Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1976

A Note on R-Recurrence of Markov Chains

G. Kersting

Institut für Mathematische Statistik, Lotzestr. 13, D-3400 Göttingen, Federal Republic of Germany

Necessary and sufficient conditions are given for a Markov chain to be *R*-recurrent and satisfy the Strong Ratio Limit Property, and for a Markov Chain to be *R*-positive-recurrent.

In this note we deal with aperiodic, irreducible Markov chains (MC). We improve a result of an earlier paper [2], in which criteria for *R*-recurrence were developed.

Let $P = (P_{ik})_{i,k \in E}$ be a stochastic matrix. (*E* shall be a countable space.) By P_{ik}^n we denote the *n*-step transition probabilities. f_{ik}^n is, as normally, the probability that coming from *i* one reaches *k* at the *n*'th step for the first time.

An irreducible, aperiodic MC is characterized by the property that for every pair $(i, k) \in E \times E$ there is a $N(i, k) \in \mathbb{N}$ such that $P_{ik}^n > 0$ for all $n \ge N(i, k)$. (Later we shall denote N(i, i) by N(i).) As is well-known, for MCs with this property

$$\lim_{n\to\infty}\sqrt[n]{P_{ik}^n} = \gamma \le 1$$

exists and the limit is independent of *i*, *k*. γ is called the convergence orm, $R = \gamma^{-1}$ is the radius of convergence of the power-series

$$P_{ik}(x) = \sum_{n=0}^{\infty} P_{ik}^n x^n.$$

We now come to the definition of R-recurrence, as given by Vere-Jones [5]. The idea is to characterize those transient, aperiodic, irreducible MCs, which in a sense have similar analytic properties to recurrent MCs. An aperiodic, irreducible MC is called R-recurrent, if

$$P_{ik}(R) = \infty$$

for some pair $(i, k) \in E \times E$ (and then for all $i, k \in E$!). Equivalent is the condition

$$\sum_{k=1}^{\infty} f_{ii}^k R^k = 1$$

for all $i \in E$. If $P_{ik}(R) < \infty$ for all $i, k \in E$ or equivalently

$$\sum_{k=1}^{\infty} f_{ii}^k R^k < 1$$

for all $i \in E$, then the MC is called *R*-transient. Of course 1-recurrence is the same as recurrence. *R*-positive-recurrent chains are those MCs, which are *R*-recurrent and for which

$$\sum_{k=1}^{\infty} k f_{ii}^k R^k < \infty$$

is true for one $i \in E$ (and then for all $i \in E$). For *R*-positive-recurrent MCs

$$\lim_{n\to\infty} R^n P_{ii}^n > 0$$

is true for all $i \in E$, indeed, as in the positive-recurrent case, this property characterizes the *R*-positive-recurrent MCs.

In [2] we proved that a reversible, aperiodic, irreducible MC, for which

$$\lim_{N \to \infty} \limsup_{n \to \infty} \sum_{k=N}^{n} f_{ii}^{k} P_{ii}^{n-k} / P_{ii}^{n} = 0$$
⁽¹⁾

is true for some $i \in E$, is *R*-recurrent. (We gave a stronger condition, but in our proof (1) was the essential condition which we needed.) On the other hand Garsia, Orey and Rodemich [1] proved for a recurrent MC that $P_{ii}^{n+1} \sim P_{ii}^{n}$ if and only if (1) holds. We give a result that generalizes these two statements.

An aperiodic, irreducible MC is said to have the Strong Ratio Limit Property (SRLP) iff there are positive numbers π_i , τ_i ($i \in E$) such that

$$\lim_{n\to\infty} P_{ik}^{m+n}/P_{jl}^n = \gamma^m \frac{\pi_i \tau_k}{\pi_i \tau_l}.$$

Theorem 1. For an aperiodic irreducible MC the following conditions are equivalent:

- (i) (1) holds for all $i \in E$,
- (ii) (1) holds for some $i \in E$,
- (iii) the MC is R-recurrent and has the SRLP.

Proof. The directions (iii) \Rightarrow (i) and (i) \Rightarrow (ii) are easy to be proved. Thus suppose (1) holds for some $i \in E$.

Let

$$M = \limsup_{n \to \infty} P_{ii}^{n+1} / P_{ii}^n$$

and choose a subsequent (n') of natural numbers such that

$$h_j = \lim_{n \to \infty} P_{ii}^{n'+j+1} / P_{ii}^{n'+j}$$

356

exists for all $j \in \mathbb{N}$ and $h_0 = M$. Then one may show from (1)

$$\begin{split} 0 < M < \infty, \\ h_j = \sum_{k=1}^{\infty} \frac{f_{ii}^k h_{j-k}}{h_{j-k} h_{j-k+1} \dots h_{j-1}}, \quad \forall j \in \mathbb{N}. \\ h_j = M \qquad \forall j \in \mathbb{N}. \end{split}$$

This is proved for example in [3], p. 90-91. But this implies

$$1 = \sum_{k=1}^{\infty} f_{ii}^k M^{-k}.$$

Now suppose that the MC is *R*-transient. Then $R < M^{-1}$ and the radius of convergence of the (complex) power-series

$$F_{ii}(z) = \sum_{k=1}^{\infty} f_{ii}^k \, z^k$$

is at least M^{-1} . Since $f_{ii}^k \ge 0$ for all $k \in \mathbb{N}$,

$$|F_{ii}(z)| < 1$$

for all z with $|z| < M^{-1}$.

Now by the renewal equation

$$P_{ii}(z) = (1 - F_{ii}(z))^{-1}$$

for |z| < R. The right side is a holomorphic function on the disk $\{z | |z| < M^{-1}\}$. Thus the radius of convergence of $P_{ii}(z)$ would be $M^{-1} > R$, which is a contradiction.

Thus the MC is *R*-recurrent. It follows $M^{-1} = R$, thus

 $\limsup_{n\to\infty} P_{ii}^{n+1}/P_{ii}^n = \gamma.$

By a theorem of Pruitt this implies the SRLP (see [4]). q.e.d.

Corollary. If for an aperiodic, irreducible MC

$$\sum_{n=N(i)}^{\infty} f_{ii}^n / P_{ii}^n < \infty$$

then the MC is R-recurrent and the SRLP holds. (This generalizes Theorem 3.2 of [2].)

Theorem 2. For an aperiodic, irreducible MC the following conditions are equivalent:

(i)
$$\sum_{n=N(i)}^{\infty} n f_{ii}^n / P_{ii}^n < \infty$$
 for all $i \in E$,
(ii) $\sum_{n=N(i)}^{\infty} n f_{ii}^n / P_{ii}^n < \infty$ for some $i \in E$,

(iii) the chain is R-positive-recurrent.

Proof. (ii) \Rightarrow (iii): From Corollary 2 we have *R*-recurrence and the SRLP, thus

$$\lim_{n\to\infty}P_{ii}^{n-k}/P_{ii}^n=R^k.$$

From $P_{ii}^{n-k} P_{ii}^k \leq P_{ii}^n$ follows for fixed $m \in \mathbb{N}$

$$\sum_{k=N(i)}^{m} k f_{ii}^{k} \frac{P_{ii}^{n-k}}{P_{ii}^{n}} \leq \sum_{k=N(i)}^{m} k f_{ii}^{k} / P_{ii}^{k}.$$

For $n \to \infty$ follows

$$\sum_{k=N(i)}^{m} k f_{ii}^{k} R^{k} \leq \sum_{k=N(i)}^{m} k f_{ii}^{k} / P_{ii}^{k}.$$

Letting $m \to \infty$, we get

$$\sum_{k=N(i)}^{\infty} k f_{ii}^k R^k < \infty \, ,$$

thus R-positive-recurrence.

(iii) \Rightarrow (i): For a *R*-positive-recurrent MC

$$\lim_{k\to\infty}P_{ii}^k R^k > 0$$

and

1

$$\sum_{k=1}^{\infty} k f_{ii}^k R^k < \infty$$

for all $i \in E$. This gives (i). q.e.d.

Corollary. If an aperiodic, irreducible MC satisfies

 $\limsup_{n\to\infty} \sqrt[n]{f_{ii}^n} < \gamma$

for some $i \in E$, then the MC is *R*-positive-recurrent.

This generalises Corollary 3.3 of [2] and was used there to construct examples of *R*-positive-recurrent chains.

References

- Garsia, A., Orey, S., Rodemich, E.: Asymptotic behaviour of successive coefficients of some power series. Illinois. J. Math. 6, 620-629 (1962)
- 2. Kersting, G.: Strong ratio limit property and R-recurrence of reversible Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 343-356 (1974)
- 3. Orey, S.: Limit theorems for Markov chain transition probabilities. London: Van Nostrand Reinhold 1971
- Pruitt, W.: Strong ratio limit property for *R*-recurrent Markov chains. Proc. Amer. Math. Soc. 16, 196-200 (1965)
- 5. Vere-Jones, D.: Geometric ergodicity in denumerable Markov Chains. Quart. J. Math., Oxford II. Series 13, 7-28 (1962)

Received September 24, 1975