Strassen's Marginal Problem in Two or More Dimensions

R.M. Shortt
Department of Mathematical and Computer Sciences, Michigan Technological University, Houghton, Michigan 49931, USA

Given a subset S of the product of two probability spaces $\left(X, \mathscr{B}(X), P_{1}\right)$ and $\left(Y, \mathscr{B}(Y), P_{2}\right)$, Strassen (1965) asked when there was a law P concentrated on S having P_{1} and P_{2} as marginals; he obtained results for the case of closed subsets of the product of Polish spaces using Choquet's theory of capacities; a proof based on a game-theoretic argument has been given by Hansel and Troallic (1978). We offer a new argument extending this theorem to a large class of measurable spaces (Theorem 1) and then generalize it beyond the context of products (Theorem 2). Next, the case of more than two factor spaces is taken up in Theorem 3 and finally that of a countable collection of such spaces in Theorem 4.

Hansel and Troallic (1978) also proved a result somewhat "inverse" to Strassen's Theorem (Corollaire 3), and it is this proposition that we generalize to several and finally countably many spaces in Theorems 5 and 6.

The fundamental structures underlying most of what follows are what we shall term separable spaces; by this we mean measurable spaces (X, \mathscr{B}) with \mathscr{B} countably generated and countaining singletons. We shall often suppress the notation of a σ-algebra, calling the space X alone and indicating its measurable structure with $\mathscr{B}=\mathscr{B}(X)$. If A is a subset of a measurable space (X, \mathscr{B}), we shall always consider A as a measurable space with relative σ-algebra $\mathscr{B}(A)$ $=\{A \cap B: B \in \mathscr{B}\}$; under this convention, subsets of separable spaces are again separable. Also, a product of countably many separable spaces is again separable when endowed with the product σ-algebra.

If X is a separable metric space with Borel σ-algebra \mathscr{B}, then (X, \mathscr{B}) is a separable space. Furthermore, there is a well-known technique due to Marczewski (1938) by which one may introduce metrics on separable spaces compatible with the measurable structure:

Lemma 1. If (X, \mathscr{B}) is a separable space and \mathscr{C} is a countable subset of \mathscr{B}, there is a metric d on X such that:

1. (X, d) is a totally disconnected metric space with compact completion $((X, d)$ is totally bounded and hence separable),
2. \mathscr{B} is the Borel σ-algebra for (X, d); we say d is a metric for (X, \mathscr{B}) whenever this happens,
3. the elements of \mathscr{C} are "clopen" (both closed and open) in (X, d), and
4. if \mathscr{C} generates \mathscr{B}, \mathscr{C} is a base of clopen sets for the topology of (X, d).

Let J be a countable, non-empty index set, let $X_{j}, j \in J$, be separable spaces, and put $\mathscr{P}=\Pi\left\{X_{j}: j \in J\right\}$. A subset S of \mathscr{P} is Borel-closed in \mathscr{P} if it is the complement of a countable union of measurable rectangles, each depending on finitely many coordinates. Lemma 1 and the Lindelöf property for separable metric spaces imply that a subset S of \mathscr{P} is Borel-closed if and only if it is possible to choose metrics d_{j} for $X_{j}, j \in J$, making S closed in the corresponding product topology on \mathscr{P}.

A separable space (X, \mathscr{B}) is standard if there is a metric d for X such that (X, d) is a complete, separable metric space (the topology of such a space is called Polish); we allow $S=\phi$. The isomorphism types of standard spaces are completely classified by cardinality: every standard space X is Borel isomorphic either with a finite set, the integers, or the real line according as the cardinality of X is finite, countably infinite, or uncountable (see Cohn (1980) p. 275).

We use the terms "probability measure" and "law" interchangeably. If (X, \mathscr{B}, P) is a probability space, denote by P_{*} and P^{*} the inner and outer measures formed from P; a subset A of X is P-completion measurable if $P_{*}(A)$ $=P f^{-1}(A)$ for $A \in \mathscr{A} ; f(P)$ is the image of P under f. Given any $A \subset X$ and measurable for all laws P on (X, \mathscr{B}). Suppose that $f: X \rightarrow Y$ is a measurable function between two measurable spaces (X, \mathscr{B}) and (Y, \mathscr{A}) and that P is a probability on (X, \mathscr{B}); then we define $f(P)$ on (Y, \mathscr{A}) by the rule $f(P)(A)$ $=P f^{-1}(A)$ for $A \in \mathscr{A} ; f(P)$ is the image of P under f. Given any $A \subset X$ and probability measure P on $(A, \mathscr{B}(A)), \mathscr{B}(A)=\{B \cap A: B \in \mathscr{B}(X)\}$, we define the probability \bar{P} induced by P on X by the rule $\bar{P}(B)=P(B \cap A)$. A separable metric space (S, d) is universally measurable (u.m.) if it is universally measurable in its completion \bar{S}. If the Borel structure on S is standard, Christensen (1974) Theorem 2.6 implies that S is Borel in \bar{S} and hence is u.m. It is not hard to establish that a separable metric space (S, d) is u.m. if and only if every law P on S is tight (for each $\varepsilon>0$, there is a compact $K \subset S$ with $P(K)>1-\varepsilon$). See e.g. Varadarajan (1961) p. 224. This would seem to say that the u.m. property for (S, d) depends on the metric d only through its topology; in fact, more is true.

Lemma 2. Let X be a set and let d_{1} and d_{2} be separable metrics on X generating the same Borel σ-algebra. Let Y_{1} and Y_{2} be completions of X for these respective metrics; then X is u.m. in Y_{1} if and only if it is u.m. in Y_{2}.

Proof. See Shortt (1983) Theorem 1.
Thus the u.m. property is invariant under choice of metric, depends only on Borel structure, and is therefore properly an attribute of separable measurable (not metric) spaces. We shall call a separable space $X u . m$. if there is a metric d for X for which (X, d) is u.m.

Lemma 3. A separable space X is u.m. if and only if for every law P on X, there is a set $S \in \mathscr{B}(X)$ with $(S, \mathscr{B}(S))$ standard and $P(S)=1$.

Proof. See Shortt (1983) Lemma 4.
A subset A of a separable space X is analytic if it is the measurable image of a standard space (we allow $A=\phi$). It is well-known that analytic spaces are u.m. (cf. Cohn (1980) p. 281 (8.4.3)).

Lemma 4. Let X be a fixed uncountable standard space; a separable space Y is u.m. if and only if every law P on $X \times Y$ has the following property: if P_{1} is the marginal of P on X, and $A \subset X$ is such that $P_{1}^{*}(A)=1$, then $P^{*}(A \times Y)=1$.

Proof. See Shortt (1983) Theorem 3.
By convergence $P_{n} \rightarrow P$ of (Borel) probability measures on a metric space S we mean convergence "in law" or "weak convergence" defined by bounded continuous functions on S. We shall make use of
Le Cam's Theorem. Let S be a separable u.m. metric space with laws $P_{n} \rightarrow P$ on S. Then the sequence P_{1}, P_{2}, \ldots is uniformly tight.
Proof. See Le Cam (1957) Theorem 4 or Dudley (1972) p.10.2.
Lemma 5. Let X be a metric space on which laws $P_{n} \rightarrow P$. If $A \subset X$ and $P_{n}^{*}(A)$ $=P^{*}(A)=1$ for all n, then $P_{n}^{*} \rightarrow P^{*}$ as laws on A.
Proof. Closed subsets of A are of the form $F \cap A$, where F is closed in X. For such a set, $\lim \sup P_{n}^{*}(F \cap A)=\lim \sup P_{n}(F) \leqq P(F)=P^{*}(F \cap A)$. Q.E.D.
Lemma 6. Let X be a separable metrisable space. Then there are, for each positive integer k, partitions $\pi_{k}(X)$ of X into finitely many Borel sets such that if P, P_{k} are laws on X with $P_{k}(A)=P(A)$ for each A in $\pi_{k}(X)$, then $P_{k} \rightarrow P$.

Proof. Since X is separable, there is a totally bounded metric d for the topology on X. For each k, choose points x_{1}, \ldots, x_{n} (depending on k) such that the open balls $B\left(x_{1} ; \frac{1}{k}\right), \ldots, B\left(x_{n} ; \frac{1}{k}\right)$ cover all of X. Put $A_{1}=B\left(x_{1} ; \frac{1}{k}\right)$, and in general

$$
A_{j}=B\left(x_{j} ; \frac{1}{k}\right) \backslash\left(A_{1} \cup A_{2} \cup \ldots \cup A_{j-1}\right) \quad \text { for } j \leqq n
$$

Let $\pi_{k}(X)=\left\{A_{1}, \ldots, A_{n}\right\}$. We use criterion ii) of Billingsley (1968) Theorem 2.1 to prove convergence $P_{k} \rightarrow P$. Let g be d-uniformly continuous on X and put α_{j} $=\inf \left\{g(x): x \in A_{j}\right\}, \beta_{j}=\sup \left\{g(x): x \in A_{j}\right\}$. Then

$$
\left|\int g d P_{k}-\int g d P\right| \leqq \sum\left|\int_{A} g d P_{k}-\int_{A} g d P\right| \leqq \sup _{j}\left(\beta_{j}-\alpha_{j}\right)
$$

where the sum is taken over all A in $\pi_{k}(X)$. Since g is uniformly continuous and since the diameter of the A in $\pi_{k}(X)$ is less than $2 / k, \sup _{j}\left(\beta_{j}-\alpha_{j}\right) \rightarrow 0$ as $k \rightarrow \infty$. Q.E.D.

We are now ready to begin our study of laws with given marginals and supports; the starting point will be the following result for discrete distributions; while it is a special case of Strassen (1965) Theorem 11 or Hansel and

Troallic (1978) Corollaire 2, its proof is new, and it will enable us to generalize their work to the context of separable spaces.
Lemma 7. Let X be a finite set over which are defined two algebras \mathscr{A} and \mathscr{B}; suppose that $\mu_{0}: \mathscr{A} \cup \mathscr{B} \rightarrow \mathbb{R}$ is a finite measure when restricted either to \mathscr{A} or to \mathscr{B}. Then a necessary and sufficient condition that μ_{0} extend to a measure μ on $\sigma(\mathscr{A}, \mathscr{B})$ is the following:
(*) if $B \subset A$ with $A \in \mathscr{A}, B \in \mathscr{B}$, then $\mu_{0}(B) \leqq \mu_{0}(A)$.
Proof. Condition (*) is clearly necessary. To prove sufficiency, we may write X $=X_{1} \cup \ldots \cup X_{n}$, where the X_{j} are the atoms of $\mathscr{A} \cap \mathscr{B}$: solving the problem on each X_{j} separately, we may and do assume that $\mathscr{A} \cap \mathscr{B}$ is the trivial algebra $\{\phi, X\}$.

Let E be the space of real $\sigma(\mathscr{A}, \mathscr{B})$-measurable functions on X and let P be the cone of everywhere non-negative functions in E. Define $F=\{f+g: f$ is \mathscr{A} measurable, g is \mathscr{B}-measurable $\}$, a subspace of E. Let l be the linear functional on F given by $l(f+g)=\int f d \mu_{0}+\int g d \mu_{0}$; if $f+g=f^{\prime}+g^{\prime}$, then $f-f^{\prime}=g^{\prime}-g$ is constant, since $\mathscr{A} \cap \mathscr{B}=\{\phi, X\}$. From this it follows that l is well-defined on F.

We now claim that l is non-negative on $P \cap F$, equivalently, if $f \geqq g \geqq 0$, then $l(f) \geqq l(g)$: but

$$
l(f)=\int f d \mu_{0}=\int_{0}^{\infty} \mu_{0}\{t: f(t)>r\} d r \geqq \int_{0}^{\infty} \mu_{0}\{t: g(t)>r\} d r=\int g d \mu_{0}=l(g)
$$

from condition (*). The Eidelheit Extension Theorem (Kelley and Namioka (1963) 3.3 on p. 20) now applies to give a linear extension of l to all of E which is non-negative on P. If $A \in \sigma(\mathscr{A}, \mathscr{B})$, then $\mu A=l\left(1_{A}\right)$ defines a measure on $\sigma(\mathscr{A}, \mathscr{B})$ with the desired properties. Q.E.D.
Theorem 1. Let S be a non-empty Borel-closed subset of the product $X \times Y$ of two separable spaces, one of which, say Y, is u.m. Let P_{1} and P_{2} be laws on X and Y, respectively. Denote by f_{1} and f_{2} the projection maps from $X \times Y$ onto the respective co-ordinates X and Y. In order that there exist a law P on S with marginals $f_{1}(P)=P_{1}$ and $f_{2}(P)=P_{2}$, it is necessary and sufficient that for $A \in \mathscr{B}(X), B \in \mathscr{B}(Y)$,
(*) $\quad(A \times Y) \cap S \subset(X \times B) \cap S$ implies $\quad P_{1}(A) \leqq P_{2}(B)$.
Proof. Necessity is immediate. For sufficiency, we shall first assume that both X and Y are u.m., then treat the general case.

Case I. Both X and Y are u.m. Choose metrics on X and Y making S closed in the corresponding product topology. Now use Lemma 6 to obtain, for each positive integer k, finite partitions $\pi_{k}(X)$ of X and $\pi_{k}(Y)$ of Y into Borel sets such that if laws $P_{1}^{(k)}$ on X and $P_{2}^{(k)}$ on Y satisfy:

1. $P_{1}^{(k)}(A)=P_{1}(A)$ for all $A \in \pi_{k}(X)$, and
2. $P_{2}^{(k)}(B)=P_{2}(B)$ for all $B \in \pi_{k}(Y)$, then $P_{1}^{(k)} \rightarrow P_{1}$ and $P_{2}^{(k)} \rightarrow P_{2}$ as $k \rightarrow \infty$.

Using Lemma 7, it becomes possible to construct atomic laws P_{k} (i.e. laws with finite support) on S such that, for $k \geqq 3, P_{k}((A \times Y) \cap S)=P_{1}(A)$ and $P_{k}((X$ $\times B) \cap S)=P_{2}(B)$ for $A \in \pi_{k}(X), B \in \pi_{k}(Y)$ and all k : holding k fixed, let X_{0} be the collection of all non-empty sets of the form $(A \times B) \cap S, A \in \pi_{k}(X), B \in \pi_{k}(Y)$, with
\mathscr{A} generated by sets of the form $\left\{(A \times B) \cap S \in X_{0}: B \in \pi_{k}(Y)\right\}$ for some fixed $A \in \pi_{k}(X)$ and with \mathscr{B} generated by sets of the form $\left\{(A \times B) \cap S \in X_{0}: A \in \pi_{k}(X)\right\}$ for some $B \in \pi_{k}(Y)$. Define $\mu_{0}\left\{(A \times B) \cap S \in X_{0}: B \in \pi_{k}(Y)\right\}=P_{1}(A)$ for each $A \in \pi_{k}(X)$ and $\mu_{0}\left\{(A \times B) \cap S \in X_{0}: A \in \pi_{k}(X)\right\}=P_{2}(B)$ for each $B \in \pi_{k}(Y)$; it follows from condition (*) that μ_{0} may be further defined on all of $\mathscr{A} \cup \mathscr{B}$ so as to be a probability when restricted to \mathscr{A} or to \mathscr{B} and so that the hypothesis of Lemma 7 obtains. Therefore, μ_{0} extends to a probability μ on $\sigma(\mathscr{A}, \mathscr{B})=2^{X_{0}}$. Let P_{k} now be an atomic law on S such that $P_{k}((A \times B) \cap S)=\mu\{(A \times B) \cap S\}$ for $(A \times B) \cap S \in X_{0}, A \in \pi_{k}(X), B \in \pi_{k}(Y)$, noting that the sets in question are nonempty.

Thus the marginals $P_{1}^{(k)}$ and $P_{2}^{(k)}$ of P_{k} satisfy 1 and 2 above and so converge to P_{1} and P_{2}, respectively. Since X and Y are u.m., Le Cam's Theorem implies that the families $P_{1}^{(k)}$ and $P_{2}^{(k)}$ are uniformly tight; the same then holds for the sequence P_{k} on $X \times Y$.

Consider now the metric completions \bar{X} of X and \bar{Y} of Y; since the P_{k} are atomic, they are also naturally defined on the complete space $\bar{X} \times \bar{Y}$ and are again uniformly tight on $\bar{X} \times \bar{Y}$; by Prohorov's Theorem (see Billingsley (1968) Theorem 6.1), there is a subsequence $P_{n(k)} \rightarrow P_{0}$ for some law P_{0} on $\bar{X} \times \bar{Y}$.
Claim. $P_{0}^{*}(X \times Y)=1$, and $P=P_{0}^{*}$ is the law on S sought. Given $\varepsilon>0$, choose compact sets $K_{1} \subset X$ and $K_{2} \subset Y$ such that $P_{k}\left(K_{1} \times K_{2}\right)=P_{k}\left(\left(K_{1} \times K_{2}\right) \cap S\right)>1$ $-\varepsilon$: since S is closed in $X \times Y,\left(K_{1} \times K_{2}\right) \cap S$ is compact and so is closed in \bar{X} $\times \bar{Y}$: then by the Portmanteau Theorem (Billingsley (1968) Theorem 2.1), $P_{0}\left(\left(K_{1} \times K_{2}\right) \cap S\right) \geqq 1-\varepsilon$; letting $\varepsilon \rightarrow 0$ proves that $\left(P_{0}\right)_{*}(S)=\left(P_{0}\right)^{*}(S)=1$. By Lemma 5, $P_{n(k)} \rightarrow P$ on $X \times Y$. Since the marginals of $P_{n(k)}$ converge to P_{1} and P_{2}, there are the marginals of P.

Case II. Only Y is assumed u.m. Again choose metrics for X and Y making S closed for the product topology. If \bar{X} is the metric completion of X, let \bar{P}_{1} be the law induced by P_{1} on \bar{X}. We have $S=(X \times Y) \cap \bar{S}$, where \bar{S} is a closed subset of $\bar{X} \times Y$. Now $\bar{S}, \bar{X}, Y, \bar{P}_{1}$, and P_{2} satisfy the hypotheses of Case I, and so there is a law \bar{P} on $\bar{X} \times Y$ having \bar{P}_{1} and P_{2} as marginals and such that $\bar{P}(\bar{S})=1$.
Claim. $\bar{P}^{*}(X \times Y)=1$: this follows from Lemma 4 and the fact that $\bar{P}_{1}^{*}(X)$ $=P_{1}(X)=1$.

Thus we may take $P=\bar{P}^{*}$ as a law on $X \times Y$; then $P(S)=\bar{P}(\bar{S})=1$, and the marginals of P are P_{1} and P_{2}. Q.E.D.

The following two examples demonstrate that the hypotheses on S and Y cannot simply be eliminated.
Example 1. Let X and Y be copies of the open unit interval $(0,1)$ under its usual Borel structure and let $S=\{(x, y) \in X \times Y: x>y\}$: there is no law on S with marginals equal to Lebesgue measure on X and Y; condition (*) of Theorem 1 is, however, satisfied. For details, see Kellerer (1964) p. 196. (S is not Borel-closed.)
Example 2. Let Y be a subset of the interval $(0,1)$ with outer Lebesgue measure $P^{*}(Y)=1$ and inner measure $P_{*}(Y)=0$. Put $X=(0,1) \backslash Y$ and $S=\{(x, y) \in X$ $\times Y ; x \geqq y\}$. Let P_{1} and P_{2} be P^{*} on X and Y, respectively: then as in the previous example, noting that $\{(x, x) \in X \times Y\}$ is empty, there is no law on S
with P_{1} and P_{2} as marginals. (S is closed, and condition (*) is satisfied, but neither X nor Y is u.m.)
Theorem 2. Let X, Y and S be separable spaces and let there be given laws P_{1} on X and P_{2} on Y. Let $f: S \rightarrow X$ and $g: S \rightarrow Y$ be measurable mappings; then, under the following conditions, there is a law P on S such that $f(P)=P_{1}$ and $g(P)=P_{2}$:

1. X is u.m. (by symmetry, Y u.m. also suffices),
2. $\mathscr{B}(S)=\sigma(f, g)$, the smallest σ-algebra on S making the functions f and g measurable,
3. if $f^{-1}(A) \subset g^{-1}(B)$ for $A \in \mathscr{B}(X), B \in \mathscr{B}(Y)$, then $P_{1}(A) \leqq P_{2}(B)$, and
4. $\left\{(x, y): f^{-1}(x) \cap g^{-1}(y) \neq \phi\right\}$ is Borel-closed in $X \times Y$.

Proof. Define $F: S \rightarrow X \times Y$ by the rule $F(s)=(f(s), g(s))$; then condition 2 implies that F is injective, in fact a Borel isomorphism onto the image $F(S)$. The set in condition 4 is just $F(S)$; furthermore, if $(A \times Y) \cap F(S) \subset(X \times B) \cap F(S)$ for $A \in \mathscr{B}(X), B \in \mathscr{B}(Y)$, then applying F^{-1} gives $f^{-1}(A) \subset g^{-1}(B)$; condition 3 then implies that $P_{1}(A) \leqq P_{2}(B)$. Therefore, the conditions of Theorem 1 are met, so that there is a law Q on $X \times Y$ with $Q(F(S))=1$ and having marginals P_{1} and P_{2}. Then $P=F^{-1}(Q)$ is the law Q.E.I.

If any of the four numbered conditions of this theorem be eliminated, the result will be a false statement. For condition 1, this is shown by Example 2; for condition 4, we have Example 1; as with most of our other results, condition 3 is clearly necessary. With respect to condition 2 , we have

Example 3. Let S, X and Y be separable spaces having the unit interval $[0,1]$ as underlying set; let X and Y have the usual Borel structure \mathscr{B} on [0,1]. By a well-known result of Banach (1948), the continuum hypothesis implies that there are subsets H_{1}, H_{2}, \ldots of $[0,1]$ such that Lebesgue measure P cannot be extended to $\sigma\left(\mathscr{B}, H_{1}, H_{2}, \ldots\right)$. Give S the Borel structure $\sigma\left(\mathscr{B}, H_{1}, H_{2}, \ldots\right)$ and let $f: S \rightarrow X$ and $g: S \rightarrow Y$ be the identity map on $[0,1]$. All conditions save 2 obtain, but the conclusion of Theorem 3 does not hold. There is, however, at least one legitimate alteration of 2 possible:
Corollary 2.1. Condition 2 of Theorem 2 may be replaced with the requirement that S be analytic.

Proof. Define $A: S \rightarrow \sigma(f, g)$ by the rule $A(s)=\cap\{B \in \sigma(f, g): s \in B\}$, the atom of $\sigma(f, g)$ containing s; since $\sigma(f, g)$ is countably generated, each $A(s)$ is in $\sigma(f, g)$. Put $\tilde{S}=A(S)$; for $\mathscr{B}(\tilde{S})$, take all those $C \subset \tilde{S}$ such that $A^{-1}(C) \in \sigma(f, g)$ (the "quotient structure"). The functions f and g induce measurable mappings $f_{0}: \tilde{S} \rightarrow X$ and $g_{0}: \tilde{S} \rightarrow Y$ such that the following diagrams commute:

Then $X, Y, \tilde{S}, P_{1}, P_{2}, f_{0}$, and g_{0} satisfy the hypotheses of Theorem 2, so there is a law \tilde{P} on \tilde{S} with $f_{0}(\tilde{P})=P_{1}$ and $g_{0}(\tilde{P})=P_{2}$. Put $P_{0}=A^{-1}(\tilde{P})$, a probability measure on ($S, \sigma(f, g)$); an application of Varadarajan (1963) p. 194 yields an extension P of \tilde{P} to $\mathscr{B}(S) ; f(P)=P_{1}$ and $g(P)=P_{2}$. Q.E.D.
Corollary 2.2. Let S be a compact metric space and let $f: S \rightarrow X$ and $g: S \rightarrow Y$ be continuous surjections of S onto metric spaces X and Y. Suppose that P_{1} and P_{2} are laws on X and Y, respectively; then there is a law P on S with $f(P)=P_{1}$ and $g(P)=P_{2}$ if and only if the following condition obtains:
(*) if $f^{-1}(A) \subset g^{-1}(B)$ for $A \in \mathscr{B}(X)$ and $B \in \mathscr{B}(Y)$, then $P_{1}(A) \leqq P_{2}(B)$.
Proof. Since $X=f(S)$ is compact, it is u.m.; since S is compact, it is analytic; condition 3 of Theorem 2 has been assumed in (*); finally, the set of all (x, y) such that $f^{-1}(x) \cap g^{-1}(y) \neq \phi$ is closed in $X \times Y$. Corollary 2.1 now applies to provide the existence of a P. Q.E.D.

Example 1 illustrates how this corollary fails when the hypothesis that S be compact is weakened to S standard, or if the functions f and g are only assumed measurable: in this latter case, we see that since S is standard and uncountable, there is a compact metric for S (S is Borel-isomorphic with $[0,1])$, but under this metric, f and g are no longer continuous.

The passage to products of more than two spaces is not at all straightforward: as pointed out in Strassen (1965) p. 437 and Kellerer (1964), conditions as simple as (*) in Theorem 1 will not suffice. However, using the techniques we have developed in conjunction with Kellerer (1964) Satz 4.2 it is possible to prove the following multi-dimensional result:
Theorem 3. Let S be a separable space and let $f_{j}: S \rightarrow X_{j}, j=1, \ldots, n$, be measurable mappings of S to separable u.m. spaces X_{1}, \ldots, X_{n} on which are defined laws P_{1}, \ldots, P_{n}. The following are conditions sufficient to ensure the existence of a law P on S with $f_{j}(P)=P_{j}, j=1, \ldots, n$:

1. $\mathscr{B}(S)=\sigma\left(f_{1}, \ldots, f_{n}\right)$,
2. $\left\{\left(x_{1}, \ldots, x_{n}\right): f_{1}^{-1}\left(x_{1}\right) \cap \ldots \cap f_{n}^{-1}\left(x_{n}\right) \neq \phi\right\}$ is Borel-closed in $X=X_{1} \times \ldots$ $\times X_{n}$, and
3. for any measurable partitions $X_{j}=A_{1}^{(j)} \cup \ldots \cup A_{m_{3}}^{(j)}$ of the X_{j} and any corresponding set of n real vectors $\vec{x}^{(j)}=\left(x_{1}^{(j)}, x_{2}^{(j)}, \ldots, x_{m_{j}}^{(j)}\right), j=1, \ldots, n$, this inequality obtains:

$$
\begin{equation*}
\sum_{j=1}^{n} \vec{x}^{(j)} \cdot \vec{P}_{j} \leqq \sum\left[\sum_{j=1}^{n} x_{i_{j}}^{(j)}\right]^{+} \tag{*}
\end{equation*}
$$

where $\vec{P}_{j}=\left(P_{j}\left(A_{1}^{(j)}\right), P_{j}\left(A_{2}^{(j)}\right), \ldots, P_{j}\left(A_{m_{2}}^{(j)}\right)\right)$; the dot in the first summation is an inner product, and the unmarked summation is taken over all n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ such that $f_{1}^{-1}\left(A_{i_{1}}^{(1)}\right) \cap f_{2}^{-1}\left(A_{i_{2}}^{(2)}\right) \cap \ldots \cap f_{n}^{-1}\left(A_{i_{n}}^{(n)}\right)$ is non-empty.
Corollary 3.1. Condition 1 may be replaced in Theorem 3 with the requirement that S be analytic.

Proof. This again follows mutatis mutandis from the "method of quotients" detailed in the proof of Corollary 2.1. Q.E.D.

Corollary 3.2. In Theorem 3, one may assume that all but one of the X_{j} are u.m.
Proof. Entirely analogous to the demonstration of Case II of Theorem 1, using Lemma 4. Q.E.D.

Taking S to be a Borel-closed subset of $X_{1} \times \ldots \times X_{n}$ and defining the f_{j} as co-ordinate projections leads to an n-dimensional generalization of Theorem 1.
Remark. It has already been pointed out in reference to Theorem 2 that the u.m. requirement for all but one of the X_{j} in Theorem 3 cannot simply be dropped; the same has been shown for conditions 1 and 2 of Theorem 3. Despite the complexity of condition 3 of this theorem, it is implied by the existence of the sought-after law P.
Theorem 4. Let S be a separable space and let $f_{1}: S \rightarrow X, f_{2}: S \rightarrow X_{2}, \ldots$ be a sequence of measurable functions on S to separable spaces X_{1}, X_{2}, \ldots such that

1. all but perhaps one of the X_{j} are u.m. (say X_{2}, X_{3}, \ldots are u.m.),
2. $\mathscr{B}(S)=\sigma\left(f_{1}, f_{2}, \ldots\right)$, and
3. $\left\{\left(x_{1}, x_{2}, \ldots\right): f_{1}^{-1}\left(x_{1}\right) \cap f_{2}^{-2}\left(x_{2}\right) \cap \ldots \neq \phi\right\}$ is Borel-closed in $X=X_{1} \times X_{2}$ $\times \ldots$.

In order that there should exist a law P on S with $f_{j}(P)=P_{j}, j=1,2, \ldots$, it is necessary and sufficient that the same be true for $j=1, \ldots, n$, for every n.
Proof. Necessity is obvious. For the converse, let Q_{n} be a sequence of laws on S such that $f_{j}\left(Q_{n}\right)=P_{j}$ for $j=1, \ldots, n$. Define $F: S \rightarrow X$ by $F(s)=\left(f_{1}(s), f_{2}(s), \ldots\right)$; as before, F is a Borel isomorphism of S onto $F(S)$, the set indicated in condition 3. Choose totally bounded metrics for the X_{j} making $F(S)$ closed in X. Consider the image laws $F\left(Q_{n}\right)$ on X and the laws $\overline{F\left(Q_{n}\right)}$ they induce on the compact completion $\bar{X}=\bar{X}_{1} \times \bar{X}_{2} \times \ldots$. Then for each $n,{\bar{F}\left(Q_{n}\right)}^{*}(F(S))=1$, and the marginal of $F\left(Q_{n}\right)$ on \bar{X}_{1} is \bar{P}_{1}.

Because we have taken \bar{X} compact, Prohorov's Theorem implies that there is a subsequence $\overline{F\left(Q_{n(k)}\right)} \rightarrow \bar{Q}$ for some law \bar{Q} on \bar{X}; since the marginals of the $\overline{F\left(Q_{n}\right)}$ on \bar{X}_{1} are all \bar{P}_{1}, this is the marginal of \bar{Q} on \bar{X}_{1}; since $\bar{P}_{1}^{*}\left(X_{1}\right)=1$, Lemma 4 implies that $\bar{Q}^{*}\left(X_{1} \times \bar{X}_{2} \times \dot{\bar{X}}_{3} \times \ldots\right)=1$.
Claim. $\bar{Q}^{*}(X)=1$: we know from the u.m. property and Lemma 3 that there are standard subsets $S_{j} \in \mathscr{B}\left(\bar{X}_{j}\right)$ of $X_{j}, j \geqq 2$, with $\bar{P}_{j}\left(S_{j}\right)=P_{j}\left(S_{j}\right)=1$; as before, we see that the marginal of \bar{Q} on each \bar{X}_{j} is $\bar{P}_{j}, j=1, \ldots, n$; therefore, $\bar{Q}\left(\bar{X}_{1} \times S_{2}\right.$ $\left.\times S_{3} \times \ldots\right)=1$ so that $\bar{Q}^{*}(X) \geqq \bar{Q}^{*}\left(X_{1} \times S_{2} \times S_{3} \times \ldots\right)=1$, as claimed.

Since $\overline{F\left(Q_{n(k)}\right)} \rightarrow \bar{Q}$ on \bar{X} and $\overline{F\left(Q_{n(k)}\right)}{ }^{*}(X)=\bar{Q}^{*}(X)=1$, Lemma 5 implies that $F\left(Q_{n(k)}\right)=\overline{F\left(Q_{n(k)}\right)}{ }^{*} \rightarrow Q=\bar{Q}^{*}$ on X. Then $P=F^{-1}(Q)$ serves as the desired law on S. Q.E.D.
Corollary 4.1. As in Corollaries 2.1 and 3.1, condition 2 may be dropped if S is analytic.
Corollary 4.2. By taking $S=S_{1} \times S_{2} \times \ldots$ and letting the f_{j} be projections of S onto all finite partial products of the X_{j}, we obtain Kolmogoroff's Existence Theorem for products of u.m. spaces.

No one of the itemized conditions in Theorem 4 can simply be dropped; counter-examples follow.

Example 4. The conclusion of Theorem 4 may fail if two of the X_{i} are not u.m.: let $I=[0,1]$, the unit interval with its usual Borel structure and let λ be Lebesgue measure on I. We require the following
Fact. There are subsets X_{1} and X_{2} of I with $\lambda^{*}\left(X_{j}\right)=1$ and $\lambda_{*}\left(X_{j}\right)=0, j=1,2$, and such that the difference set $D=\left\{h_{1}-h_{2}: h_{1} \in X_{1}, h_{2} \in X_{2}\right\}$ contains no rational point. (Proof is a standard transfinite induction argument.)

Put $S=X_{1} \times X_{2}$ under the usual Euclidean metric $d, X_{j}=\{0,1\}$ for $j \geqq 3$, $f_{1}: S \rightarrow X_{1}$ and $f_{2}: S \rightarrow X_{2}$ the co-ordinate projections and for $n \geqq 3$,

$$
f_{n}(s)= \begin{cases}1 & \text { if } d(s, \Delta) \leqq 1 / n \sqrt{2} \\ 0 & \text { if } d(s, \Delta)>1 / n \sqrt{2}\end{cases}
$$

where Δ is the diagonal line $y=x$ in $I \times I$.
Let $P_{1}=P_{2}=\lambda^{*}$, and $P_{j}\{1\}=1, P_{j}\{0\}=0$, for $j \geqq 3$. Then:
a) X_{1}, X_{2} are not u.m.; X_{3}, X_{4}, \ldots are all u.m.,
b) $\mathscr{B}(S)$ is generated by f_{1} and f_{2}, and so certainly by all the f_{j}, and
c) $T=\left\{\left(x_{1}, x_{2}, \ldots\right): f_{1}^{-1}\left(x_{1}\right) \cap f_{2}^{-1}\left(x_{2}\right) \cap \ldots \neq \phi\right\}$ is closed in $X=X_{1} \times X_{2}$ $\times X_{3} \times \ldots$: since no point of S meets any of the lines $y=x \pm 1 / n$, the regions $\{s \in S: d(s, \Delta) \leqq 1 / n \sqrt{2}\}$ are clopen in S, and the $f_{j}, j \geqq 3$, are continuous functions on S. Suppose t_{n} is a sequence in T and $t_{n} \rightarrow t$ in X : then the $j^{\text {th }}$-coordinates $t_{n}(j) \rightarrow t(j)$ for $j \geqq 3$; since $f_{j}\left(t_{n}(1), t_{n}(2)\right)=t_{n}(j)$, taking $n \rightarrow \infty$ and using the continuity of the f_{j} establishes that $t \in T$.

There is clearly no law P on S with $f_{j}(P)=P_{j}$ for all j, since $\left\{(x, x): x \in X_{1}\right\} \cap S=\phi$; however, only condition 1 of Theorem 4 fails.

Assume the continuum hypothesis:
Example 5. The conclusion of Theorem 4 may fail if $\mathscr{B}(S)$ is not generated by the functions f_{1}, f_{2}, \ldots : Let C be the Cantor discontinuum, realized as the product of two-point spaces $\{0,1\}=X_{1}=X_{2}=\ldots$; let $f_{j}: C \rightarrow X_{j}$ be the $j^{\text {th }}$-coordinate projection. Let S be the separable space with underlying set C and Borel structure $\sigma\left(\mathscr{B}, H_{1}, H_{2}, \ldots\right)$, where \mathscr{B} is the usual Borel σ-algebra on C and H_{1}, H_{2}, \ldots is, as in Example 3, a sequence of C such that no continuous measure may be defined on $\sigma\left(\mathscr{B}, H_{1}, H_{2}, \ldots\right)$. Define P_{j} on X_{j} to be the "fair coin-toss" measure $P_{j}\{0\}=P_{j}\{1\}=1 / 2, j=1,2, \ldots$. Then:
a) all of the X_{j} are u.m. (standard),
b) $\left\{\left(x_{1}, x_{2}, \ldots\right): f_{1}^{-1}\left(x_{1}\right) \cap f_{2}^{-1}\left(x_{2}\right) \cap \ldots \neq \phi\right\}=C$, but
c) $\mathscr{B}(S)$ is not generated by the projections f_{j}.

There is, for each n, an atomic law $P^{(n)}$ on S with $f_{j}\left(P^{(n)}\right)=P_{j}, j=1, \ldots, n$, but no P on S such that $f_{j}(P)=P_{j}$ for $j \geqq 1$.
Example 6. Conditions 3 in Theorem 4 may not be deleted: Let S be the set of all rational numbers in the half-open interval [$0,1[$, under the usual Euclidean metric. Set $X_{n}=\left\{1, \ldots, 2^{n}\right\}$ under the discrete structure and define $f_{n}: S \rightarrow X_{n}$ by the rule $f_{n}(s)=\left[2^{n} \cdot s\right]+1$. For laws P_{n} on X_{n}, take "uniform distributions" with $P_{n}\{k\}=2^{-n}$ for $1 \leqq k \leqq 2^{n}$. Then, for each n, there is an atomic law $P^{(n)}$ on S with
$f_{j}\left(P^{(n)}\right)=P_{j}, j=1, \ldots, n$, but no law P on S such that $f_{j}(P)=P_{j}$ for $j \geqq 1$. In this example:
a) each X_{j} is an u.m.,
b) $\mathscr{B}(S)$ is generated by the maps $f_{j}, j \geqq 1$, but
c) $F(S)$ is not Borel-closed in $X=X_{1} \times X_{2} \times \ldots$,
where $F: S \rightarrow X$ is defined as in the proof of Theorem 4: notice that since there is only one metric topology on each X_{j}, viz. the discrete topology, this is equivalent to saying that $F(S)$ is not actually closed in the compact space X. Now F^{-1} is continuous from $F(S)$ onto S; if $F(S)$ were closed, it and its image S would be compact, a contradiction.

The following is a generalization of a result of Hansel and Troallic (1968), Corollaire 3, to products of more than two not necessarily Polish spaces.

Theorem 5. Let X_{1}, \ldots, X_{n} be separable spaces with X_{2}, \ldots, X_{n} u.m. and let $f_{1}: X_{1} \rightarrow Z, \ldots, f_{n}: X_{n} \rightarrow Z$ be measurable surjections taking laws P_{1}, \ldots, P_{n} on X_{1}, \ldots, X_{n} to a single law Q on a separable space Z; then there is a law P on X_{1} $\times \ldots \times X_{n}$ with marginals P_{j} on $X_{j}, j=1, \ldots, n$, such that $P(S)=1$, where S is the set $\left\{\left(x_{1}, \ldots, x_{n}\right): f_{1}\left(x_{1}\right)=\ldots=f_{n}\left(x_{n}\right)\right\}$.

Proof. Case I: X_{1} is also u.m. Firstly, note that the complement of S in $X=X_{1}$ $\times \ldots \times X_{n}$ is a countable union of rectangles of the form $f_{1}^{-1}\left(A_{1}\right) \times \ldots \times f_{n}^{-1}\left(A_{n}\right)$ for $A_{1}, \ldots, A_{n} \in \mathscr{B}(Z): S$ is the inverse image of the diagonal in Z^{n} under the mapping $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)$ on X, and the diagonal of Z^{n} is Borelclosed.

Let $P_{1}\left(x_{1}, \cdot\right), \ldots, P_{n}\left(x_{n}, \cdot\right)$ be almost everywhere proper regular conditional probabilities for P_{1}, \ldots, P_{n} given f_{1}, \ldots, f_{n} (see Blackwell and Ryll-Nardzewski (1963) for definitions and a discussion): then there is a measurable subset B of Z with $P_{j}\left(x_{j}, f_{j}^{-1}(A)\right)=0$ whenever $A \in \mathscr{B}(Z)$ and $x_{j} \in f_{j}^{-1}(B) \backslash f_{j}^{-1}(A)$ and such that $Q(B)=P_{j}\left(f_{j}^{-1}(B)\right)=1$. Since for each $A_{j}, P_{j}\left(\cdot, A_{j}\right)$ is $f_{j}^{-1}(\mathscr{B}(Z))$-measurable, we may write $P_{j}\left(x_{j}, A_{j}\right)=g_{j}\left(f_{j}\left(x_{j}\right), A_{j}\right)$ for some measurable real function $g_{j}\left(\cdot, A_{j}\right)$ on Z. Since each f_{j} is surjective, $g_{j}(z, \cdot)$ is a law on X_{j} for each $z \in Z$.

A law P on X may now be defined so that $P\left(A_{1} \times \ldots \times A_{n}\right)$ $=\int g_{1}\left(z, A_{1}\right) \ldots g_{n}\left(z, A_{n}\right) d Q(z)$ for $A_{j} \in \mathscr{B}\left(X_{i}\right), j=1, \ldots, n$; then P has the correct marginals; furthermore, $P(S)=1$, since if $f_{1}^{-1}\left(A_{1}\right) \times \ldots \times f_{n}^{-1}\left(A_{n}\right) \subset X \backslash S$, $A_{j} \in \mathscr{B}(Z)$, then $P\left(f_{1}^{-1}\left(A_{1}\right) \times \ldots \times f_{n}^{-1}\left(A_{n}\right)\right)=\int_{B} g_{1}\left(z, f_{1}^{-1}\left(A_{1}\right)\right) \ldots g_{n}\left(z, f_{n}^{-1}\left(A_{n}\right)\right) d Q(z)$ $=0$, since for each $z \in B$ and $\left(x_{1}, \ldots, x_{n}\right) \in f_{1}^{-1}(z) \times \ldots \times f_{n}^{-1}(z)$, there is a j such that $x_{j} \notin f_{j}^{-1}\left(A_{j}\right)$.
Case II. X_{1} is not assumed u.m.; we claim that there are u.m. spaces Y_{1}, \ldots, Y_{n} and Z_{0} and measurable surjections $\bar{f}_{j}: Y_{j} \rightarrow Z_{0}, j=1, \ldots, n$, such that $X_{j} \subset Y_{j}$, $Z \subset Z_{0}$ and $\bar{f}_{j}(x)=f_{j}(x)$ whenever $x_{j} \in X_{j}, j=1, \ldots, n$: select metrics for Z and the X_{j} and let \bar{Z} and $\bar{X}_{1}, \ldots, \bar{X}_{n}$ be their completions; by an extension theorem of Kuratowski (1966) p. 434, there are measurable $\bar{f}_{j}: \bar{X}_{j} \rightarrow \bar{Z}$ extending the f_{j}, j $=1, \ldots, n$. Put $Z_{0}=\bigcap_{j} \bar{f}_{j}\left(\bar{X}_{j}\right)$ and $Y_{j}=\bar{f}_{j}^{-1}\left(Z_{0}\right)$ for $j=1, \ldots, n$: since Z_{0} is analytic, so are the Y_{j} (Parthasarathy (1967) p. 17 (3.4)), and hence they are u.m.

Define \bar{P}_{j} and \bar{Q} to be the laws induced by the P_{j} and Q on Y_{j} and Z_{0}, respectively; we now see that $\bar{f}_{j}\left(\bar{P}_{j}\right)=\bar{Q}, j=1, \ldots, n$. Case I applies to guarantee
the existence of a law \bar{P} on $Y_{1} \times \ldots \times Y_{n}$ with marginals $\bar{P}_{1}, \ldots, \bar{P}_{n}$ such that $\bar{P}(\bar{S})$ $=1$, where $\bar{S}=\left\{\left(y_{1}, \ldots, y_{n}\right): \bar{f}_{1}\left(y_{1}\right)=\ldots=\bar{f}_{n}\left(y_{n}\right)\right\}$. Note that $S=\bar{S} \cap\left(X_{1} \times \ldots \times X_{n}\right)$.
Claim 1. $\bar{P}^{*}\left(X_{1} \times Y_{2} \times \ldots \times Y_{n}\right)=1$: this follows from Lemma 4, the u.m. property for $Y_{2} \times \ldots \times Y_{n}$, and the fact that $\bar{P}_{1}^{*}\left(X_{1}\right)=1$.
Claim 2. $\bar{P}^{*}\left(X_{1} \times \ldots \times X_{n}\right)=1$: since X_{2}, \ldots, X_{n} are u.m., and since $\bar{P}_{j}^{*}\left(X_{j}\right)=1$ for $j=2, \ldots, n$, there are sets $C_{j} \subset X_{j}, C_{j} \in \mathscr{B}\left(Y_{j}\right)$ with $\bar{P}_{j}\left(C_{j}\right)=1$ for $j=2, \ldots, n$; thus, $\bar{P}\left(Y_{1} \times C_{2} \times \ldots \times C_{n}\right)=1$; combining this with Claim 1 yields

$$
\bar{P}^{*}\left(X_{1} \times \ldots \times X_{n}\right) \geqq \bar{P}^{*}\left(\left(X_{1} \times Y_{2} \times \ldots \times Y_{n}\right) \cap\left(Y_{1} \times C_{2} \times \ldots \times C_{n}\right)\right)=1
$$

as claimed.
Taking $P=\bar{P}^{*}$ on $X=X_{1} \times \ldots \times X_{n}$, we note that $P(S)=\bar{P}(\bar{S})=1$ and that P has marginal P_{j} on $X_{j}, j=1, \ldots, n$. Q.E.D.
Example 7. As with our other results, if two of the the X_{j} are not u.m., then even the well-behavedness of Z will not necessarily ensure the validity of this theorem's conclusion: as in Shortt (1983) Theorem 5, one may exhibit separable spaces A_{1}, A_{2}, A_{3} with A_{2} standard, but neither A_{1} nor A_{3} u.m., such that there are laws P_{1} on $X_{1}=A_{1} \times A_{2}$ and P_{2} on $X_{2}=A_{2} \times A_{3}$ having a common projection Q on $Z=A_{2}$, but such that there is no law on $A_{1} \times A_{2} \times A_{3}$ with P_{1} and P_{2} as marginals.

Unlike Theorem 4 (cf. Example 4), the "countable" case allows more freedom with the u.m. hypothesis:
Theorem 6. Let X_{1}, X_{2}, \ldots and Z be separable spaces on which are defined laws P_{1}, P_{2}, \ldots and Q, respectively. Suppose that $f_{1}: X_{1} \rightarrow Z, f_{2}: X_{2} \rightarrow Z, \ldots$ are measurable surjections such that $f_{1}\left(P_{1}\right)=f_{2}\left(P_{2}\right)=\ldots=Q$; suppose further that all but finitely many of the X_{j} are u.m.; then a necessary and sufficient condition that there exist a law P on $X=X_{1} \times X_{2} \times \ldots$ with marginals P_{1}, P_{2}, \ldots and with $P(S)=1$, where $S=\left\{\left(x_{1}, x_{2}, \ldots\right): f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)=\ldots\right\}$, is given by the following:
(*) for each positive integer n, there is a law Q_{n} on $X_{1} \times \ldots \times X_{n}$ with marginals P_{1}, \ldots, P_{n} and such that $Q_{n}\left(S_{n}\right)=1$, where $S_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): f_{1}\left(x_{1}\right)=\ldots=f_{n}\left(x_{n}\right)\right\}$.
Proof. Necessity is clear. Suppose now that (*) holds. Choose a matric for Z and choose totally bounded metrics for the X_{j} which make the f_{j} continuous: e.g. let the inverse images under the f_{j} of elements of a countable base for the topology of Z be included as open sets for the metrics on X_{j}; then S and the S_{n} are closed in the associated product topologies.
Case I. Suppose that each X_{j} is u.m., $j=1,2, \ldots$: then let $a_{1} \in X_{1}, a_{2} \in X_{2}, \ldots$ be arbitrary and $\bar{X}_{1}, \bar{X}_{2}, \ldots$ the (compact) completions of X_{1}, X_{2}, \ldots. Define laws R_{n} on $X=X_{1} \times X_{2} \times \ldots$ by the rule $R_{n}=Q_{n} \otimes \delta_{n}$, where δ_{n} is the (Dirac) point mass at $\left(a_{n+1}, a_{n+2}, \ldots\right.$) and let \bar{R}_{n} be the law induced by R_{n} on $\bar{X}=\bar{X}_{1} \times \bar{X}_{2}$ $\times \ldots$; then the marginals of \bar{R}_{n} on $\bar{X}_{1}, \ldots, \bar{X}_{n}$ are $\bar{P}_{1}, \ldots, \bar{P}_{n}$, the laws induced by P_{1}, \ldots, P_{n}.

Since \bar{X} is compact, there is a subsequence $\bar{R}_{n(k)} \rightarrow \bar{P}$ for some law \bar{P} on \bar{X}. Because the marginals of the $\bar{R}_{n(k)}$ on \bar{X}_{j} eventually equal \bar{P}_{j}, these are the
marginals of \bar{P}. Given $\varepsilon>0$, choose compact $K_{j} \subset X_{j}$ with $\vec{P}_{j}\left(K_{j}\right)>1-\varepsilon \cdot 2^{-j}$, making sure that $a_{j} \in K_{j}$ for $j=1,2, \ldots:$ then $\bar{P}^{*}(X) \geqq \bar{P}\left(K_{1} \times K_{2}\right.$ $\times \ldots) \geqq \limsup \bar{R}_{n(k)}\left(K_{1} \times K_{2} \times \ldots\right) \geqq 1-\varepsilon$; letting $\varepsilon \rightarrow 0$ shows that $\bar{P}^{*}(X)=1$. Take $P=\bar{P}^{*}$ as a law on X : the marginals of P are the P_{j}.

Since $\bar{R}_{n(k)} \rightarrow \bar{P}$, and $\bar{R}_{n(k)}^{*}(X)=\bar{P}^{*}(X)=1$, Lemma 5 implies that $R_{n(k)} \rightarrow P$ on X. Now $S_{n} \times X_{n+1} \times X_{n+2} \times \ldots$ is a sequence of closed subsets of X decreasing to S; for each n,

$$
P\left(S_{n} \times X_{n+1} \times X_{n+2} \times \ldots\right) \geqq \lim \sup R_{n(k)}\left(S_{n} \times X_{n+1} \times X_{n+2} \times \ldots\right)=1
$$

so that $P(S)=1$, as desired.
Case II. Suppose that there are no restrictions on the spaces X_{1}, \ldots, X_{n}, but that X_{n+1}, X_{n+2}, \ldots are all u.m. Define

$$
S_{0}=\left\{\left(x_{n+1}, x_{n+2}, \ldots\right): f_{n+1}\left(x_{n+1}\right)=f_{n+2}\left(x_{n+2}\right)=\ldots\right\} \subset X_{n+1} \times X_{n+2} \times \ldots
$$

and let $F: S_{n} \rightarrow Z$ and $G: S_{0} \rightarrow Z$ be the surjections given by $F\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)$ and $G\left(x_{n+1}, \ldots\right)=f_{n+1}\left(x_{n+1}\right)$. From Case I, we know that there exists a law Q_{0} on S_{0} with marginals P_{j} on $X_{j}, j=n+1, n+2, \ldots$. Now $F\left(Q_{n}\right)=G\left(Q_{0}\right)=Q$, and since S_{0} is u.m., there is, by Theorem 5, a law P on $S_{n} \times S_{0} \subset X$ with $P(S)=1$ and having marginals Q_{n} on S_{n} and Q_{0} on S_{0}, hence with marginals P_{j} on X_{j}, j $=1,2, \ldots$ Q.E.D.
Example 8. As in Example 3, let $I=[0,1], \mathscr{B}$ the Borel σ-algebra on I and H_{1}, H_{2}, \ldots a sequence of subsets of I to which Lebesgue measure Q cannot be extended. Put $\mathscr{B}_{n}=\sigma\left(\mathscr{B}, H_{1}, \ldots, H_{n}\right)$ and let P_{n} be extensions of Lebesgue measure to \mathscr{B}_{n} such that $P_{n}=P_{m}$ on \mathscr{B}_{m} if $m<n$. Put $X_{j}=\left(I, \mathscr{B}_{j}\right) j=1,2, \ldots, Z=(I, \mathscr{B})$ and let f_{j} be the identity function on I. Then all the hypotheses of Theorem 6 are satisfied, except that the X_{j} are not u.m., and the conclusion fails to hold. (S is the diagonal in $I \times I \times \ldots$, Borel isomorphic with ($I, \sigma\left(\mathscr{B}, H_{1}, H_{2}, \ldots\right)$).)

We wish to express our gratitude to Richard M. Dudley and Donald L. Cohn for their many helpful comments and suggestions.

References

Banach, S.: Sur les suites d'ensembles excluant l'existence d'une mesure, Colloq. Math. 1, 103-108 (1948 posth.)
Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968
Blackwell, D., Ryll-Nardzewski, C.: Non-existence of everywhere proper conditional distributions. Ann. Math. Statist 34, 223-225 (1963)
Christensen, J.P.R.: Topology and Borel Structure. Amsterdam: North-Holland 1974
Cohn, D.L.: Measure Theory. Boston: Birkhäuser 1980
Dudley, R.M.: Probabilities and Metrics. Lecture Notes Series, No. 45. Aarhus Universitet, Aarhus (1976)

Hansel, G., Troallic, J.P.: Mesures marginales et théorème de Ford-Fulkerson. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 245-251 (1978)
Kellerer, H.G.: Masstheoretische Marginalprobleme. Math. Ann. 153, 168-198 (1964)
Kelley, J.L., Namioka, I.: Linear Topological Spaces. Berlin-Heidelberg-New York: Springer 1963

Kuratowski, K.: Topology, Vol. I. New York: Academic Press 1966
LeCam, L.: Convergence in distribution of stochastic processes. University of California Publications in Statistics 2, No. 11, 207-236 (1957)
Marczewski (Szpilrajn), E.: The characteristic function of a sequence of sets and some of its applications. Fund. Math. 31, 207-223 (1938)
Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York: Academic Press 1967
Shortt, R.M.: Universally measurable spaces: an invariance theorem and diverse characterizations. Fundamenta Mathematicae [To appear (1983)]
Strassen, V.: Probability measures with given marginals. Ann. Math. Statist 36, 423-439 (1965)
Varadarajan, V.S.: Measures on topological spaces. Amer. Math. Soc. Transl. Series 2, 48, 161-228 (1961)

Varadarajan, V.S.: Groups of automorphisms of Borel spaces. Trans. Amer. Math. Soc. 109, 191220 (1963)

Received November 6, 1981; in revised form March 17, 1983

