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Suppose that observations from populations 7~ 1 . . . .  , n k (k>2) are normally dis- 
tributed with unknown means #1 . . . . .  #k (respectively) and a common known 
variance a 2. Let #~ll<.-.<#~k~ denote the ranked means. Several ranking and 
selection procedures take n independent observations from each population, 
denote the sample mean of the n observations from 7~i by )(i ( i= 1 . . . .  , k), and 
utilize the ranked sample means Xm__< ...--< J(Lkr (See [2] for details.) We assume 
throughout that both the numerical values of #1,---, #k and the pairings of the 
#m . . . .  , #Ekl with the populations nl . . . . .  nk are completely unknown and con- 
sider problems of estimation of#v ~ (1 < iN k) based on the statistics provided by the 
single-stage rule stated above, and utilizing recent work of Weiss and Wolfowitz. 

Generalized maximum likelihood estimators (GMLE's), introduced by Weiss 
and Wolfowitz [6], provide (where available) asymptotically efficient estimators, 
whereas this is not always true for MLE's even if the latter can be found. As 
noted in [1], for the case of estimating #m . . . . .  #~kl, what is meant by "the M L E "  
is not clear. One possibility, the IMLE, is difficult to compute and may or may 
not possess desirable properties. Most classical MLE theory assumes i.i.d, ob- 
servations and is therefore not applicable in our case, since the IMLE is in this 
case the MLE based on non-i.i.d, observations: the ranked data. The theory of 
Weiss and Wolfowitz [6] allows for more general situations, although most of 
their applications are to i.i.d. "non-regular" cases. (Corrections to Weiss and 
Wolfowitz [6] are contained in Weiss and Wolfowitz [7], in Weiss and Wolfowitz 
[9], and below. An additional example is given in Weiss and Wolfowitz [8].) 

We first summarize the results of Weiss and Wolfowitz [6] for the case k-- 2. 

(1) Definition. Let O be a closed region in ~2, O _~ 6) with 6~ a closed region such 
that every finite boundary point of O is an inner point of O. 

(2) Definition. For each n let X(n) denote the (finite) vector of r.v.'s of which the 
estimator is to be a function. 

* This research was supported by ONR contracts N00014-68A-0091 and Nonr 401(53), and by 
NSF grants GP-8958 and GP-7798 
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(3) Definition. Let K.(x[O) be the density, with respect to a a-finite measure 
#., of X(n) at the point x (of the appropriate space) when 0 is the "true" value of the 
unknown parameter. 

(4) Definition. Let r = ( h ,  rz) be fixed and positive. {Z.I(X(n ), r), Z.2(X(n), r)} is 
a sequence of GMLE's if, for each 0 = (01, 02) ~ O, (A') and (B') below are satisfied. 

(5) Condition (A'). There is a sequence of positive constants {kt(n), k2(n)} such 
that kl(n)~ 0% k z ( n  ) ---~ oo,  and a function L(ya, Y210) such that L(" 10) is a con- 
tinuous d.f., and, for any Y=(Ya, Y2) and any integers ha and h2 

n~oo 01 +k~-~, 02 + ~ 

= g(yl, Y2IOI, 02) .  

(6) Condition (B'). For any integers hi, ha there exists a set S.(O, ha, h2)  in the space 
of X(n) such that 

(7) limP~j[X(n)~S.(O, hl,h2)]=l (i , j=0, 1), 

where 
(h  I q-i)rl (h2+j)r2] 

(8) eiJ= 01q kl(n) '024 ~z(n) ]' 

and there exist sequences 

(9) {a.ij(X(n ), O, h 1, h2)} (i , j=0, 1) 

of (two-dimensional) r.v.'s such that, as n~o% a.ij=(a.~jl,a.ij2 ) converges 
stochastically to zero when e~j is the parameter of the density of X(n), and such 
that, whenever X(n)~S.(O, hi, h2),  w e  have the following: Let 

(10) M = m a x  {K.(X(n)[c~ O, ( i , j=0,  1)}, 

(11) m=(ml,m2)=(Olq (ha +�89 02q 
(h2 +�89 r2] 

Then, where " (a<b,  c <  d)" means "(a_<b, c<d)  or (a<b, c<d)," 
, a.ool - , anoo2\ 

(12a) M=K.(X(n)l~oo) ~ Z.a <ml + ~ , Z . E < r n 2 +  k ~ n ~  }, 

. an011  . a n 0 1 2  
(12b) M=K.(X(n)laoO ~ Z n l K m 1 4 - k ~ , Z n z > m 2 ~ - ~ } ,  

. an101 . a n l o 2  
(12c) M=K.(X(n)lCqo) => Z.x>mx+ k ~ , Z . z < m z t  k--~},  

. a n l l l  . a n l 1 2  
(12d) M=K,(X(n)I~11) ~ Z,l>mx+ k~n~,Z.2>m2+ k ~ ] .  

(13) Theorem (Weiss and Wolfowitz). Let {Z,l(X(n),r),Z,z(X(n),r)} be a 
sequence of GMLE's. Let {T,} be any sequence of estimators of O such that, for fixed 
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r = ( q ,  r2)>O and all integers h,, he 

lira Po,,o~ [ -~<k1(n ) (T .1 -01 )  < q2, r22 <kz(n)(T~z-O2)<=f2] 

�9 [ [ r l  ~ h l r l \  < r l  
= h m P + h ~ 0  h ~ [ - ~ - < k l ( n ) ~ T ,  1 -- O1 - - k l ~ )  = 2 '  ~ ,  2 + ~  

for any 0 ~ O. Then 

[ rl r 2 <k2(n)(Zn2_02)<~] lira Po - ~ < k 1 ( n ) ( Z . 1 - 0 1 ) <  rl rE 
2 '  2 

r 2 r 2 -1 
=>lim sup P0 [ - 2  < ka (n)( T,l - O~) <= 2 , - ~  < k2(n)( T~2 - O2) <=~J . 

Note that on page 78 of Weiss and Wolfowitz [6], condition (B') is mis-stated; 
therein, in (3.13) through (3.16) (corresponding to our (12a) through (12d) above) 

{an001, an011, anlol, anl l l ;  an002, anol2, an102, an112} 

should be 

f ano01 anOll anl01 a n l l l ,  ano02 anol2 an102 anll2~ 
k - - ~ '  kl(n ) ' kx(n ) '  kt(n ) '  k2(n)'  k2(n ) '  k2(n)' k2(n)J" 

Examination of the modification of the proof of pages 73-74 of Weiss and Wolfo- 
witz [6] used for the proof of their Theorem 3.2 (Theorem (13) above) shows that 
without this change the quantities a, ijz multiplied by the normalizing factors 
kl(n ) and k2(n ) would occur, and would not necessarily converge stochastically 
to zero (under the appropriate parameters). In their multi-parameter examples 
VI, VII, and VIII Weiss and Wolfowitz [6] seem to satisfy the corrected (B'). 
(In example VIII this is not as clear as in examples VI and VII.) 

We now investigate the application of these results to the estimation of 
/~11, "--,#Lk~- For k = 2  we now choose 

(14) X(/I) = (X[1 ] . . . . .  -~[k]) 

K,(x[0) = K,(x ] #) =~X~)11 ..... xtk, (xl, ..., xk) ~ f~m ..... xt~l (x1 . . . .  ' Xk) 
#, = Lebesgue measure on Nk. 

Define (2o={(#1 .. . .  ,#k): tZie~(i= 1, ..., k)}. We would also like to choose O =  
{#: #Eg2o, #1 = #m ... .  , Pk = Ptkj}, 63--- Nk (which would satisfy (1)), but by Theorem 
(A. 10) (see Appendix) this would not allow satisfaction of condition (A') (essentially 
because /t~O c~ [f2(+)] C would not uniquely specify the limiting distribution). 
Thus, we fix I/* >0  and choose 

(15) 0 ( ~ * ) = { , :  , e O , ~ k - - , k  :_-->~*,#~_x--#k_2>=U *,. . . , ,2-#~_->~*} 
63 = O(t/*/2). 
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(Although our results below would hold if we simply excluded the boundaries 
of our desired O, that set would not be closed.) Since our results lack real dependence 
on tt*, we have essentially only eliminated the boundary (where equalities exist). 

For k> 2, consider the sequence 

(16) {Z, l (X(n) ,  r ) , . . . ,  Z,k(X(n),  r)} = {)~m, "", J(Ekl} 

with r = ( q  . . . .  , rk) fixed and positive. 

(17) Theorem. For k > 2, condition (A') (or, more properly, its generalization to 
k > 2) holds for the sequence (16)for arbitrary r > O, with ki (n)= k2(n)= ]Sn/a. 

Proof. This follows from Theorem (A.8). 

(18) Lemma. Let h I and h 2 be any integers. Choose 

Sn(/~, hi ' h2 ) = ~ k ~  {#[11 -- gn ~ X[ 11 ~/2111 "}- 8n,/2121 - 8n ~ 2[21 ~ #[21 -t- 8n} , 

where e ,=a /n  ~ (O<6<�89 Then (for i , j=O, 1) 

lim P~ij [X(n)eS , (# ,  hi, h2)] = 1. 

Proof  By (8), here ~ij = (#m + (hl + i) q a/l//n, #[21 + (h2 +J) r2 a/1/n), and (setting 
al =(hi + i)r~, a 2 =(h2 +j) r2) 

(19) P~ij[X(n)eS,(#,hi ,h2)]=Pu+ar176 ( i=1,2)]  

=Pu+,~/~ [ - n ~  ~ - a l  < ) ( E i l - # t l l - a i  a / 1 / ~ < n ~ _ O a l ,  
= 

- - # t 2 1  - a 2  a / l / n  < n ~ _  ~ _ a2] ~--a2 -<Xt21 o./V ~ 

However, by Theorem (A.8) the random quantities of (19) approach a joint 
limiting distribution, while the respective upper and lower limits on those quanti- 
ties tend to + oo. (In fact, the result is proven for any fixed a =(a~, a2) and not 
just for ((h 1 + i) q, (h2 +j) ra).) 

As noted in the proof of Lemma (18), for our case we have (for i , j=O, 1) 

(20) o~ij=(~[ll-l-(h I --}-i)r l a/V/n,  [Z[2l q-(h2 +j)rz~y/]//n). 

(21) Lemma. l f  k =  2, then (for i , j=O, 1) 

f f2 r2h2§ 2 , r l lX l -# [ l l  i (hl+�89189 
K.(x lc@ 2 n - -  e ~ - -  ~ - = a  e ~/gn ~/~ 

n 
rej xi tt[2l_j(h2+�89 #[i]_i(hl+�89 

+ b' e ~/r ~/~ 
where 

i / X I  - -  ,/Z[ 1]]  2 I[X2 N[ 2]'~ 2 /. X1 --  N[ I ]  ;.2 h 2  X 2 - -  ]~[21 

a ' = e  -~t  ~/v~--' -~t  ~ l ~ J  e'~"~ ~y-, e ~/v~ 
1 ( X l  /~[2]'12 x Ix2 p, D I ]  2 r2h xl # [ 2 ]  rlhl x 2 - # [ 1 1  

b ' = e - = '  ~ 2-" ' -=t ~-gW-J e ~ ~W-, e T~, -. 



Generalized Maximum Likelihood Estimators for Ranked Means 287 

Proof (Note that a '>O and b ' > 0  involve only G,n, Xl,X2,#[1],/z[_2],rl,r2,h_l, 
and hz, and not i and j.) From (14), (20), and the joint density of XI11 . . . .  , Xfk] 
(see [3]), one finds K,(x]au)2rca2/n and the result follows. 

(22) Lemma. There exist a, ljl and a,q 2 (which may depend on X(n), #, hi, and h2) 
which converge stochastically to zero when ~u is the parameter of the density of 
X(n) ( i . j=0,  1) such that, if X(n)eS.(lz, hi, h2) and M=K,,(X (n)lgi), then 
(i) for i , j=O, 0 

X[1]" #[1] <(hi  +_12) FI 
_}_ ano Ol 

(23) and 

(ii) for i,j=O, 1 

X[2] -/~[21 a/]//~ <(hz +�89 +a"~176 

X[1] --/'t[1] <(hi §189 q G/V/n q- an011 

(24) and 

X[21 - #[2]  > fh + •  G/~/n t 2 2) 2 -Fano12  

(iii) for i,j= 1, 0 

X[l] --/-/[ 1] > (h I +�89 rl . / /a  +a.,ol 

(25) and 

X~2]-/h2] <(h, +�89 G/l/~ _ +a . lo2  

(iv) for i,j= 1, 1 

)~[~]-#m>t h 0 - / ~  ' q  -b �89 rl +a . ,1 ,  

(26) and 

X[2]  - fl[2] . . . .  1, - -  
G ~  >l'n2-ff 2)r2-ff anl l2" 

Proof (i) Case i , j=O, O. For simplicity, write x for X(n), xl for )(~1], x2 for )(E2], ~1 
for #[1], and *~2 for #[21. Since K,(xl%o)>K,(xlr by Lemma (21) 

r~---txl - u l  ' h i  + - .J  �9  r 2~ ~'1 x l  - 1'1 _ (h~ + �89 r 2 
(27) a'+b'>a'e ./g~ +b'e ~/g~ 
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since x, =< x2. Thus 

(28) x I - / z l  < ~ +i) 

1 
We may take a.ool = - .  

t'Z 

Since K.(x I% o) > K.(x[eo 1), 

r 2 X 2 - # 2 _ ( h 2 + � 8 9  r 2 

(29) a'+b'>a'e ~/v~ 

o r  

(30) 

Now, 

(31) 

b ~ r lx2--~2 "h __I, 

l +~>__e ~:w 

b' [e-~(x'-:"){~'-u')-~ -~"('h~-'~h')} if /.'2>.1 
a | ~ ( n  h~-r2h2) 

ke if #2 ~-~#1 . 

Since/22 > ]~1, from (30) and (31) we find that 

(32) x2-]22 1 r2+ r~ ( 1 + ~ )  a/]/~ <(h2+2) In . 

(b) 
The choice a, o o 2 = l l n  1 +-~7 is effective (recall that a.o02 may depend on/~, 

rE 
as well as on X(n), ha, and h2). For, 

(33) P~oo [ [(X[2] - Jft 1 ] ) -  (#t2] - #tl])l < ~] >-- ~ool-IJ~t2]- #t2]l < e/2, IRcu- P[I]I < 42]  �9 

By Theorem (A.8), as n-+ 

(34) P~oo [IJ~m-#t11[ < ~/2 ] 

r~-f ~--<~-t .]-.m-h~ rl ~/1A)<2~--h~ ,'l]----, 1, 

a similar result holding for )(t21" By Lemma (A.1), the r.h.s, of (33) converges to 
1 as n - ,  or, so that the 1.h.s. must also ~ 1  as n ~ o e .  Taking e=g( /q2 ] -#m)  with 
0 < e ' <  1, this means that (as n ~ o o )  

(35) P~oo[( 1 -e ' ) ( / J t2 l -# t l ] )<X[2 l -Xt l t< (  1 +g) (# tz ] -#m)]  ~ 1. 

Using (35), noting that x 2 - x  1 >0, and taking n>(qhl-rzh2)2a 2. 6/ (#2- /q)  2, 
it follows that the exponent a, (say) of b'/a'=e-" in (31) is such that for all x we 
have P~oo [a, < x] ~ 0 as n ~ ~ .  Then it can be shown (successively) that 

(36) P~oo[e-a"<=x]--~ l'x>O" 
(O,x_<O' 

~ l , x > 0  
(37) P~oo[ln(l+e-a")<x] [0, x < 0 .  

From (37) it follows that a, oo2 converges stochastically to zero under coo. 
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(ii), (iii), (iv). By methods similar to those used for the case i , j = 0 , 0  we find 
we may take a.o12 = - l / n ,  

a.o,1 =~7 In {1 e <h~+~-,q]}, 

1 b' - -  
a,~02 = - l n  l + ~ - e  rl ~/v~ , 

r2 

b' 1 b' r ~ - -  
1 In 1 +  In i +  e ~lv~ 

a n  1 0 1  r l  rl ~ -  , 

and 
b# r i  - -  

1 In 1 + e ~/f~ 
a n l l l  = rl ~7- �9 

(38) Theorem. For k>  2, condition (B') (or, more properly, its generalization to 
k > 2) holds for the sequence (16) for arbitrary r > O. 

Proof Condition (B') is given at (6). Its first requirement, (7), is satisfied by (the 
generalization to k > 2  of) Lemma (18). The remainder of its requirements are 
satisfied (for the case k = 2) by Lemma (22). We will now show that these remaining 
requirements are satisfied when k > 2. Let S k be the symmetric group on k elements. 

As at (21) and (20), for ij . . . . .  ik = O, 1 

(39) K.(x  I#)=fk~], ..... x~k](xl . . . . .  xk) 

(40) ai .... iu=(U[ll+(hl +i l)  rl all~n, . . . ,  I~[kl +(hk + ik) rk alf/nO. 

Thus, 

dhf+... ,-~ 
K,,(x 1<,,=.. . , ,<)(1/27o/t/~) '< e 2 -< 

rfhl 2 r~h~ , ~ ( x B ( j ) - # U ] - ( h j + i j ) r j a / I ~ . )  2 
- g  V = ( ~ ) k e ~ + + ~ ( l / i / ~ ) k .  E e ~: '  < , i~  

(41) /~s~ 
,4h? ~ = rkhk ~ S ~txnu) utas~ 2 < (x~o)-uu])'~ 

j ~ l  ] ' - -T t  a n ) + n j r j  ~ ) 
= e  2 ~ ' " ~ -  E e - /v~ /v~ 

fl e Sk 

,~.i (xe(~)-vuO i~(h~+ r 
= 2 a'(fl) e ' ~ = ' t ' '  ~ - 

~e Sk 

where 

(42) 
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While for the case k = 2 there were 2 ! =  2 terms in the final summation, there are 
now k! terms. 

As there were 22--4 parts to Lemma (22), there are 2 k parts here. We will 
give the proof for the part corresponding to (23), since it is indicative. I.e., in the 
case il . . . .  , i k = 0 . . . . .  0, 

X[11 - -  #[11 
<(hi +�89 r l  + a n o  ... o l  

(43) Xt21-gE21<(ha+�89 r2+a,o.. .02 

X[k~ - #LkJ < (G + �89 rk + a .  o 
. o k  

(where a,i .... ~k* . . . . .  a,h...ikk converge stochastically to zero when ~i .... i~ is the 
parameter of the density of X(n) (il, ..., ik=O, 1)) when X(n)~S,(p, hl, ..., hk) 
and M=K, (X(n )  i%...o). The a,i .... i~j ( j = l , . . . , k )  may depend on X(n), /~, 
h i , . . . ,  hk. 

For, e.g., the first comparison of (43), K,(x %0... o)>K,( x el0... 0), so by_(41) 
and the fact that xl < xi (i = 2, ..., k), 

rl (xp(l> /z[1]) 2 (ht + �89 r ff 

2 a'(fi)> ~ a'(fi)e ~1r 
/?eSk /?eSk 

> ~ a'(fi) e 
/?eSk 

rl Xl I/[t] _(hl  + ~ ) r  2 

1 > e ~ / ~  

From here the proof is essentially that which follows (27). 

Rule for Making Comparisons. For each of the k! vectors q, ..., ik, one must 
prove k relations similar to (43), with appropriate modifications of " < "  to " > "  
For these, compare the given % ...~k with the k others which have i[ . . . .  , i~'s 
which differ from the given i~ . . . . .  ik in only one place. (This rule, suggested by 
the k = 2 results, works when k > 2.) 

\ 

To illustrate our method, we will now study, e.g., the second comparison of 
(43). Since K,(x 1%oo... o)> K,(x I aolo...o), 

Xflr ~[2] (h2 + ~) r 2 

a'(fi)>= ~ a'(fl)e "~ < , i~  
/?eSk ,~Sk 

r2 X2 --//[21 (h2+~) r2 

> ~ a'(fl) e ~lv~ 
/? e S k  

/?(2)= 2 

Z a'(fi)- 
3e  S~ /?~ Sk r2 x2 -~[2]  _ (h2 + ~) r~ 

14 /?(2)~2 > e  ~/v~ 

Z 
/?eSk 

/ ? (2 )=2  
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Now the proof proceeds as at (30), and a relation like (31) holds because what is 
left in ~ a'(/~) after ~ a'(fi) is removed, makes the "wrong" associations and 

IleSk flsSk 
3 { 2 ) =  2 

thus tends to zero, while the denominator does not. 

(44) Theorem. For O(rl* ) and any fixed r=(ra,. . . ,  rk)>0, ()(~ll, .-., 32~kj) is a 
sequence of GMLE's for estimation of (Pro .. . .  , #tkl) based on X (n)=(X~l, ..., J(~kl). 
It thus possesses, for all r = (r~ .. . .  , r~)> O, the property of Theorem (13). 

Proof Theorems (17) and (38) establish conditions (A') and (B'), respectively, for 
all r > 0. We therefore have a sequence of GMLE's  possessing the property of 
Theorem (13), or more properly its extension to k > 2, for all r >  0. 

If T and U are estimators of 0, then U is said to be more concentrated (about 0) 
than T if 

(45) Po[-r<U-O<r]<__Po[-r<T-O<=r] 

for all 0e O and all r>0.  (This definition appears for perhaps the first time in 
print in Lawton [5].) If T. and U. estimate 0, then U. is said to be of higher large 
sample concentration (about 0) than T~ if 

(46) ! im Po[-r<=k(n)(U.-O)<r]>lim sup Po[-r<k(n)(T~-O)<r],  

where k(n) is such that k(n)(U.-O) approaches a limiting distribution, for all 
0 cO  and all r>0,  The GMLE (J(m, "", J(~k3) has, using a k-dimensional generali- 
zation of (46), desirable large sample concentration in comparison to the class 
of estimators of Theorem (13). 

We will now show (for k = 2, the k > 2 extension being similar) that, by finding 
one GMLE, we find a class of GMLE's. 

(47) Lemma. Suppose ,lim Po,[Z~< y]=L(y), with L(.) a continuous d f  Then, if 
lira c, = 0, 
n~ct3  

,!ira P0o [ z .  < y + e.] -- c00.  

Proof If all but a finite number of the c, are positive, then L(y) < lira P0 [Z,  < y + c~] 
- - n ~ o o  n 

and (since eventually all c, are less than %, m fixed) 

(48) !iln Po,[Z,, < y + c,] < L(y + cm). 

Taking the limit on m in (48) and using the continuity of L(.) the desired result 
follows. (If all but a finite number of the c, are negative, the proof is similar.) 

If infinitely many c, are positive and infinitely many c, are negative, suppose 
c~<0, cs>0. Then 

(49) L(y+c~)<l imP o _  ~ ,[Z,<Y+C,]-<-L(y+cs) 

since eventually cr<c,<c~. Taking limits in (49) over {r: c~<0} and {s: cs>0 } 
on the 1.h.s. and r.h.s. (respectively) the desired result follows. Note that this is a 
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special case of, with an even simpler proof than, Cram&'s Theorem (see, e.g., 
Fisz [4], p. 236). 

(50) Theorem. I f  {Znx(X(n), r), Znz(X(n), r)} is a sequence of GMLE's  then so is 

(51) {Z,l  +oa(1/kl(n)) ,Z .2  +oz(1/kz(n))}, 

where oi(1/ki(n)) (i = 1, 2) is a quantity such that 

lim ~ lim ki(n ) oi(1/k~(n)) = O. 
, ~  1/ki(n ) ,~oo 

An easy generalization of Theorem (50) is that if {Z,I(X(n), r), Znz(X(n), r)} 
is a sequence of GMLE's  then so is {Z,1 + T/a, Z,2 + T,'2} where (T'a, T'2) is such 
that, uniformly in 0, 

(52) ]irnoP0[Ikl(n ) T/,'11<6, [kz(n ) T;2 [ <63 = 1 

for any given 6 > 0. In Weiss and Wolfowitz [7] condition (52) has been weakened. 
These results will now be used to compare the MLE (derived in [3]) and the 
G M L E  with regard to asymptotic efficiency when k = 2. 

(53) Lemma. For any a>0 ,  P~[.,x~[2]--X[1]>ao'/]/~ ] is minimized (over #~O(rl* ) 
i.e. over # such that #t2]=#tll + rl for some q>-q*>0) at #t2]=#m+r/*.  Also 

1 a s  n- oo. 

Proof From the joint density of Xm, "", flea] (see [3]), we find that 

2 a l / n  "./va" + e - ~ 7 ~ .  ' }dy 

1 o~ 1 oo 
~ y 2  -- *" 1. 1,2 * 

- -m- ~ e - ~  a y + =  | e - : "  ay 
V z n  ~ - ,  ]/2 rt . ~%.  

vY~/v~ v~a/v~ 

/ ) 1 _ s  

- 1 / ~  _ e ay. 

V'z a/V~ / 

By the formula for differentiation with respect to a parameter or by the Chain 
O" 2 O" 2 

 ule, sin= t 
a ~ + r /  2 a ~ a  --~/ 1 . [  lZE ~2 1 d 1 . . . .  

dtl P ~ [ X [ 2 ] - X m > a a / l f n ] = ~ L e  ~ " "  vz ' /~-e=tC'z~/~) >0. 
V'2x 

Hence P~EXt2l-J(m>aa/] /~ ] is an increasing function of ~/__>r/*>0, and is 
therefore minimized when r/= r/* > 0  (i.e. when #[21 = #m + t/*). That this minimal 
probability --+ 1 as n ~ oo follows from (54). 
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(55) Lemma. o.2 o =<2, where e o is the positive solution of 

d 2 n/~r 2 = e coth (e/2). 

Proof. F rom the fact that coth (x) > 1 for x > 0, 

~ -  e o = ]e o -  e o (eo/2)[ e o (coth(%/2) coth 1). 

Using an expression for coth (%/2), this becomes 

d 2 n e =  {e~~ -~~ 1 ) = e  ~ 2e-~~ 2 ~oeO <2 ,  
~ - - -  o e~ ke~~ -~~ e~~ -~~ e - 1 -  

X 2 
since (for x > 0 )  x/(e x -  1)< 1, or x < e  ~ -  1, because x +  1 <eX= 1 + x + ~ . + . . . .  

In the notation at (52), we wish to show that the MLE, which is (say) 
- -  r - -  ! 

{X m + T . 1  , Xt2I+Ts is such that (52) holds, with k~(n)=k2(n)=l/~/a. By 
Theorem (37) of [3], the MLE has 

(56) Ir . 'd  = I~m - J?uxl 

- - J ( [ l ]  
Xtu + xl21 if 0 =< X[2l -- X[ 1 ] ~ ]//2 o-/]//n 

X[U + X[~I X[21- X[U X[x t if - - l ~ / ] / n  
2 2 coth (eo/2) X[21 - XOI > 

1 ~ 1 ~  Xtll if 0 -< _~t21 - J(m _-< 1/~ a/] /~ 

~---1X[2] 2X[l, 1 co th ;o /2  ) if X-[21- ) (m>l/~o-/V'n 

and_ 17.'1I = Ikltz I - Jf~2j[ turns out to be the same. Thus, using the definition d =  
Xt2 ~ - X  m and the fact that eocoth(eo/2)=d2n/~r 2, for any 6 > 0  

Po []kl(n)Z.'l[ < 6, [k2(n) Y2zl<6]=Pu[[72l[<6~/l/n] 

= Pu [J{[Zl- )flU < 2 ~ a/I/n, 0 _--< RLzl - J(m =< ],/2./1~] 

+ P~ [X-Izl~ x-[ul cothleo/2)< ~o-/]~, J(,21-J([,l >]/2~ 

2 , - X m  1 <6"/1~, - Xm>l/2a/]/~] 
(57) >P~ 2 coth(eo/2) XLzl- 

~P~ ~X-[212X[1] 1 - d ~ n .  G00"2 ~6 ~]//H' X[2]-- X[ 1 ] ~* ]//2 ~ 

= e~ [xY[2] 2 ~=[1] [d2 d_~ l~o ~ < ~ 0./]//~, J~[21- X[I] > ]//~ ~ 

> ~ - ~  ~--~o, xc~l-x.l 
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(58) Theorem. For the MLE when k=2,  uniformly in #,for any given 6>0,  

lim P, Elk 1 (n) r,'ll < ~, Ik2(n ) r,'2l < 6J = 1. 
n~ao 

Proof By Lemma (55) and equation (57), 

(59) P,[fk~(n)T2~[<6, [kz(n)T'2l<63 

>_ pu [j~[21 - - _  Xm > W 7  ~ 2' 1 o ~ t i l _ X m > l / ~ o / l / n  ] 
.LO ] / n  

= Pu [)FE21 - )~[u > max (lf2, ~) o'/]fn] �9 

By Lemma (53), the last member of (59) can be bounded below for #e O(tl*), in 
such a way that the bound +1 as n ~ oo. 

By Theorem (58) it follows, as noted above (52), that the MLE and the GMLE 
have (for k=  2) the same asymptotic efficiency, and that the MLE is a GMLE. 
This proves asymptotic efficiency properties for the MLE which do not follow 
directly from the standard theory, which assumes i.i.d, observations. 

Acknowledgments. Thanks  are especially due to Professor Lionel Weiss for his suggestions for 
and guidance of [1], which contains these results. 

Appendix A. Limit Distribution of  X[1], . . - ,  X[k] 

The limiting distribution of )~m, "", X-[k~ (under certain parameter configurations) 
is of interest to us. Let {A,, n>  1'} and {Bn, n.> 1} be sequences of events on some 
probability space (which may depend on n). Let a = ( a  1, ..., ak)eN k be fixed, and 
denote the vector (#, + al a/l/~, ... , #k + ak a/1/~ ) by # + aa/1/n. 

(A.1) Lemma. I f  ! imP,(B,)=l ,  then (if  either of the following limits exists) 

lira P,(A,B,) = lira P,(A,). 
n~oo n~oo 

(1.2) Definition. For #et2o, let p(_n]#)=Pu[J(o)<--.<3Z(k)]; where t2(+)= 
{#: &u 4= Pt214='" 4= &kl}, if # ~ t2(4=), X(0 denotes the sample mean produced by 
the population associated with #m (i = 1,.. . ,  k), and if there is at least one break 
in the string of inequalities #m4=...4=#[kp then the situation is that we have 
l(1 < l<  k) groups of equal parameters 

# I l l  . . . . .  #[i~] ~ #[i~ + I) . . . . .  #[i2] 4= "'" =1= #[iz - ~ + 1) . . . . .  #[k] 

with il, ..., i l_ 1 integers 

(0=-io< l__<i 1 < i  2<. . .< iz_  1-<k-  1 < i l - k  ), 

and we let 

X ( i  d + 1) ~ X ( i j  + 2) ~ " " ~ X ( i  ] +, - 1) ~ X ( i j  +1) 

be the ranked values of the sample means from the population(s) associated with 
parameter ~t[ii+, l ( ] = 0  . . . .  , l -  1). 
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(A.3) Lemma.  Let O = {#: #el20,  #1 =#t l l ,  ' .- ,  #k=#tk]}" For all #~f2(ae)c~ O, 

lira p(n[# + aa/1/n)= lira Pu +a,/g~[X-(1, < "'" < X(k�91 = 1. 

Proof 1. Suppose that #~f2(+)c~  O. Then for all n large enough ,  

# + a a / 1 / ~ (  + )c~ O. 

Then the X-(j) are independent  and X-o) is the sample mean of n i.i.d. 

N(#[j I + aj a / I f  n, a 2) r .v .S .  

The characteristic function of a N(m, O "2) r .v.  is ~0(t)=exp {itm--l tZa2},  so that 
l im ~ox(j,(t)=e ituE~ and X-(j) converges in probabil i ty to #~1 (J= 1, . . . ,  k). Thus, 

since the X(j) are independent,  it is clear that  the probabil i ty that {)~(i) converges 
to #Is7 (J= 1, . . . ,  k)} approaches 1 as n --+ oo. However,  by L emma  (A.1) 

(A.4) lira Pu+,~/v~[X-(1)< ... <)~(k)] 

= Jim P~ +ar , < - - - <  X-(k), [)(( 1 ) -  #[11[ < e, . . . ,  I)((k ) -- #[kll < ~] 

for any e > 0. If we choose 2e__< a <min<k(#[jl--#m), then the r.h.s, of (A.4) equals 1 

since P[Jf(j) converges to #[j? ( j=  1 . . . .  , k)l approaches 1 as n-~ oo. 

2. Suppose that # e [ f 2 ( 4 = ) ] c ~ o .  (Eventually # + a a / l / ~ O ~ f 2 ( a e ) ,  or 
O c~ [f2(+)]q)  Then  there are l distinct values in {#m + al ~r/l/-ff,", #[kl + ak a/l/n} 
(1 <l<-k -  1) and (see (A.2)) 

P. . . ~ /~  [ x . ~  < . - .  < x j  

However,  the result will not follow as before since rain (#, ., - #m)= 0 here. It 
l<i<j<=k tJl 

can be seen (e.g., consider the case k = 2) that  the limit -/. 1 as n ~ c~. (In fact, it 
depends on a.) 

(A.5) Lemma.  For #~O(~f2(+), as n--*oo 

F~X(u + aa/I/~) g~ ~ ..... x ~ t * ~  . . . .  , x k ) -  P.+ o~/v~ EX~0 < x~ (i = 1 . . . . .  k)] -~0.  

Proof 

lira Fx~+"~/~) (Xl, Xk) 
n - - *  c t )  [ 1 ] ,  . . . .  [ k ]  " ' " ' 

= l im  {p(nl# + aa/]/rn) 

�9 P~+aa/1/-ff[X[1] ~ X l , . . . ,  X[k ] N X k l X ( 1 ) < " "  <~3(.(k)] 

+(1 - p(nl# + a(r/l/~)) 

�9 e . + o ~ [ % . , _ < x l  . . . .  . X-~k,_--<~klnot (X-(t, < "  < %(k,)~} 
= Jim ~+.o~E%.~1 . . . . .  X-~k,<~k; X-~I~<'" < G > ~  

= l i m r  +o~/~ [ ~ . ~  < ~ , . . ,  X-~k~ _-< ~k; X-~I, < - ' - <  X-~j 

= Jim a + o o , ~ E G ,  = ~ . .  x-(k, S ~k]. 
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Here the second equality follows from Lemma (A.3), while the last equality follows 
from Lemmas (A.3) and (A.1). 

(A.6) Lemma. As n ~ oo, if p + aa / t /nE  O c~ f2( ~a ) then 

P, +,a /~ [X(1) < X l , ' " ,  X(k) <---- Xk] ~ Pu [Xc1) <= Xl . . . .  , X(k) <= Xk]" 

Proof  As n ~ oo, 

e, + o a//~ [J(1) < xl ,  . . . ,  o~)  < x J  

= P,+ oa,  E & , -  . . ,  ___< x k -  ak,/ l 
= PuEJ~(1) < x~ - a l  a / l /~  . . . .  , X(k) <=xk--aka/lfn] 

--" ~ IX(1 ~ <= x l , . . . ,  x(k~ <-_ x~]. 

The second equality follows because, when # + a a / t f n e O n f 2 ( + ) ,  X(i) is 
N(# m + ai al l /n ,  a2/n) iff X(/)-  ai cr/1/~ is N(#m, ~2/n) (i = 1, . . . ,  k). 

(A.7) Definition. Let ~(z l , . . . ,  z) denote the d.f. of the 1,. . . ,  s order statistics in 
a sample of size s from a N(0, 1) population. 

(A.8) Theorem. As n ~ o o ,  if  # e O c ~ 2 ( + )  then 

k 

F(t~+aa]l/n) .... ~(~[k]_#[k]_aka/g~ (Xl '  " ' ' '  Xk)--+ ~I  I~)(Xi) " 
~(ZtH-/~Dl--a l  a/V'if), i=1 

(A.9) Corollary. As n ~ o o ,  if #~0~(2 (4=)  then 

k 

i=1 

(A.IO) Theorem. I f # c O n [ Q ( 4 = ) ]  ~ then 

depends on a. 

Proof  (A hint of this dependence was given in part 2 of the proof of Lemma (A.3).) 
Suppose k = 2, a = (a 1 , a2) with a 1 < a 2, and let Y~, Yi denote i.i.d. N(0, 1) r.v.'s. 
Then #[1)=#[2~ and 

F~+ ~a/r ~ (x1, X2 ) 
~ -  ( ~ [  1 ] - - / t [  1 ] - -  a l  ~ / ] / n ) ,  ~ - -  (~'[  21 - -  g [  2 ] - -  a2  a / I / n )  

= P.+ ~162 [ ~ -  (min (X1, Xz) - # [ 1 ] -  a l  ~  XI~ 

(max (X, ,  X2)-  # [ u -  a2 ~r/1/n) < x2] 
A 

= P l-rain(Y1, I12 +(a2 - a 0 ) <  x,, max (Yl - (a2 - a 0 ,  Y2) <Xz] �9 

For a 2 - a 1 = 0, this is cI)(x> x2). However, for a 2 >> a 1 it is approximately ~(xl) ~(x2), 
and therefore depends on a. 
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