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1. Introduction and Results 

Let X1, X 2 . . . .  be a sequence of independent and identically distributed (i.i.d.) 
random variables with EX=O, EX 2= 1, and common distribution function F. 
Write 

(n-1/zin ) F.(t) = P  ~=lXi<t 

and denote by q~ the distribution function of the unit normal law. Let 

~.(t) = [ F.(t) - a,(t) l. 

Various asymptotically correct bounds for sup An(t ) have previously been 
t6N` 

given. It appears that the order of convergence cannot be increased beyond 
0(n  -1/2) by  assuming appropriate moment conditions for X. To be specific, it 
is known that EIX[2+C<oo, 0 < c <  1, implies 

sup An(t) = 0(n- c/2), 
tEN. 

and, for X = ( Y -  E Y) var( Y)- ~/2, where Y is binomially distributed, 

lim sup n 1/2 A,(t) > O. 

Besides this shortcoming of uniform bounds for A, it also appears that these 
bounds give insufficient results for probabilities of certain deviations (see Michel 
[-6] and [7], where convergence rate problems in this direction are solved under 
appropriate moment conditions.). Corresponding nonuniform bounds for A, 
have much wider applicability, such as for obtaining probabilities of moderate 
deviations, for dealing with Lp metrics, or for approximating certain moments 

n 

of n -1/2 2 Xi" 
i = 1  
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A first result in this direction has been obtained by Nagaev ([8], Theorem 2, 
p. 215) who shows that ElX[3<oo implies 

sup(l +ltl3) A,( t)<dn -1/2, n e N .  
t E N  

This has been generalized by Heyde ([3], Theorem 1, p. 903) to 

sup(l+lt[2+C)A,(t)<dn -~/2, neN,  
t E N  

if E[X[2+~<~, 0-<c<1. In Michel ([7], Theorem3, p. 103) it is shown that 
E]X[2 +e < z~, c ~O, gives 

sup(l+[t[2+~)A,(t)<__dn -~min(l'~), n e N .  
t ~ N  

(See also Theorem 13 in Petrov [9], p. 125, for the case c>  1.) 
Concerning sufficient (and necessary) conditions for the existence of non- 

uniform central limit bounds Bikjalis [1] has proved that 

x2 dF(x)=O(z -~) 

is sufficient for 

sup(l +ttl)2+~A,(t)=O(n-C/2), 0 < c < l .  
t ~ N  

(We remark that this can easily be derived from Theorem 2 of Nagaev ([8], p. 215) 
by truncating the random variable X appropriately and using Lemma 1 below.) 

Stimulated by the results by Ibragimov [4], where necessary and sufficient 
conditions for supA,(t)=0(n -~/2) are given in the case 0 < c <  1, we present a 

t E N  

complete solution to the problem of nonuniform central limit bounds. Our 
conditions are an extension of Ibragimov's conditions to the case c>0.  (For a 
slightly more general version of Ibragimov's result see Leslie [5], Theorem 1, 
p. 899.) 

We furthermore give a characterization of Ibragimov's essential condition 
(i.e., Condition(2) below) which yields a proper interpretation of our theorem. 

Theorem. Assume that EX=O, EX2=I .  Let c>O be given. Then there exists a 
positive constant d (depending only on F and c) such that for all n~N,  

sup ( l + [t[2 +C) A,(t) < dn-  ~min~l'c) (1) 
t E N  

if and only if 

S x2dF(x)=O(z-C), z ~ o o ,  (2) 
Ixl>z 

and 

x3 dF(x)=O(1), z ~ ,  (3) 
- g  

holds in addition, if c = 1. 
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2. Discussions 

(i) Using Ibragimov's results we may conclude from our theorem the interesting 
fact that on the assumptions EX=O, EX2=I  for 0_<c_<l, 

supA,(t)=O(n -c/2) iff sup(l+ltl2+C)A,(t)=O(n-C/2). 
t ~ t ~~ 

(ii) The conditions of the theorem are no moment conditions, indeed. Con- 
dition (2) gives evidence about the tails of the distribution / /  defined by 

H(x)=  ~ u 2 dF(u) and allows the following intuitively clear interpretation of 

the theorem: The more is known of the speed of convergence of x 2dF(x) 
- z  

towards EX2= 1 the more can be said about the rate of convergence in the 
Central Limit Theorem. Observe that this assertion needs some clarification. 
The nonuniform bounds being considered in this paper immediately yield cor- 
responding uniform bounds. As preceding remarks show we only have a limited 
possibility to increase the order of convergence with respect to n. In the case 
c > 1 the power of n in (1) remains fixed (being equal to -�89 and the influence of 

knowing how fast ~ x 2 dF(x) converges towards 1 is only apparent in the increase 
- z  

of the power of I t[ (and vice versa). 
A further possibility of how to interprete our result follows from the char- 

acterization of Condition (2) given in Lemma 2 below: Here we prove that 

(2) is equivalent to P([X[> z)=O(z- 2-c), z ~oo. 

From this statement together with the theorem we conclude that the existence 

of nonuniform central limit bounds for n-1/2 ~ Xi heavily depends on the behavior 
of the tails of the distribution of X. i- 1 

(iii) In Lemma 1 we draw some conclusions about absolute moments of 
truncated versions of X, provided (2) is fulfilled. 

Observe that Condition (2) is actually weaker than the assumption E I X I 2 § ~< oo 
in Theorem 3 of Michel [7], p. 103. (It appears that the crucial point in the proof 
of our theorem is sufficiency.): If X=Var(y) - I /2y ,  where the distribution of Y 
admits a Lebesgue-den sity pro portional to (1 + l Y] 3 + ~)- 1, c > 0, then E IX[ 2 + c = o% 
whereas (2) is fulfilled. Recall that (3) holds true for distributions which are 
symmetric about zero. 

(iv) The considerable significance the case c =  1 has in Ibragimov's as well 
as in our result is manifested in the fact that in the expansion of the characteristic 
functions we have to bound [ ~ x3dF(x)l for a suitable truncation point h. 

[x[ <h 
L e m m a l  shows that from ~ xZdF(x)=O(z -1) we can only conclude that 

Ixl>z 
Ixl 3 dF(x)=O(logh) in contrast to the desirable 0(1). This is the reason, too, 

Ixl<=h 
why in the proof of our theorem the cases c = 1 and c 4= 1 need to be discussed 
separately. 
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3. Proof of the Theorem 

(i) Since in the case c=O the assertions immediately result from Chebyshev's 
inequality, we assume c > 0 in the following. Furthermore, throughout the paper, 
d>O denotes a generic constant only depending on the distribution function F 
and the (fixed) c. 

co 

(ii) Necessity. Since Y__> 0 implies E Y =  ~ P ( Y  > t) dr, we have 
0 

co co 

x2 dF(x)  = ~ P( X2  l { ix l>~l>t)d t= ~ P(IXI >max( t  1/2, z))dt .  
Ixl>z o o 

Using (1) for n=  1 we therefore obtain for z>O,  

xZdF(x )  < ~ xZd~b(x )+d~ { l + [ m a x ( ? / Z , z ) ] Z + c } - l  dt  
Ixl>z Ixl>z o 

z 2 co 

<= x2d (x)+dz Cldt+d t- - / dt. 
Ixl>z o Z 2 

Hence, (2) follows. 
Furthermore, (3) follows from Ibragimov I-2], since (1) for c=  1 implies that 

sup A,(t)  = O(n- i/z). 
teN. 

(iii)-(ix). Sufficiency. 

(iii) By Ibragimov's result it suffices to consider the case Itl > 1. Furthermore, 
if the case t > 1 has been discussed, then for t < - 1, A,(t) = IF,( - t + O) - cb( - t)l, 

n 

where F, denotes the distribution function of n-1/2 ~ (-X~). 
i = 1  

Hence, by E X  =0, we may assume in the following w.l.o.g, that t >  1. 

(iv) 1 < t < ((c + 2) log n) i/2. W.l.o.g. we may assume t > r-  l, where 

r =�88 + 2) -1 min(1, c), (4) 

and n > No (n sufficiently large: see (vii).) 

Let 

X = X  lllxl<=h } with h = r n i / 2 t .  (5) 

(This truncation implies in particular that p([ t l) exp [2 h n- 1/2 t] < d exp [t2/4] for a 
polynomial p.) 

Let ff denote the distribution function of X, F, the distribution function of 

/l 1/2 ~ Xi. We remark that I f ( x )  dF(x)= I f ( x )  dF(x )+ f (O)  P(IXI >h) for any 
i = l  Ixl<h 

measurable function f 
Evidently, 

A.(t) = I 1 - F,(t) - ~(  - t)[ <l 1 - ft,(t) - ~ (  - t) l + nP(I X I > h) (6) 
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and 

P ( l X l > h ) < = h  - 2  Y x2dF(x )<=dh  -(2+~). 
I~l>h 

With 

s = n - t / z t  let f i = y e x p [ s x ]  dF(x) .  

Furthermore, set 

G,(x)  = f l -n  ~ exp [t u] dFn(u ) . 
--el3 

Using 
oo 

1 -/~(t)  = fin S exp [ -- t x-] dGn(x) 
t 

and 
oo 

�9 ( - t) = exp [t2/2] S exp [ - t x]  dq~(x - t) 
t 
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(7) 

(8) 

(9) 

we therefore obtain from l a b - c dl < a I b - d[ + c d  l a c -1 - 1[ that 

l1 - F . ( t ) - ~ ( - t ) l  

co ~(x--  t)) +[fln exp [ __<fin ~ exp [ - - t x ]  d(Gn(x ) -  - t2 /2 ]  - 1[ ~ ( - t )  
t 

< f l n e x p [ - t 2 ] s u p l G n ( x ) - ~ b ( x - t ) [ + l f l n e x p [ - t 2 / 2 ] - l l q ~ ( - t ) .  (10) 
x e l R  

(v) With 

c* = �89 min(1, c) (11) 

we have by Lemma 3, 

l f l - l - � 8 9  -ttz]___<[ y e x p [ s x ] d F ( x ) - l - � 8 9  l t 2 1 + p ( l X [ > h )  
]xl<-_h 

< d n  -1-c*  exp[2r  t2]. (12) 

Together with n>  N o this implies by standard arguments, 

[fin exp [ - t 2 / 2 ] -  11 < d n- c* exp [2 r t 2] __< d n- C* exp [t2/4]. (13) 

Using t Z < ( c + 2 ) l o g n ,  (4), and (11) we furthermore obtain from the first 
inequality in (13) that 

fin =< d exp Et2/2] (14) 

(vi) We shall show now that 

sup ] Gn(x) - ~ ( x  - t)] < d n- c* exp [t2/43. (15) 
x c ~ ,  

It seems to be most natural to prove (15) by using the Berry-Ess6en Theorem, but 
it appears that in the case c = 1 neither the Berry-Ess6en Theorem (see part (iv) 
of the discussions) nor Ibragimov's Theorem (here one cannot see how the bound 
for sup An(t ) depends on the bounds which are given in the "moment  conditions") 

t e ~  
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give bounds which are appropriate for proving (15). Hence, for c =  1 we have to 
show (15) directly by applying the usual Berry-Ess6en techniques via characteristic 
functions. Since in the other cases only minor modifications are needed we prefer 
(for unity of presentation) to prove (15) directly for c ~ 1, too. 

With 

G(x) = fl- 1 ~ exp Is u] dF(u) 
- o o  

let 
f (u)  =~ e 'ux dG(x). 

In (vii) we show that for u~IR, 

I f ( u ) -  1 - i u s  + l uZ[ <=Ro(unl/2 ) 

with 

Ro(u)=do ]ul n-l-c*(1 +]uD 2 exp [t2/4]. 

Choose 7~(0, 1) such that for u~IR, 

7(3 do + 2)(1 + ]u[) 2 _<_(1 + u2)/4 

and such that [u I< T, where 

T= 7 nC* exp [ - t2/4"], 

implies 

Iv[ s + �89 vZ + Ro(u) < 1/2, 

where 

V =/,I-- 1/2 IA. 

Then we obtain from (17) and (21) for lul _-< T, 

I f ( v ) -  11 < 1/2. 

Hence, for the same range of u, 

l o g f ( v ) = l o g [ 1 - ( 1 - J ( v ) ) ] =  ~ 1 - - k = l ~ (  1 - - f ( v ) )  k 

which implies by (17) and (23), 

[ l o g f ( v ) - i v s +  lv2l 
oo 

_-< I f (V)-  1 - i v s  +�89 +1  ~ 11 -f(v)[  k 
k-2  

< Ro(u) + l1 - f ( v )  l 2. 

Furthermore,  by (17) and (22), 

[ 1 - f  (v)[ < Ro(u) + lv[ s + �89 v 2. 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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Since I u[ < r implies ] v[ = l ul n -  1/2 __< ~ exp [- - t 2/4] < 1 and 

max(No(u), Iv[ s +1v2) < 1/2 

(see (21)), we therefore obtain for [u[ < T, 

l1 - f  (v)[ 2 <�89 ) + No(u ) +lvl (s +�89 I v I) 2 

=~Ro(u)+lul n-1/N(t+�89 lu]) 2 n -1 

=<2eo(u)+luln  -1 C*(l+]ul) 2t 2 

< Re  0 (u) + 2 l ul n-  1 - c*( 1 + [u I) 2 exp [-t2/4]. (25) 
Let 

Rl(U) = (3 d o + 2) l ul n 1- c*(1 + t ul) 2 exp [-t2/4]. (26) 

Then (24), (25), (18), (26), and (22) give for lul < T, 

1 l o g f  (v) - ivs+ �89  __<Rl(U ) . (27) 

With G, defined in (9) let 

f,(u) = ~ e i"~ dG,(x) 

and set 

h(u) = ~ e iux d~b(x - t) = exp [,i u t - �89 u2]. 

F rom s = n-1/2t and the definitions of G, and G (see (8), (9), and (16)) we obtain 
f . ( u ) = f ( u n  1/2)'=f(v)'. 

Hence, lul < Timplies  by (27), 

lu1-1 If.(u)-h(u)l 

=lu1-1 exp [--  u2/2] l e x p [ n l o g f ( v ) - i u t + � 8 9  2] - 1] 

<lul-  1 exp [ - u2/2] n Rl(U) exp [,nR 1 (u)]. 

Hence by Ess6en's Lemma ([-2], p. 32), (26), (19), and (20), 

sup I a . ( x ) -  ~ ( x  - t) l 
xe~. 

T 

__<d S lu1-1 [f.(u)-h(u)[ du+dT -1 
T 

< d n -  c* exp [,t2/4]. 

This is the assertion of(15). 
(vii) It remains to show (17). 
a) 0 < c + 1. We have 

] f ( u ) - l - i u s + � 8 9  

<~ [e ~ux- 1 - i u x  +�89 2 x21 dG(x)+ [u[ [ s - j  xda(x)r 

+�89 2 [1 - ~  x 2 dG(x)l 

<1 lul3 ff ixl3 dG(x)+ lu[ [s- [. xdG(x)l + �89 211 -~  x 2 dG(x)l. (28) 
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From Lemmas 1 and 3 and the remarks preceding (5) and (6), respectively, 

]~ I xl 3 dG(x) =/3 * ]" Ix[ 3 exp [s x] dF(x) 

__< 2 ~ Ix[ 3 exp Is x] dF(x) 

--2 ~ Ix[aexp[sx]dF(x) 
Ixl<h 

__< 2 exp [h s] S Ix[3dF(x) 
Ixf<=h 

<dh 1- 2r exp [hs]. (29) 

Furthermore, by Lemma 3, 

I s -SxdG(x) l=ls - -H -~ S xexpCsx]dF(x)[ 
lxl<h 

<dh 1-2C*exp [2hs] (30) 
and 

11 - ~  x 2 dG(x)l <=dh -zc* exp [2hs].  (31) 

Hence (28)-(31) imply 

] f (u) - l - ius + �89 u 21 

<dh  -1-2c* lul(1 +2  lul h+u  2 h 2) exp [2hs]. 

This together with (5), (4), and (8) implies (17). (We have used t >  1, r <  1, and 
tl - 2 ~* exp [2 r t 2] < d exp [t 2/4-].) 

b) c = 1. Obviously, 

i u2 x 2 ]~e i " ~dG ( x ) - l - i u~xdG(x )+~  ~ dG(x)[ 

<= ~ ] e i U X - l - i u x + l u 2 x 2 + l i u 3 x 3 ] d G ( x )  
Ixul~l 

+~ ]u13 t  ~ x3dG(x)t+ ~ leiUX-l-iuxJdG(x) 
Ixul_-<l Ixul>l 

+�89 S x2dG(~) 
Ixul>l 

<u2 I x2da(x)+~lul a[ f x3dG(x)l 
Ixu[>* Ixul<l 

+ ~ U ~ ~ x4 da(x). 
[xul-_<l 

From this we obtain (17) in the same way as in the preceding case using 
Lemmas 1 and 3 together with 

x2dG(x)<dlul exp [hs], 
Ixul>l 

[ f xadG(x)l<dexpE2hs-], 
Ixul<=I 

and 

Ixul=<l 
x 4 dG(x) < d exp [h s] 
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(viii) F rom (6), (7), (10), (12), (13), (14), (15), 
obtain for 1 <t_<((c+2)  logn) 1/2, n~lN, 

A,(t) < d n-  c* exp [- - t2/4] < d r -  2 c t'l-- C* 

(ix) ((C + 2) 1ogn) 1/2 < t. Let 

h = r n l / Z t ,  where r = ( c + 2 )  -2min(1 ,c ) .  

and 
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4~( -- t) < d exp ]- - t2/2] we 

(32) 

(33) 

Since h < l  implies t < r  -1 n-1/2<__d, we may assume w.l.o.g, that h >  1. 
Let J ( = X  l{ixl_<h} and denote by ~ the distribution function of, n-l/2 ~ J(i. 

By Markov's  inequality, i= 1 

1 - /~( t )  < fl" exp [ - s n 1/2 t ] ,  (34) 

where 

s = n-  1/2 t -  I(c log n + �89 + 2) 2 log t) (35) 

and 

fl = ~ exp Is x] dff l (x) .  

By Lemma 3, and the remark preceding formula (6), 

fl < 1 --}-is 2 -]- d h -  2(1 +c*) exp [2sh]  + P(IX] > h) 

< 1 + �89 s 2 + d h-  2 (1 + c*) exp [2 s h], (36) 

where c* is given by (11). (Recall that  d > 0  is a generic constant.) Using 
t z =(> c +2) logn we immediately obtain from (33) and (35) that  

s 2 < n -  1 c(log n + (c + 2) log t + d) (37) 

and 
d h-  2 (1 + c*) exp [-2 s hi =< n-  1 d. (38) 

Hence, by (36)-(38), using fl" < exp [n(fl  - 1)], 

fl" < d n c/2 t c (~ + 2)/2 (39) 

Together with (34) and (35), (39) implies 

1 - / ~ ( t )  < d n -  c* t -  (2 + c). (40) 

Since t > ((c + 2) log n) 1/2 implies ~b( - t) < d exp [ - �89  t 2] ~ d n-  c* t (2 + c), we ob- 
tain from (6), (7), (33), and (40) 

A,( t )  < d n - c *  t - ( 2  +~) (41) 

for t > ( ( c + 2 )  logn) 1/2, n~N.  
Sufficiency now follows from (iii), (32), and (41). 

4. L e m m a s  

The following Lemmas 1 and 2 give an idea of how to interpret the essential 
condition ~ x 2 d r ( x )  = 0(z- c), z ~  o% of our theorem. 

lxl>z 
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Lemma 1. Assume that E X  2 = 1 and R(z)= ~ x 2 dF(x )<bz  -~, z>0,  for positive 
constants b and c. Then I xl > 

(i) E I X l ~  1 + b ( ~ - 2 ) ( c + 2 - : 0  -1 , / f  ~ ( 2 ,  2+c)  

(ii) i [xl2+~dF(x)=O(l~ z__+m. 
- z  

(iii) ~ [xl= dF(x)=O(z=- 2-c), z---~oo, /f c~ > 2 + c. 
- z  

Proof The assertions follow from 

z z 

i I xl ~ dF(x) = - ~ x ~-2 dR(x) <=(~- 2) ~ x ~-3 R(x) dx 
- z  0 0 (1 " ) 

R(O)Ix  dx+ fx - R(x)dx 
\ 0 1 

s 

< 1 + b ( e - 2 ) ~  x ~- 3-Cdx. 
1 

Lemma 2. Assume that E X  2 = 1. Let  c>O be given. Then 

x2dF(x)=O(z-9 ,  z ~ o o ,  Of P( lXl>z)=O(z-2-~) ,  z-~oo. 
Ixl>z 

Proof Set S(z)=P(IXI >z) and assume that there exists a positive constant b with 
S(z) < b z- 2- ~, z > O. Then, 

co oo 

x 2 dF(x) = - ~ x 2 dS(x) = z 2 S(z) + 2 ~ x S(x) dx 

<bz-~.+ 2b ~ x - l - ~  d x = b e - l ( c  + 2) z-~. 

Since the other conclusion is obvious, the assertion follows. 

Lemma3.  Assume that EX=O,  E X 2 = I ,  ~ xedF(x)=O(z-C), z ~ ,  for some 
Ixl>z 

c>0,  and that ~ x3dF(x)=O(1), z ~ ,  in addition, if c=1.  Then there exists 
z 

- z  

a constant b > 0  such that for all s>0,  h>  1, and me{0, 1, 2, 3}, 

I xmexp[sx3dV(x)-(6om+a2 +S61m+�89 
txl<=h 

< b h m- 2- mi. (1, c) exp [2 h s], 

where 6ij denotes Kronecker's symbol. 

Proof We shall give a proof for m=O only, as the other cases can be handled by 
using the same arguments. Let 

T(s,h)=] y expUsx] d F ( x ) - l - � 8 9  
I x l < h  
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(i) 0 < c 4: 1. By a T a y l o r  e x p a n s i o n  of u ~ exp [u] a r o u n d  u = 0 we o b t a i n  f rom 
EX = 0 a n d  EX z = 1, 

r(s,h)<P(lX[>h)+s ~ [xldF(x)+�89 2 ~ x2dF(x) 
Ixl>h Ixl>h 

+~s3exp[hs] ~ lxl3dF(x). 
Ixl<h 

T h e  first three  te rms  of the  r.h.s, of  this i nequa l i t y  are b o u n d e d  by  

(h-2+sh-l+�89 z) ~ x2dF(x). 
Ixt>h 

F u r t h e r m o r e ,  by  L e m m a  1, 

Ix[ 3 dF(x)~dh 1-min(1,c). 
Ixl<h 

Hence ,  u s ing  h >  1 a n d  hs>O, 

T(s, h) < dh- 2-  mln(l'c)(1 -t- hs -[-�89 s) 2 -[--~(s h) 3) exp [hs], 

which  impl ies  the  asser t ion .  
(ii) c = 1. By a d d i n g  one  a d d i t i o n a l  t e rm to the  T a y l o r  e x p a n s i o n  of exp [u]  

we o b t a i n  in  the  s a m e  way  

T(s,h)<-(h-2+sh-l+�89 2) ~ x2dF(x) 
[xl>h 

@1S3[ ~ x3dF(x)[+2~s'exp[ hs] ~ x4dF(x), 
Ixl<h [xl<h 

which  aga in  yields the  asse r t ion  of  the  l e m m a ,  as I ~ x3 dF(x)l <d. 
[xl<h 

Acknowledgement. The author is indebted to Professor I.A. Ibragimov for the reference to Bikjalis' 
paper. 
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