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Uniform Dimension Results 
for Processes with Independent Increments 

John  H a w k e s  and  Wi l l i a m  E. Pru i t t*  

Let X,(to) be a process in R a with stationary independent increments and let X(E, 09) denote the 
image under Xt(to) of a time set E. It is shown that dim X(E, og)<fl dimE, with probability one, 
simultaneously for all time sets E where fl is the upper index of the process. This result combines with 
previous work to show that for a strictly stable process of index �9 with ct<d, dim X(E, co)=~ dim E, 
while for a subordinator Tt (to), a dim E < dim T(E, to) < fl dim E where tr is the lower subordinator 
index. Both these results hold simultaneously for all time sets E with probability one; they were known 
previously for fixed time sets. An example is given which shows that the subordinator result cannot be 
improved. It is shown~, however, that dim T(E, to)=o dim E for a restricted class of regular time sets. 
As an application, the dimension of the collision set of a subordinator and a stable process of index 
�9 >1 in R l is found to be a(1-1/~). 

1. Introduction 

Let  X t (09) be a process  in IR a with s t a t ionary  independen t  increments  and  let 
X(E,  co) deno te  the image  of  a t ime set E under  Xt(co). Let  fl be the  u p p e r i n d e x  of  
the  process  and  when Xt(co ) is a s u b o r d i n a t o r  let  a be its lower ( subord ina tor )  
index. These indices were i n t roduced  by  Blumentha l  and  G e t o o r  [2] ;  we will 
define them in the  next  section. In [2],  B lumentha l  and  G e t o o r  es tabl i shed  some 
inequal i t ies  re la t ing the Hausdo r f f  d imens ions  of  X(E,  co) and  E. Thei r  upper  
b o u n d  s ta ted tha t  if f l < l ,  then for all Borel  E c [ 0 ,  1], 

P {dim X(E,  co) < fl d im E} = 1. (1.1) 

The  res t r ic t ion f l < l  was la ter  r emoved  by MiUar [15]. 

In  m a n y  app l i ca t ions  we have a t ime set E (co), depend ing  on co, and  wish to 
know the d imens ion  of  X(E(co), co). The above  result  gives no in format ion  in this 
case. In  T h e o r e m  3.1 we will p rove  a un i form vers ion of  (1.1) which can be used in 
this s i tua t ion :  

P {dim X(E,  co) < fl d im E for all  E} = 1. (1.2) 

The  key to the  p r o o f  is a Cover ing  Pr inc ip le  ( L e m m a  3.1) which has  been s ta ted 
separa te ly  because  of  its wide appl icabi l i ty .  

Un i fo rm lower  b o u n d s  of  this type  have been ob t a ined  previous ly  for special  
classes of  processes.  In [8], H a w k e s  showed tha t  if X r is a str ict ly s table  process  of  
index a with a < d ,  then 

P { d i m X ( E ,  co)>~ d i m E  for all E } =  1. (1.3) 

Since fl = ~ for a s table  process  of  index a, this result  combines  with (1.2) to give 
equa l i ty  in (1.3). This  es tabl ishes  a conjec ture  of  Hawkes  [8]  and  gives a general i-  
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zation (for a <  d) of the result of Blumenthal and Getoor [1] that for all Borel 
E c  [0, 1], 

P {dim X(E, o9) = rain (a dim E, d)} = 1. (1.4) 

A simple example shows that there is no uniform generalization of (1.4) when ~ > d. 
However, we do obtain a (smaller) uniform lower bound for dim X (E, o9) in this 
case in Theorem 4.2. 

Uniform lower bounds for a general subordinator T, have also been obtained 
by Hawkes [10]. These combine with our upper bounds to give 

P{a d i m E < d i m  T(E, co)<fl dimE for all E} = 1. (1.5) 

This result had also been obtained previously for fixed time sets by Blumenthal 
and Getoor [2]. We will give an example to show that (1.5) cannot be improved 
in general even for a fixed time set. Specifically, we will construct a subordinator 
T t with a < fl such that for every 0~ (a, fl) there is a set E with dim X(E, o9)= 0 dim E 
a. s. The result (1.5) can be improved, however, if the class of time sets is somewhat 
restricted. We will define a class of regular time sets N, and prove that 

P {dim T(E, o9) = a dimE for all E~N,} = 1. 

As an application of this result, we show that the dimension of the collision set 
of an arbitrary subordinator of lower index a and an independent stable process 
of index ~>1 in IR 1 is a ( 1 -  l/a). 

A natural question that arises is whether general uniform lower bounds can 
be obtained, perhaps in terms of one of the lower indices fl' or fl" introduced by 
Blumenthal and Getoor [2]. The example already mentioned for stable processes 
shows that there can be no bound without some assumption. Blumenthal and 
Getoor [2] show that for a fixed Borel E c [0, 1], if fl' =< d, then 

P {dimX (E, o)) > fl' dim E} --- 1. (1.6) 

We will give an example to show that there is no uniform generalization of this 
result. It would be interesting to know if there is a smaller uniform bound, perhaps 
fl" dim E, under the assumption that fl < d. 

Some definitions and notation are given in Section 2. The uniform upper 
bound (1.2) is obtained in Section 3. Stable processes are discussed in Section 4, 
subordinators in Section 5, and the examples are in Section 6. 

2. Preliminaries 

The d-dimensional characteristic function of X t has the form exp [ - t  ~(z)] 
where 

i (x, z) 

with a s ~  d, S a non-negative definite symmetric d by d matrix, and v a Borel 
measure on ~a  satisfying 

I~v(dx)<~. 
l + l x l  
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The function ~ is called the exponent of the process and v is called the LOvy measure. 
We will assume that X 0 = 0  although this is clearly not important to the con- 
clusions. It is a standard fact that we may assume that the sample functions are 
right continuous and have left limits and that the process X t enjoys the strong 
Markov property. 

The upper index ~ is defined by 

/~=inf{~>_0: Iz[ -~ [~(z)l ~ 0  as [z] ~ ~ } .  (2.2) 

This index is always in the interval [0, 2]. By Theorem 3.2 of [2], this definition 
agrees with that of Blumenthal and Getoor  when S = 0 and a is chosen appro- 
priately. By using the definition (2.2) we can include processes with a Gaussian 
component and/or a linear drift. However, for these processes which were excluded 
in [2] the index/~ does not have all the properties discussed there; for example, 
it cannot be determined from the L6vy measure alone. 

A subordinator T t is a non-decreasing process with stationary independent 
increments in IRa This corresponds to the assumption that v is supported on [0, oe) 

i 

and ~ x v(dx)< oo, that S=0 ,  and that a is chosen so that O(z)=~ (1-ei~Z)v(dx). 
0 

For  subordinators it is useful to introduce the Laplace transform 

where 
E {exp ( - u T~)} = exp [ - t g (u)] 

co 

g(u) = S (1 - e -"~) v(dx). (2.3) 
0 

Then g is called the subordinator exponent of T t. The lower subordinator index ~ is 
defined by 

a = sup {~: u -"  g (u) ~ ~ as u ~ oe }. (2.4) 

By Theorem 6.1 of [2], in the case of a subordinator we have 

/ /= in f{~>0:  u-~g(u)~O as u ~ o e } ,  (2.5) 

and so 0 < a < / / <  1. 

The process X t is called strictly stable if 0 < e < 1 or 1 < e < 2 and 

O(z)=2lzl" ~ I(z/lz], 0)[" [1 - i  sgn (z, 0)tan rc7/2] re(dO), 
Sa 

or, if c~= 1, 
~9 (z)= i(a, z )+2 lz  I S I(z/]z[, 0)l re(dO), 

S a 

where aeiR a, 2>0 ,  and m is a probability measure on S a, the unit sphere in IR a. 
We assume that m is not supported on a subspace of lower dimension so that X, 
is truly d-dimensional. There are also strictly stable processes of index ~=2 ;  
these are characterized by a = 0, v = 0, and arbitrary S in (2.1). (S should be positive 
definite so that X~ will be d-dimensional.) The upper index/~ is equal to c~ for a 
stable process of index ~. There are strictly stable subordinators of index 0 < e < 1. 
These are characterized by the subordinator exponent g (u)= 2u" for 2 > 0. It is 
clear that a = ~ for these processes. 
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Now we recall, briefly, the definition of Hausdorff dimension. For any subset 
B of Ra and each pair 7, fi >0  we define 

#~ (B) = inf ~ [d (S,)] ~, 
i 

where the infimum is taken over all covers of B by a collection of sets {S~} of 
diameters d(Si)< ft. Now let #r (B)= ]im#] (B). For any set B there exists a number b 

called the dimension of B defined by 

b=sup{7>0 :  # r ( B ) = ~ } = i n f { v > 0 :  #r(B)=0}. 

We conclude the preliminaries by stating as a lemma a result of Kingman [14]. 

Lemma 2.1. Let {c.} be a sequence of real numbers with c , 7  oo, c,+ I - c ,  ~0 .  
Let G be an open subset ofF,  ~ unbounded above and I any open interval in IR ~. 7hen 
there is an x e I  such that x +c ,~G for infinitely many integers n. 

3. Uniform Upper Bound 

In this section we obtain uniform upper bounds for the dimension of X(E, co), 
where X~ is an arbitrary process with stationary independent increments. The 
following lemma plays a key role in our considerations. 

First define 
M~(og)= sup [Xs(og)[. 

O<_s<_t 

Lemma 3.1 (Covering Principle). Let { t.} be a sequence of positive real numbers 
with ~ tP finite for some p>O, and let ~. be a class of N. intervals of length t. with 

II 

logN.=O(1)llogt.I .  I f  {0.} is a sequence of positive real numbers such that for 
some c~ > 0 we have 

P {Mr. > 0,} = O(1) t, ~ (3.1) 

then there exists a positive integer k such that, with probability one, for sufficiently 
large n, X (I, co) can be covered by k spheres of radius O, whenever I is in cg.. 

Proof Choose any l~Cg. and suppose that 1= [a, a +  t.]. We define a sequence 
{z j} of stopping times by z o - a and 

zj=inf{s>=zj_a: IXs-X.j_,l>O.}, j>-l .  

By the strong Markov and independent increment properties we see that {z j -  z j_ 1 } 
is a sequence of independent identically distributed random variables. The event 

{X(I, o9) cannot be covered by k spheres of radius 0,} c {z k -  z o ~ t,}, 

and so, by the above remark, has probability less than or equal to (P {zl - "Co < t,}) k. 
Condition (3.1) tells us that this is O(1) ~ .  Thus the event that there exists some I 
in ~r such that X(/) cannot be covered by k spheres of radius 0, has probability 
O(1)N,t~ ~. If k is large enough this is summable so that the lemma follows from 
the Borel Cantelli lemma. 

Before we apply the covering principle we shall need the following estimate 
for the tail of the distribution of M~. 
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Lemma 3.2. I f  fl is the upper index for Xt,  ~ > fl, 0 < r 1 < 1 - fl/~, and c is a posi- 
tive constant, then there is a constant A such that 

P {Mt> ctl/~} <=At ~ 
for all t. 

Remark. This estimate is a consequence of Theorem 2.2 of [15] in the case 
where the LSvy measure decays rapidly enough at infinity. 

Proof. Since the upper indices corresponding to the coordinate processes are 
no larger than/~, a trivial argument shows that it suffices to prove the lemma for 
one dimensional processes. Blumenthal and Getoor  [2, p. 497] prove that if fl < 2 
and ~/is in the prescribed range, there is a constant B such that 

P {lXtl>=cd/~1 <_Bt". (3.2) 

Their proof is also valid for fl --- 2 since one may take fl = a = 2 in their Lemma 3.2 
due to the exponential tail of the normal density. The proof on p. 497 then applies 
directly; indeed it is even possible to take r/---1- 2/~ for ~ > 2 in this case. If # (t) 
denotes a median of Xt, then by (3.2) we have p (t)= o (1)t 1/~ as t ~ 0. Thus we can 
discretize time and use L6vy's inequality to complete the proof. 

Theorem 3.1. Let X t be any process with stationary independent increments and 
upper index ft. 7hen 

P {d imX(E,  ~o)< fl d imE for all E} = 1. 

Proof. By a standard limiting argument, it suffices to consider E c [0, s]. We 
take ~ > fl and apply the Covering Principle (Lemma 3.1) with 0, = 2-"/~, t, = s 2-",  
and 

~, = { [ ( ] -  1)s2-" , j s2-"] :  j =  1, 2,. . . ,  2"}. 

By Lemma 3.2 the hypotheses are satisfied. Thus for sufficiently large n, X(I )  can 
be covered by k spheres of radius 2 -"/~ for every IeC~n. 

Now suppose d i m E = ? .  Choose 5>0,  6 > 0  and cover E by intervals F i of 
length di less than e and so that 

~d~+~<~. 
i 

We then choose n i so that 
S S 

2 "'+I <di< 2" "  

whence F~ is contained in two intervals of cg,,. Thus, if g is small enough, X(F~) 
can be covered by 2 k spheres of radius 2-  "'/= < (2 s-  1 df/=. This gives a cover of 
X(E) with a small ~ (? + 6) sum. Thus we have 

dim X (E) < ~ (3, + 6). 

Letting 6 -o0  and ~- , f l  through a countable sequence of values gives the final 
result. 

4. Stable Processes 

In this section we obtain complete results concerning the upper and lower 
uniform bounds of dirnX(E,  co) when Xt is any strictly stable process. 
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First we observe that Theorem 3.1 combines with Theorem 1 of [8] to give 

Theorem 4.1. Let X t be any strictly stable process of index a, a <_ d, in IRa. Then 

P {dimX(E, co)= a dimE for all E} = 1. 

Proof It is just necessary to remark that the restriction, made in [8], that E 
be a bounded Borel set can be dropped without changing the validity of the proof. 
Also the strictly stable processes of index 1 with a drift can be included with no 
change. 

This result is a generalization of (1.4) for processes that are not point recurrent. 
The generalization breaks down for processes that are point recurrent, as the 
following example shows. Suppose that a > 1 and that Z (co) is the zero set of X t (co), 
a stable process of index a in IR a. Then it is known [3] that dim Z (co)-- 1 - 1/a almost 
surely, but X[Z(co), co] = {0} so that d imX [Z(co), co] = 0 + a ( 1  - l/a). In the fol- 
lowing theorem we show that this situation is the worst possible in the sense 
that if d i m E >  1 - 1 / a  then dimX(E) is positive, and we have a uniform lower 
estimate for its dimension. 

Theorem 4.2. Let X t be a strictly stable process of index a, a> 1, in IR 1 with zero 
set Z. Then 

P {a[dimE - d i m Z ]  < dimX(E) < min(a dimE, 1)for all E e d }  = 1, 

where d denotes the class of analytic sets in IR1. 

Remark. The proof depends heavily on the results of [7], whose notations we 
adopt without further reference. 

Proof Since P {dim Z(co)= 1 -  l/a} = l, it is sufficient to establish the theorem 
in the case where dim E > 1 - 1/a. Now let T t (co') be a stable subordinator of index 
fl, f l= l/a, defined on (~2', ~-', P') and taking values in the time set of Xt(co ). Then 
fl + d i m E >  1 and E is non-polar for Tt(co'). Let R (co') be the range of Tt(co') and 
S (co') the set of occupation times of E so that, by Theorem 2 (see also the first 
paragraph on p. 94) of [7], 

( f l+dimE-1)/ f l=sup{O: P'[dimS(co')>O]>O}. (4.1) 

Let Zt(co, co') =XT~o,,)(co) so that Z t is a strictly stable process of index aft, a f t=  1, 
defined on ((2 x ~2', ~ x ~ ' ,  P x P'). Now let 

~ =  {(co, co'): dimZ(E, co, co')_>_dimE for all E}, 

and ~(co)= {co': (co, co')~0}. By Theorem 4.1 and Fubini's theorem we see that 
if ~* -- {co: P' [t) (co)] -- 1} we have P(t2*)--- 1. We have 

X (E, co) = X [E c~ g (co'), co] -- X { T IS (co'), co'], co} = Z [S (co'), co, co']. 

Thus ifcoe~* dimX(E,  co)>= sup dimS(co'), 

which, by (4.1), is at least (fl + dim E-1)~ft. Therefore 

P {dim X(E) > a [dim E -  (1 - l/a)] for all E ~ ~r = 1. 

The upper inequality follows from Theorem 3.1 and the theorem is proved. 
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The above theorem is presumably true without the assumption that E is 
analytic, but this was needed in [7] in order to establish (4.1). 

5. Subordinators 

In this section we obtain best possible uniform dimension results for sub- 
ordinators, and examine possible extensions. 

Theorem 5.1. Let T t be a subordinator with upper and lower indices fl and a 
respectively. 7~en 

P {a dim E < dim T(E) < fi dim E for all E} = 1. (5.1) 

Proof Theorem 3.1 of [10] gives the lower bound whilst Theorem 3.1 of this 
paper gives the upper bound. 

We thus have a uniform version of the result, obtained by Blumenthal and 
Getoor, [2], that 

P { a d i m E < = d i m T ( E ) < f i d i m E } = l  for every E. (5.2) 

During the course of their work they asked whether one could obtain a result like 

P{dimT(E)=dimT([O,  1]) dimE} = 1 for every E. (5.3) 

It is known, [13], that dim T([0, 1])= a and so the question arises as to whether 
the lower inequality in (5.1) is in fact equality. We show in Section 6 that this is 
not the case and that the bounds in (5.2) are best possible, so the Blumenthal and 
Getoor question is answered in the negative. (Hendricks [12] has shown that (5.3) 
is not true for general processes with stationary independent increments.) If, 
however, we restrict our attention to sets that are in some way regular we can 
obtain a class of sets for which the Blumenthal and Getoor question has a positive 
answer. 

Let A be a bounded subset of the real line and let n be a positive integer. We 
define 

N~ (A) = 41: {i: [i 2-", (i + 1) 2-") c~ A 4= ~b, i an integer} 

and, following [9], we call A a @ set if 

log z N, (A) . dim A 
n 

as n ~ oo. If A is an increasing union of bounded sets Ai, each of which has 

lim sup l~ N"(Ai) <d im A 

we call A a @, set. In [9] and [1 1] we investigated such sets. For N, sets the Blumen- 
thal and Getoor question is answered positively. 

Theorem 5.2. Let T, be a subordinator with lower index a. Then 

P{dim T(E)= a dim E for all E s N , }  = 1. 
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Proof Suppose e > 0, a = a + e, 0 < 6 < e/~, and a' = ~ ( 1 -  6), so that a < ~' < a. 
Let g be the subordinator exponent of T t and 

G~= {Z: g(211~)<2~'1~}, 

so that G. is an unbounded open set. Kingman's result (Lemma 2.1) shows that 
there exists cp, 21/~1+ ~)< r < 2, and an increasing sequence {rn (n)} of integers such 
that ~pm(")~G, for each n (to see this let f ( x ) = e x p e x p  x, G=f - I (G , )  and apply 
Kingman's result with c. = log n). 

Now P[Tt>a]~2tg(1/a) ,  [5, p. 169], so that 

p [ T2 _.,,.) > q~- m (,)/,] < 2" 2-  m (.) g (q~m (,)/~) < 2" 2 -  " (") r (") ~'/~ < 2" 2-- m (,)~. 

Let t. = 2 -m("), 0. = q~-m(,)/~ and 

c~. = {[j t . , ( ]+  1) t.): j = 0 ,  1, . . . ,  m(n) 2"~")}. 

The Covering Principle shows that with probability one, for sufficiently large n, 
T(I) can be covered by k intervals of length 2 0., where I is any interval in cg,. 

Now let A be a bounded set with 

lim sup l~ N, (A) < ~- 
n ~  c~ n 

Then for sufficiently large n, A =  U {I: leCg,} and A can be covered by 2 "(")r 
intervals in ft.. Thus T(A) can be covered by O(1)2 "(")~ intervals of length 2 0,, 
if n is large enough. Letting q = 2 0, we see that 

#~(x+ ~) IT(A)] = O(1) 2 m(")~ [2 0.]~(1+~)= O(1). 
Thus 

dim T(A) < a ? (1 + e). 

Letting e tend to zero through a countable sequence, ? decrease to dim E, and A 
increase to E we obtain 

P{dim T(E)~a dim E for all E e l , }  =1.  

The opposite inequality follows from Theorem 5.1 and the theorem is proved. 

In I'8] we showed how uniform dimension results can be applied to obtain 
other dimension results. Here we content ourselves with showing how the above 
result can be used to obtain the dimension of the collision set of a subordinator 
and an arbitrary stable process. 

Let T t be a subordinator with lower index tr and X t a strictly stable process of 
index ~, a > l ,  in ~1 defined on the same space as T t, independent of T t, and taking 
values in the same space as T t. Then 

E(o~)= (t: ~(co)= x,(co)} 
and 

C(~o)= {x: x =  Tt(co)=Xt(co) for some t} 

are respectively called the collision times and collision set of X t and T t. We have 
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Theorem 5.3. Let T t and X t be as above. Then if C(co) is the collision set of T t 
and X t we have 

P {dim C(co)= o-(1 - l/e)} = 1. 

Proof. Let Z t (co) be the infinitely divisible process ~ -  X t. Then Z t has exponent 
(z) + ]z[~ (q + i c 2 sgn z) where ~ (z) is the exponent of T t and q ,  c 2 are constants, 

q > 0 .  Now E(co)={t: Z t ( o ) = 0  }. The results of Blumenthal and Getoor  [4] 
apply to show that E(co) is stochastically equivalent to the range of a (perhaps 
exponentially killed) subordinator S t, whose subordinator exponent, g (2), satisfies 

1 dz 

g(,~)+ ~ - S ,~ + @(z) + [zl~(q + i c~ sgn z) '  

where y is the killing parameter. It follows that this subordinator has a (S)=/3 (S)= 
1 - 1/e. Theorem 4.4 of [11] shows that the range of S (and hence E (co)) is a ~ ,  set 
of dimension 1-1 /e .  Since C(co)= T[E(co), co] we see, from Theorem 5.2, that 

P{dim C(co) = a(1 - l/e)} = 1, 

and the theorem is proved. 

6. Examples 

Example 1. The first example is to show that the bounds (5.2) obtained by 
Blumenthal and Getoor  cannot, in general, be improved even in the context of a 
fixed time set. Thus we shall construct a sUbordinator with a < fl such that for any 
0e(a,  fl), there is a set E of positive dimension with dim T(E)= 0 dim E a.s. 

Hendricks [12] has constructed an example which shows that the analogue of 
(5.3) is not true for general processes with stationary independent increments. 
The main purpose of our example is to show that (5.3) is not true even for sub- 
ordinators. Another interesting feature is that in Hendrick's example dim X(E) 
is determined by d imE even though it is not of the form dim X [0,1] - dim E, 
while in our example dim T(E) depends on other characteristics of the set E. Thus 
we can find two time sets E 1 and E 2 of the same dimension but with dim T(E1)4: 
dim T(E2). 

Let the L6vy measure v be atomic with atoms p. = 2 2" at x. = P2 2, n = 1, 2 . . . . .  
First we need bounds for the subordinator exponent (2.3). For  any n, 

n - - 1  

p~(1-e  . . . .  )<g(u)< ~, pk+U ~ Pk Xk" 
k = l  k ~ n  

This leads to the bounds 

q(Pn_I+UXn_I)<g(u)<CE(Pn_I+UX._I),  p .<u<p~+ 1. (6.1) 

Thus for u in this range, 

g(u)<=c2(Pn_l W U�89 U �89 x,,_1)<2 c 2 U �89 

while g(p~)>=q p,,_1= q p~. Therefore the upper index fl=�89 by (2.5). Similarly, if 
p ,<u<p] ,  g ( u ) > q p ] > q u  ~, and if p~<u<Pn+l,  g (u)>clu~uCx._ l>=qu r 
while g(p~)< 2 c2(p~) ~. Thus the lower subordinator index a=�89 by (2.4). 
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Now we need some information about the growth of the subordinator. Uniform 
lower functions for subordinators were obtained by Fristedt and Pruitt in [6]. 
Let q denote the inverse function of the subordinator exponent g. Then by Lemma 5 
of [6], we have with probability one for t sufficiently small 

log t -  1 
T(s+ t ) -  T(s)> q(3 t -1 log t -1) for all sE[0, 1]. 

Let ~ ( 3 , 2 ) .  If p~<u<p,+l, then g(u)>cix._lU>ClU (~-l)/~ and if p,+l < 
u < p~/~- a), g (u) > c i p, > c 1 u (~- 1)/~. Thus 

g(u)>c 1 u (~-l)/~ for p~<u<p~/(~-l). 

Converting this to a bound for ~/gives 

t l (X)<(x]  ~/(~-l) for qp:- l<x<_clp , .  
\ e l  / 

Therefore, we have if 7 > 1 and n is sufficiently large, 

T(s + t ) -  T(s) > t ~/~- 1) (6.2) 

for c p ~ - i < t - l l o g t - l < c p ,  and all s~[0,1].  

Next we construct the time set. Let 0~(cr,/~)= (�89 �89 We will actually construct 
a family of time sets E depending on a parameter r such that 0 < dim E < 1 and 
dim T(E)= 0 dim E. It will be clear that the parameter ~ will allow us to have two 
time sets of the same dimension corresponding to different values of 0. First let 
~ = ( 1 - 0 )  -1 and let r  Note that ~e(3,2). Define s,=xr and t .=  

�9 -1 n > 3. Observe that t, < s, < t._ 1. The set E is to be a Cantor type set con- X n - 1 ,  __ 

structed in the following way. Let E 2 = [0,  1]. Then E, is to be a finite union of 
closed intervals of length t, formed by placing as many of these intervals as possible 
in each interval of length t,_ 1 of E,_ 1 while keeping the intervals of E. separated 
by intervals of length s, which are not in E.. Also E, is to be a subset of E,_ 1. Then 
E = ("] E.. IfN, is the number of intervals of length t n in E,, then it is straightforward 

n 

to see that for any e > 0, if n is sufficiently large, 

pnr ~-~+1+~ <N,<p, . (6.3) 

Standard arguments now show that 

~ - ~ + 1  
dim E = ~ -  1 (6.4) 

(Or this can be obtained from Ohtsuka's theorem [16] together with the fact that 
the capacitary dimension equals the Hausdorff dimension.) 

Finally we will show that dim T(E)=O dim E a.s. For  the lower bound, we 
give an argument which applies to all paths which satisfy (6.2) for a sequence of 
7's approaching one. For given 6 > 0, ~ > 0, p > dim T(E), and ~ > 1, cover T(E) by a 
sequence of intervals {S,} with the length of S, being d i and d, < e~r/('- 1) V d p < 6. Let 

i 
ai=inf{t :  Tt~Si}, bi=sup{t :  T~sSi}. 
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We want to obtain a good covering for E. For each i, choose n (depending on i) 
such that t . + l < b i - a i < t . .  Now if bi -a i<s .+ 1, the interval (ai, b~) can meet at 
most one interval of E.+~. Thus we can replace it with an interval of length t.+ 1 
with no loss so far as covering E is concerned. In this way we can assume that for 
each i there is an n with s.+~<b~-a~<t..  Then we can find e~>0 with s .+ t<  
b i - a i - e i < t . .  Since T(bi-e i )~S i and T(ai)~Si, we have T(bi -e l ) -T(a i )<di .  
Also, for n sufficiently large, 

t~  t~  1 l~ 1 < 1 l~ 1 <cP"  
cp~ -1 <: log <= b i_a i_e i  b i - a i - e i  = s.+x Sn+x 

so that by (6.2), if e is small enough, 

di > T(bi _ ei ) _ T(al ) > (b i _ ei _ ai)~/(,- 1). 

Letting e~ ~ 0, we have 

b,--a ,<dl ' - l ) /~<e,  E(b , -a , ) ' ro / ( ' - ' )<Ed~<6.  
i i 

Since the intervals [a~,bi] cover E, dim E < ~ T p / ( ~ - i  ). Letting p"~dim T(E) 
and 7"~ 1 gives the lower bound for dim T(E) since ( a -1 ) / a=0 .  

For the upper bound we use the Covering Principle to get a cover for T(E). 
Let ye(3/2(a-1),  ~/(c~-1)). By Lemma 1 of [5] and (6.1), 

P [ T t >  tr,] <2  t, g(t~ -~) <2  C 2 tn(Pn_ 1 -}- tn7 xn_l). 

The second term :is dominant due to the lower bound for y. Thus 

p[Tt > tr] < c t l -  ~+l/("-1) 

and the exponent is positive. Since ~ t, converges and log N, = O(log t~- ~) by (6.3), 
the Covering Principle applies with cg, being the intervals in E,. Thus for n large 
enough, T(1) can be covered by k intervals of length 2 t, ~ for every I in E,. Thus if 
q=2t~. 

#~ IT(E)] =< k N,(2 t~) ~ 

and this tends to zero if p > ( r  + e)/(a-1)7 so that 

dim T(E) <_ 
(~-1)7 

Letting ~',~ 0, 7/" ~/(~-1), and recalling (6.4) completes the proof. 
The next two examples concern the possible candidates for uniform lower 

bounds for general processes. 

Example 2. This shows that /3'dim E is not a uniform lower bound when 
/ /< d. Let X~ = (U,  Vt), where U, V~ are independent symmetric stable processes 
in IR ~ of indices ~1 and ~2 with 0<~2 < I  <~1<2. Then the indices for X t are 
fl=cq, /3 '=1+~2(1-1/cq) , /3"=c~2; they satisfy /3"</~'</?<2. Now let E =  
{t: U~=0}. Then X(E)= {0} x V(E) and by Theorem 4.1, 

dim X(E) = dim V(E) = o~ 2 dim E a.s., 

while dim E = 1 -1/71 > 0 as observed above. Since ~2 : f l " <  fl', this completes the 
example. 
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Example 3. This example shows that there can be no uniform version of Blumen- 
thai and Getoor's lower bound (1.6) under the assumption fl'< d. In fact, for this 
example, there is no uniform lower bound for dim X(E, ~) of the form c dim E 
with c > 0. In [10], a parameter b is defined with the property that for processes 
X t in IR 1 with zero set Z = { t :  Xt=0} ,  d i m Z = l - 1 / b  a.s. An example is given 
there of a process X t in IR 1 with 0 < fl" < fl' < 1 < b < fl < 2 so that for this process, 
for any c > 0, 

dim X [ Z  (o9), co] = 0 < c ( 1 - 1 / b ) = c  dim Z(to), a.s., 

and the example is complete. 

The question remains as to whether fl" dim E is a uniform lower bound for 
dim X(E) when f l< d. 
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