eX x Y} is empty, there is no law on S 
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with P, and P2 as marginals. (S is closed, and condition (.) is satisfied, but 
neither X nor Y is u.m.) 

Theorem 2. Let X, Y and S be separable spaces and let there be given laws P1 on 
X and P2 on Y Let f: S-+X and g: S--+Y be measurable mappings; then, under 
the following conditions, there is a law P on S such that f (P)=P1 and g(P)=P2 : 

1. X is u.m. (by symmetry, Y u.m. also suffices), 

2 . .~ (S)=a( f ,g ) ,  the smallest a-algebra on S making the functions f and g 
measurable, 

3. if f - l ( A ) c g  I (B)for  AeN(X) ,  BeN(Y),  then PI(A)<P2(B), and 

4. {(x, y): f -  1 (x) c~ g-  1 (y) + ~b} is Borel-closed in X x Y 

Proof. Define F: S ~ X x  Y by the rule F(s)=(f(s),g(s)); then condition 2 im- 
plies that F is injective, in fact a Borel isomorphism onto the image F(S). The 
set in condition 4 is just F(S); furthermore, if (A x Y ) ~ F ( S ) c ( X  x B)c~F(S) for 
A e N(X), B e N(Y), then applying F - 1 gives f -  I(A) ~ g - 1 (B); condition 3 then 
implies that PI(A)<_P2(B). Therefore, the conditions of Theorem 1 are met, so 
that there is a law Q on X x Y with Q(F(S))= 1 and having marginals P1 and P2- 
Then P = F- I (Q)  is the law Q.E.I. 

If any of the four numbered conditions of this theorem be eliminated, the 
result will be a false statement. For  condition 1, this is shown by Example 2; 
for condition 4, we have Example 1; as with most of our other results, 
condition 3 is clearly necessary. With respect to condition 2, we have 

Example 3. Let S, X and Y be separable spaces having the unit interval [0, 1] 
as underlying set; let X and Y have the usual Borel structure N on [0, 1]. By a 
well-known result of Banach (1948), the continuum hypothesis implies that 
there are subsets H~,H2, ... of [0, 1] such that Lebesgue measure P cannot be 
extended to a(N, H~, H 2 . . . .  ). Give S the Borel structure a(N, H 1, H2,. . . )  and let 
f: S--+X and g: S-+Y be the identity map on 1-0,1]. All conditions save 2 
obtain, but the conclusion of Theorem 3 does not hold. There is, however, at 
least one legitimate alteration of 2 possible: 

Corollary 2.1. Condition 2 of Theorem 2 may be replaced with the requirement 
that S be analytic. 

Proof. Define A: S ~ a ( f , g )  by the rule A(s)=c~{Bea(f,g): seB}, the atom of 
a(f, g) containing s; since a(f, g) is countably generated, each A(s) is in a(f,g). 
Put ;~=A(S); for N(S), take all those C = S  such that A-~(C)ea(f ,g)  (the 
"quotient  structure"). The functions f and g induce measurable mappings 
fo:  ; ~ X  and go: S-+Y such that the following diagrams commute: 

f 
S ~X S g - - ~  Y. 
I f / 

AI I/" / /so AI 
~ 1 s" $ / 
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Then X, Y, S, P1, Pz, fo, and go satisfy the hypotheses of Theorem 2, so there is 
a law P on S with fo(P)=P1 and g0(P)=P2. Put Po=A-I(P) ,  a probability 
measure on (S,o-(fg)); an application of Varadarajan (1963) p. 194 yields an 
extension P of/5 to N(S); f (P)=P1 and g(P)=P2. Q.E.D. 

Corollary 2.2. Let S be a compact metric space and let f: S---,X and g: S ~ Y  be 
continuous surjections of S onto metric spaces X and Y Suppose that P~ and 
are laws on X and Y, respectively; then there is a law P on S with f (P)=P1 and 
g(P)=P2 /f and only if the following condition obtains: 

(*) if f - l ( A ) c g - a ( B )  for A e ~ ( X )  and BeN(Y) ,  then PI(A)<P2(B ). 

Proof Since X = f ( S )  is compact, it is u.m.; since S is compact, it is analytic; 
condition 3 of Theorem 2 has been assumed in (*); finally, the set of all (x,y) 
such that f - l (x )c~g-a(y)#:  0 is closed in X x g. Corollary 2.1 now applies to 
provide the existence of a P. Q.E.D. 

Example 1 illustrates how this corollary fails when the hypothesis that S be 
compact is weakened to S standard, or if the functions f and g are only 
assumed measurable: in this latter case, we see that since S is standard and 
uncountable, there is a compact metric for S (S is Borel-isomorphic with 
[0, 1]), but under this metric, f and g are no longer continuous. 

The passage to products of more than two spaces is not at all straightfor- 
ward: as pointed out in Strassen (1965) p. 437 and Kellerer (1964), conditions 
as simple as (*) in Theorem 1 will not suffice. However, using the techniques 
we have developed in conjunction with Kellerer (1964) Satz 4.2 it is possible to 
prove the following multi-dimensional result: 

Theorem 3. Let S be a separable space and let f j  : S--,X~, j =  1,. . . ,  n, be measur- 
able mappings of S to separable u.m. spaces X a . . . . .  X ,  on which are defined laws 
P1 .. . .  , P,. The following are conditions sufficient to ensure the existence of a law 
P on S with f~(P) = Pj, j = 1,... ,  n: 

1. N(S)=a( f~ , . . . , f , ) ,  
2. {(x 1 . . . . .  x , ) : f~ l (x l )c~ . . . c~ f , - l ( x , )+O}  is Borel-closed in X = X l x . . .  

x Xn, and 

3. for any measurable partitions X j = A ~ ) u . . . u A ~  ) of the X i and any corre- 
sponding ~(~) (J) ~) (J) J" set of n real vectors x =(x 1 ,x  a ,...,xmj), ) =  1,. . . ,n,  this inequality 
obtains: 

j = l  j 1 Z j ]  ' 

where ~=(Pi(A]~)), P~(A~ )) . . . .  , 'J) " Pj(Am) ), the dot in the first summation is an inner 
product, and the unmarked summation is taken over all n-tuples ( i l , . . . , i , )  such 
that f l -  I(AI~))c~ f21(A12)) n . . .  c~ fn- I(AI:) ) is non-empty. 

Corollary 3.1. Condition 1 may be replaced in Theorem 3 with the requirement 
that S be analytic. 

Proof This again follows mutatis mutandis from the "method of quotients" 
detailed in the proof of Corollary 2.1. Q.E.D. 
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Corollary 3.2. In Theorem 3, one may assume that all but one of  the X j  are u.m. 

Proof. Entirely analogous to the demonstration of Case II of Theorem 1, using 
Lemma 4. Q.E.D. 

Taking S to be a Borel-closed subset of X 1 x ... x X n and defining the fj as 
co-ordinate projections leads to an n-dimensional generalization of Theorem 1. 

Remark. It has already been pointed out in reference to Theorem 2 that the 
u.m. requirement for all but one of the Xj in Theorem 3 cannot simply be 
dropped; the same has been shown for conditions 1 and 2 of Theorem 3. 
Despite the complexity of condition 3 of this theorem, it is implied by the 
existence of the sought-after law P. 

Theorem 4. Let  S be a separable space and let f l :  S -~X ,  f 2 : S ~ X 2  . . . .  be a 
sequence of  measurable functions on S to separable spaces X 1 , X  2 . . . .  such that 

1. all but perhaps one of  the X j  are u.m. (say X2 ,  X a . . . .  are u.m.), 

2. N(S)=tT( f l , f2 ,  ...), and 
3. {(xl ,x2, . . . ) :  f ~ l ( x l ) n f 2 2 ( x 2 ) ~ . . . 4 : ( o  } is Borel-closed in X = X l x X  2 

X . . . .  

In order that there should exist a law P on S with f~(P) = Pj, j = 1, 2 . . . .  , it is 
necessary and sufficient that the same be true for j =- 1, . . . ,  n, for every n. 

Proof. Necessity is obvious. For  the converse, let Qn be a sequence of laws on S 
such that fj(Qo)=Pj for j - -1  .. . .  ,n. Define F: S ~ X  by F(s)=(f l (s) ,J2(s  ) . . . .  ); as 
before, F is a Borel isomorphism of S onto F(S), the set indicated in condition 
3. Choose totally bounded metrics for the Xj making F(S) closed in X. 

Consider the image laws F(Q,) on X and the laws F(Q.~) they induce on the 

compact completion X =X~ x ~2 x . . . .  Then for each n, F(Qn)* (F(S))= 1, and 
the marginal of F(Q,) on Xl iS  P1. 

Because we have taken X compact, Prohorov's Theorem implies that there 

is a subsequence F(Q,~k~)--* Q for some law (~ on J(; since the marginals of the 

f(Qn) o n  Xl are all /~, this is the ._marginal of (~ on J~l; since /5*(X~)=l, 
Lemma 4 implies that Q*(X 1 x X 2 x X 3 x ...) = 1. 

Claim. (~*(X)= 1: we know from the u.m. property and Lemma 3 that there 
are standard subsets S~sN(_J(j) of Xj, j_>2, with/~(Sj)=P~(Sj)= 1; as before, we 
see that the marginal of Q on each Xj is /~, j =  1, ..., n; therefore, Q(X 1 x S 2 
x S 3 x . . . )= 1 so that t 2 * ( X ) > Q * ( X  t x S 2 x S 3 x . . . )= 1, as claimed. 

Since f(Qn(k))--+Q on J( and F ( Q n ( k i ) * ( x ) = o * ( x ) = l  , Lemma 5 implies 

that F(Q~(k~)=F(Qn(k~)*~Q=t2* on X. Then P = F - I ( Q )  serves as the desired 
law on S. Q.E.D. 

Corollary 4.1. As in Corollaries 2.1 and 3.1, condition 2 may be dropped if S is 
analytic. 

Corollary 4.2. By taking S = S  1 x S 2 x ... and letting the f j  be projections of  S 
onto all f ini te partial products of  the Xj ,  we obtain Kolmogoroff 's Existence 
Theorem for products of  u.m. spaces. 
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No one of the itemized conditions in Theorem 4 can simply be dropped; 
counter-examples follow. 

Example 4. The conclusion of Theorem 4 may fail if two of the X i are not u.m. : 
let I = [ 0 , 1 J ,  the unit interval with its usual Borel structure and let 2 be 
Lebesgue measure on I. We require the following 

Fact. There are subsets X 1 and X 2 of I with 2*(Xj)= 1 and 2,(X~)=0, j = l ,  2, 
and such that the difference set D = { h l - h 2 :  h l~X  1, h2~X2} contains no 
rational point. (Proof is a standard transfinite induction argument.) 

Put S = X l x X  2 under the usual Euclidean metric d, Xj={0,1} for j > 3 ,  
f~: S--,X 1 and f 2 : S ~ X 2  the co-ordinate projections and for n>3 ,  

f , (s)=~' l  if d(s,A)< l /n l f2  

10 if d(s, A) > l/nil2, 

where A is the diagonal line y = x  in I x I. 
Let P1 =Pa = 2 . ,  and P~{1} =1, Pj{0} =0,  for j > 3 .  Then: 
a) X 1, X;  are not u.m.; X a, X 4 . . . .  are all u.m., 
b) H(S) is generated by f l  and f2, and so certainly by all the fj, and 
c) T = { ( x l , x  2 .. . .  ) : f~ l (x l )c~ f f l ( x2)c~ . . .+O } is closed in X = X l x X  2 

x X  3 x ...: since no point of S meets any of the lines y=x++_l/n, the regions 

{s~S: d(s ,A)<l /n l /2  } are clopen in S, and the fj, j > 3 ,  are continuous func- 
tions on S. Suppose t, is a sequence in T and t , - , t  in X: then the jth_co_ 
ordinates t,(j)~t(j) for j > 3; since f~(t,(1), t,(2)) = t,(j), taking n ~  oe and using 
the continuity of the fj establishes that teT. 

There is clearly no law P on S with f j(P)=Pj for all j, since 
{(x,x): xeX1} c~S=~b; however, only condition 1 of Theorem 4 fails. 

Assume the continuum hypothesis: 

Example 5. The conclusion of Theorem 4 may fail if H(S) is not generated by 
the functions f , , f 2  . . . .  : Let C be the Cantor discontinuum, realized as the 
product of two-point spaces {0, 1 } = X I = X  2 . . . .  ; let fj:  C~X~ be the jt~-co- 
ordinate projection. Let S be the separable space with underlying set C and 
Borel structure a(H, HI,I-I a . . . .  ), where H is the usual Borel a-algebra on C 
and H I , H a ,  ... is, as in Example 3, a sequence of C such that no continuous 
measure may be defined on a(H,H I, H e .... ). Define P~ on Xj to be the "fair 
coin-toss" measure Pj{0} =Pj{1} = 1/2, j =  1, 2 . . . . .  Then: 

a) all of the Xj are u.m. (standard), 
b) {(xl ,x 2 . . . .  ): f l l ( X l ) ~ f f l ( x 2 ) ~  ... *(~} = C, but 
c) H(S) is not generated by the projections fj. 

There is, for each n, an atomic law P(') on S with fj(P("))= Pj, j = 1 . . . . .  n, but no 
P on S such that f j (P)=  P~ for j > 1. 

Example 6. Conditions 3 in Theorem 4 may not be deleted: Let S be the set of 
all rational numbers in the half-open interval [0, 1 [, under the usual Euclidean 
metric. Set X ,={1  . . . .  ,2  "} under the discrete structure and define f , :  S ~ X ,  by 
the rule f , (s)= [2".sJ + 1. For laws P, on X,,  take "uniform distributions" with 
Pn{k}=2-" for l < k < 2  ". Then, for each n, there is an atomic law P(") on S with 
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fj(P('))=Pj, j =  1, .. . ,n, but no law P on S such that f j (P)=Pj for j_>_ 1. In this 
example: 

a) each Xj is an u.m., 
b) N(S) is generated by the maps fa, j > 1, but 
c) F(S) is not Borel-closed in X = X 1 x X 2 x ..., 

where F: S--*X is defined as in the proof of Theorem 4: notice that since there 
is only one metric topology on each Xj,  viz. the discrete topology, this is 
equivalent to saying that F(S) is not actually closed in the compact space X. 
Now F -1 is continuous from F(S) onto S; if F(S) were closed, it and its image 
S would be compact, a contradiction. 

The following is a generalization of a result of Hansel and Troallic (1968), 
Corollaire 3, to products of more than two not necessarily Polish spaces. 

Theorem 5. Let X 1 , . . . , X ,  be separable spaces with X 2 . . . . .  X n u.m. and let 
f l : X I - - * Z , . . . , f , : X , ~ Z  be measurable surjections taking laws P1 . . . . .  P, on 
X 1 . . . .  , X ,  to a single law Q on a separable space Z;  then there is a law P on X 1 
x ... x X ,  with marginals Pj on Xj,  j =  1 . . . .  , n, such that P(S)= 1, where S is the 

set {(x 1 .. . .  , x,): f l  (x 1) . . . . .  f,(x,)}. 

Proof. Case I: X ,  is also u.m. Firstly, note that the complement of S in X = X  1 
x ... x X,  is a countable union of rectangles of the form f l  1(A1)x ... x f , - l ( A , )  

for A 1 . . . . .  A,eCC(Z): S is the inverse image of the diagonal in Z" under the 
mapping (x 1 .. . .  ,x , )--+(f l(xl) , . . . , f , (x , ))  on X, and the diagonal of Z" is Borel- 
closed. 

Let Pl (x l , . )  . . . . .  P , (x , , ' )  be almost everywhere proper regular conditional 
probabilities for P> .. . ,P, given f l , - . - , f ,  (see Blackwell and Ryll-Nardzewski 
(1963) for definitions and a discussion): then there is a measurable subset B of 
Z with Pj(xj , f j - l (A))=0 whenever A ~ J ( Z )  and x F f j - l ( B ) \ f j - l ( A )  and such 
that Q(B)=P~(fj-I(B))= 1. Since for each A j, Pj( . ,Aj)is fj-l(N(Z))-measurable, 
we may write Pj(xj, A j)= gj(fj(xj), A j) for some measurable real function g j(., A j) 
on Z. Since each fj is surjective, gy(z, .) is a law on Xa for each zeZ.  

A law P on X may now be defined so that P(A l x . . . x A n )  
=Sgl(Z, A1)...g,(z, An)dQ(z) for Ajs~J(Xi), j = l  . . . .  ,n; then P has the correct 

z 

marginals; furthermore, P (S)=I ,  since if f l  I(A1) x . . . x f , - I ( A n ) c X \ S ,  
A~sN(Z) ,  then P(f~- I(A 1) x . . .  x f , -  I(A,)) = ~ g l ( z , f  i- I(A 1))...g,(z, fn I(A,)) dO(z) 

B 

=0,  since for each z e B  and (Xl . . . .  , xn )e f ; - l ( z ) x  ... x f ,  l(z), there is a j  such 
that xj~fj 1(A j). 

Case lI .  X 1 is not assumed u.m.; we claim that there are u.m. spaces Y1 . . . . .  Yn 
and Z o and measurable surjections J~: Yj--+Zo, j =  1, ..., n, such that X j c  Yj, 
Z c Z o and ~ (x )=  fi(x) whenever x j e X j ,  j =  1 .. . .  , n: select metrics for Z and the 
Xj and let Z and X1 , . . . , 37  be their completions; by an extension theorem of 
Kuratowski (1966) p. 434, there are measurable fj: X j ~ 2  extending the fj, j 
=1 . . . . .  n. Put Z o = ( ~  fj(Xj) and Y~=f}-I(Z o) for j = l , . . . , n :  since Z 0 is anal- 

J 
ytic, so are the Yj (Parthasarathy (1967) p. 17 (3.4)), and hence they are u.m. 

Define /} and (~ to be the laws induced by the Pj and Q on Yj and Z o, 
respectively; we now see that f~(Pa)=(~, j =  1 .. . .  ,n. Case I applies to guarantee 
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the existence of a l aw/5  on I(1 x . . . x  I1, with marg ina l s /~  . . . .  , / ~  such that  P(S) 
= 1, where S =  { ( Y l  . . . . .  Yn): f l ( Y l )  = " ' "  = f,(Y,)}- Note  that S=Sc~(X  1 x . . .  x X,). 

Claim 1. fi*(X1 x Y 2 x . . . •  this follows from L e m m a  4, the u.m. pro- 
perty for Y2 x ... • Y~, and the fact t h a t / ~ * ( X 1 ) =  1. 

Claim 2. /5*(X 1 x ... x X n ) = l :  since X2, . . . , X  n are u.m., and since /~*(Xj)= 1 
for j = 2  . . . .  , n, there are sets C j c X s ,  CFN(Ys)  with / } ( C j ) = I  for j = 2  . . . .  , n; 
thus,/5(Y1 x C 2 x ... x C,) = 1 ; combining this with Claim 1 yields 

/ 5 " ( x 1  x .. .  x X , ) > P * ( ( x ~  x Y2 x ... • Y , )n (Y~  • c ~  • . . .  x G ) ) =  1, 

as claimed. 

Taking P=/5* on X = X  i x . . .  x X , ,  we note that P(S)=P(S)=I  and that P 
has marginal  Pj on Xj, j = 1 . . . .  , n. Q.E.D. 

Example 7. As with our  other results, if two of the the Xj are not  u.m., then 
even the well-behavedness of Z will not  necessarily ensure the validity of this 
theorem's  conclusion:  as in Short t  (1983) Theorem 5, one may  exhibit separ- 
able spaces A~, A2, A 3 with A 2 standard, but  neither A~ nor  A 3 u.m., such that 
there are laws P1 on X I = A  1 x A  2 and P2 on X a = A 2 x A  3 having a c o m m o n  
project ion Q on Z = A 2 ,  but  such that there is no law on A 1 x A  2 x A  3 with P1 
and P2 as marginals. 

Unlike Theorem 4 (cf. Example 4), the "coun tab le"  case allows more  free- 
dom with the u.m. hypothesis:  

Theorem 6. Let X1, X 2 . . . .  and Z be separable spaces on which are defined laws 
P1, P2 . . . .  and Q, respectively. Suppose that f l  : X1--~Z, f2" X2---+Z . . . .  are measurable 
surjections such that fl(P1) = fa(P2)=. . .  = Q~ ; suppose further that all but finitely 
many of the Xj are u.m.; then a necessary and sufficient condition that there 
exist a law P on X = X l  x X 2 x . . ,  with marginals P1,P2 . . . .  and with P ( S ) = I ,  
where S= {(xl ,x 2 . . . .  ): f l ( x l ) =  f2(x2)= ...}, is given by the following: 

(*) for each positive integer n, there is a law Q, on X 1 x ... x X ,  with marginals 
Pa . . . . .  P, and such that Q,,(S,)= 1, where S ,=  {(x~ . . . . .  x , ) : f l ( x l )  . . . .  = f,(x,)}. 

Proof Necessity is clear. Suppose now that  (*) holds. Choose  a matric for Z 
and choose totally bounded  metrics for the Xj which make the fj cont inuous:  
e.g. let the inverse images under the f~ of elements of a countable  base for the 
topology  of  Z be included as open sets for the metrics on Xj; then S and the S, 
are closed in the associated product  topologies. 

Case I. Suppose that each Xj is u . m . , j = l , 2 , .  �9 then let alsX1,  az~X2,.., be 
arbi t rary and XI0 X2 , . . .  the (compact) complet ions of XI ,  X 2 . . . . .  Define laws 
R,  on X = X  1 x X  2 x ... by the rule R,=Q,|  where c5 is the (Dirac) point  
mass at (a ,+l ,  an+ 2 . . . .  ) and let /~, be the law induced by R,  on 3~=J~ 1 x X  2 

x . . .  ; then the marginals o f /~ ,  on J~l . . . .  , ) ( ,  are/51 . . . . .  /~, the laws induced by 
P ~ , . . . , P , .  

Since Js is compact ,  there is a subsequence R,(k)~P for some law /5 on X. 
Because the marginals of the /~,(k) on Jfj eventually equal ~ ,  these are the 
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marg ina l s  of /5. G iven  e > 0, choose  c o m p a c t  K j  c Xj  with /}(K j) >_1 - e- 2 J, 
m a k i n g  sure tha t  ayK~ for j = 1, 2 . . . .  : then P*(X) >= P_(K1 x K 2 
x . . . )>l imsupR,ck)(KlxK2x. . . )>l-e;  le t t ing e ~ 0  shows tha t  P * ( X ) = I .  

Take  P = / 5 .  as a law on X :  the  marg ina l s  of  P are the Pj. 
Since /~.(k) ~ t5, and  -* =/5* R,(k)(X ) ( X ) - - l ,  L e m m a  5 implies  tha t  R,(k)~P 

on X. N o w  S, x X ,+  1 x X , + :  x ... is a sequence of  c losed subsets  of X decreas-  
ing to S; for each n, 

P(S, x X,+ 1 X X n +  2 X .. ,) ~ l i m  s u p  R.(k)(S . x X.+ 1 X X n +  2 X . . . )  = 1, 

so tha t  P(S)= 1, as desired.  

Case II. Suppose  tha t  there  are  no res t r ic t ions  on the spaces  X a , . . . , X , ,  bu t  
tha t  X ,+  1, X ,+  a . . . .  are  all u.m. Define 

So = fix~ 1, x ,+  2 . . . .  ): L + l ( x , +  1) = s  2(x, + 2 )= . . .  } = x , + l  • x , +  2 x . . . ,  

and  let F :  S , ~ Z  and  G: So--*Z be the sur ject ions  given by F(xl, . . . ,x,)=fl(x 0 
and  G(x,+ 1,-..)= f ,+  l (x ,+ 1). F r o m  Case I, we know tha t  there  exists a law Qo 
on S O with  marg ina l s  Pj on Xj, j = n + l , n + 2  . . . . .  N o w  F(Q,)=G(Qo)=Q, and  
since S O is u.m., there  is, by  T h e o r e m  5, a law P on S,  x S o c X with P(S)= 1 
and having  marg ina l s  Q, on  S,  and  Qo on S o, hence with marg ina l s  Pj on Xj,  j 
= 1 , 2  . . . . .  Q.E.D. 

Example 8. As in Example  3, let I =  [-0, 1], N the Borel  o--algebra on  I and  
H 1, H 2 . . . .  a sequence of  subsets  of  I to which Lebesgue  measure  Q canno t  be 
extended.  Put  ~ , - - a ( B ,  H 1 . . . . .  Hn) and  let P, be extensions of  Lebesgue  mea-  
sure to ~ ,  such tha t  P,=P,, on ~m if m<n. Put  X j = ( I , ~ ) j = I , 2  . . . .  , Z = ( I , N )  
and  let f j  be the iden t i ty  funct ion on I. Then  all the hypotheses  of T h e o r e m  6 
are  satisfied, except  tha t  the Xj  are not  u.m., and  the conclus ion  fails to hold.  
(S is the d i agona l  in I x I x . . , ,  Borel  i somorp h i c  wi th  (I, ~(N, H1,H2, ...)).) 

We wish to express our gratitude to Richard M. Dudley and Donald L. Cohn for their many 
helpful comments and suggestions. 
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