Stability for Sums of i.i.d. Random Variables when Extreme Terms are Excluded

Toshio Mori

Department of Mathematics, Yokohama City University, Mutsuura-cho, Kanazawa-ku, Yokohama 236 Japan

Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. random variables and let $X_{n}^{(r)}=X_{j}$ if $\left|X_{j}\right|$ is the r-th maximum of $\left|X_{1}\right|, \ldots,\left|X_{n}\right|$. Let $S_{n}=X_{1}+\cdots+X_{n}$ and ${ }^{(r)} S_{n}=S_{n}-\left(X_{n}^{(1)}+\cdots\right.$ $+X_{n}^{(r)}$). Suppose a sequence $\left\{a_{n}\right\}$ of normalizing constants satisfies (i) $a_{n} / n^{1 / \alpha}$ is nondecreasing for some $\alpha, 0<\alpha<2$, and (ii) $\sup \left(a_{2 n} / a_{n}\right)<\infty$. An integral criterion for the stability of ${ }^{(r)} S_{n} / a_{n}$ is obtained. This extends a previous result [4] on the stability of ${ }^{(r)} S_{n} / n$.

1. Introduction and Results

Let $\left\{X_{n}\right\}_{n \geqq 1}$ be a sequence of i.i.d. random variables with common d.f. F and put $\mathscr{F}(x)=P\left\{\left|X_{1}\right|>x\right\}$. For $r \geqq 1$ and $n \geqq r$ let $X_{n}^{(r)}=X_{j}$ if $\left|X_{j}\right|$ is the r-th maximum of $\left|X_{1}\right|, \ldots,\left|X_{n}\right|$. More precisely let $M_{n}(j), n \geqq 1,1 \leqq j \leqq n$, be the number of X_{i} 's satisfying either $\left|X_{i}\right|>\left|X_{j}\right|, 1 \leqq i \leqq n$, or $\left|X_{i}\right|=\left|X_{j}\right|, 1 \leqq i \leqq j$, and let $X_{n}^{(r)}=X_{j}$ if $M_{n}(j)=r$. Let $S_{n}=\sum_{i=1}^{n} X_{i},{ }^{(0)} S_{n}=S_{n}$ and ${ }^{(r)} S_{n}=S_{n}-\sum_{k=1}^{r} X_{n}^{(k)}$ for $r \geqq 1$, $n \geqq r$.

In [4] an integral criterion for the stability of ${ }^{(r)} \mathrm{S}_{n} / n$ was obtained. In this paper we consider the stability of ${ }^{(r)} S_{n} / a_{n}$. Throughout this paper we suppose the sequence $\left\{a_{n}\right\}$ of normalizing constants $a_{n}>0$ satisfies the following two conditions:
(A1) $\left\{a_{n} / n^{1 / \alpha}\right\}$ is nondecreasing for some $\alpha, 0<\alpha<2$,
(A2) $\sup _{n \geqq 1}\left(a_{2 n} / a_{n}\right)<\infty$.
If $\left\{a_{n}\right\}$ satisfies (A1) and (A2) then we can define an absolutely continuous increasing function A on $[0, \infty)$ with $A(0)=0, A(n)=a_{n}$ for $n=1,2, \ldots$ and satisfying
(A1) $A(x) / x^{1 / \alpha}$ is nondecreasing,
(A2') $\sup _{x>0}(A(2 x) / A(x))<\infty$.

Since $A(\infty)=\infty$ the inverse function B of A is absolutely continuous increasing on $[0, \infty)$ with $B(0)=0$ and $B(\infty)=\infty$. Let us denote by $J_{r}, r>0$, the integral $\int_{0}^{\infty} \mathscr{F}^{r}(x) d B^{r}(x)$, where $\mathscr{F}^{r}(x)=\{\mathscr{F}(x)\}^{r}$ etc. If $0<r<s$ then

$$
J_{s}=\frac{s}{r} \int_{0}^{\infty}(\mathscr{F}(x) B(x))^{s-r} \mathscr{F}^{r}(x) d B^{r}(x)
$$

and therefore $J_{r}<\infty$ implies $J_{s}<\infty$ (see Lemma 3 below).
The purpose of this paper is to prove the following two theorems which extend a result of [4]. Theorem 1 should be compared with a classical result due to Feller ([1] or [6] p. 132). When $r=0$ Theorem 2 reduces to Marcinkiewicz strong law of large numbers ([6] p. 126).

Theorem 1. Suppose $r \geqq 0$ is a fixed integer and $\left\{a_{n}\right\}$ is a sequence satisfying (A1) and (A2). If $J_{r+1}<\infty$ then

$$
\begin{equation*}
\lim X_{n}^{(r+1)} / a_{n}=0 \quad \text { a.s. } \tag{1}
\end{equation*}
$$

and there exists a sequence $\left\{c_{n}\right\}$ of constants satisfying

$$
\begin{equation*}
\lim \left({ }^{(r)} S_{n} / a_{n}-c_{n}\right)=0 \quad \text { a.s. } \tag{2}
\end{equation*}
$$

In this case c_{n} may be chosen according to the formula

$$
\begin{equation*}
c_{n}=\frac{n}{a_{n}|x| \leqq \tau a_{n}} \int x d F(x) \tag{3}
\end{equation*}
$$

where $\tau>0$ is an arbitrary constant. If $J_{r+1}=\infty$ then

$$
\begin{equation*}
\lim \sup \left|X_{n}^{(r+1)}\right| / a_{n}=\infty \quad \text { a.s. } \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup \left|{ }^{(r)} S_{n}\right| a_{n}-c_{n} \mid=\infty \quad \text { a.s. } \tag{5}
\end{equation*}
$$

for every sequence $\left\{c_{n}\right\}$.
Theorem 2. (i) If

$$
\begin{equation*}
\int_{0}^{\infty} x^{\alpha(r+1)-1} \mathscr{F}^{\boldsymbol{r}+1}(x) d x<\infty \tag{6}
\end{equation*}
$$

for some $\alpha, 0<\alpha<1$, and $r \geqq 0$ then

$$
{ }^{(r)} S_{n} / n^{1 / \alpha} \rightarrow 0 \quad \text { a.s. }
$$

(ii) If (6) holds with $\alpha=1$ and $r \geqq 0$ then for every $\tau>0$

$$
{ }^{(r)} S_{n} / n-\int_{|x| \leqq n \tau} x d F(x) \rightarrow 0 \quad \text { a.s. }
$$

(iii) If (6) holds for some $\alpha, 1<\alpha<2$, and $r \geqq 0$ then $E\left|X_{1}\right|<\infty$ and

$$
\left({ }^{(r)} S_{n}-n E X_{1}\right) / n^{1 / \alpha} \rightarrow 0 \quad \text { a.s. }
$$

(iv) Conversely if ${ }^{(r)} S_{n} / n^{1 / \alpha}-c_{n} \rightarrow 0$ a.s. for some $\alpha, 0<\alpha<2$, and for some $\left\{c_{n}\right\}$ then (6) holds.

2. Proofs

Lemma 1. If $0<b_{n} \uparrow \infty$ then

$$
\left.P\left\{\mid X_{n}^{(r+1}\right) \mid>b_{n} \text { i.o. }\right\}=0 \text { or } 1
$$

according as $\sum_{n=1}^{\infty} n^{r} \mathscr{F}^{r+1}\left(b_{n}\right)$ converges or diverges.
Proof. This is Lemma 3 of [4].
Lemma 2. For every $\varepsilon>0$

$$
\left.P\left\{\mid X_{n}^{(r+1}\right) \mid>\varepsilon a_{n} \text { i.o. }\right\}=0 \text { or } 1
$$

according as $J_{r+1}<\infty$ or $J_{r+1}=\infty$.
Proof. It is easy to see that

$$
\sum_{n=1}^{\infty} n^{r} \mathscr{\mathscr { F }}^{r+1}\left(\varepsilon a_{n}\right)<\infty
$$

iff

$$
\begin{equation*}
\int_{0}^{\infty} x^{r} \mathscr{\mathscr { F }}^{r+1}(\varepsilon A(x)) d x<\infty \tag{7}
\end{equation*}
$$

By (A 1') we have $A\left(\varepsilon^{\alpha} x\right) \leqq \varepsilon A(x) \leqq A(x)$ if $0<\varepsilon<1$ and $A(x) \leqq \varepsilon A(x) \leqq A\left(\varepsilon^{x} x\right)$ if $\varepsilon>1$. Therefore for every $\varepsilon>0$ (7) holds iff

$$
\int_{0}^{\infty} x^{r} \mathscr{F}^{r+1}(A(x)) d x=(r+1)^{-1} J_{r+1}<\infty .
$$

Hence the lemma follows from Lemma 1.
Lemma 3. If $J_{r+1}<\infty$ for some $r \geqq 0$ then

$$
\lim _{x \rightarrow \infty} \mathscr{\mathscr { F }}(x) B(x)=0
$$

Proof. Write $\mathscr{F}^{r+1}(x) B^{r+1}(x)$ as

$$
\int_{0}^{x}(\mathscr{F}(x) / \mathscr{F}(y))^{r+1} \mathscr{F}^{r+1}(y) d B^{r+1}(y)
$$

and apply the dominated convergence theorem.

Lemma 4. If $J_{r+1}<\infty$ for some $r \geqq 0$ then

$$
\int_{|x| \leq y} x^{2} d F(x)=o\left(y^{2} / B(y)\right) \quad \text { as } y \rightarrow \infty
$$

Proof. Integrating by parts we have

$$
\int_{|x| \leqq y} x^{2} d F(x)=-y^{2} \mathscr{F}(y)+2 \int_{0}^{y} x \mathscr{F}(x) d x, \quad y>0 .
$$

It is immediate from Lemma 3 that $y^{2} \mathscr{F}(y)=o\left(y^{2} / B(y)\right)$. It follows from (A $\left.1^{\prime}\right)$ that $x / B^{1 / \alpha}(x) \leqq y / B^{1 / \alpha}(y)$ for $x \leqq y$ and therefore

$$
\begin{aligned}
y^{-2} B(y) \int_{0}^{y} x \mathscr{F}(x) d x & \leqq y^{-2} \int_{0}^{y}(y / x)^{\alpha} x B(x) \mathscr{F}(x) d x \\
& =y^{-2+\alpha} \int_{0}^{y} x^{1-\alpha} B(x) \mathscr{F}(x) d x
\end{aligned}
$$

Applying Lemma 3 again we obtain $\int_{0}^{y} x \mathscr{F}(x) d x=o\left(y^{2} / B(y)\right)$.
In the next three lemmas we impose the following condition:
(F) \mathscr{F} is positive and differentiable on $(0, \infty)$.

Let us define ψ by $\psi(x)=(B(x) / \mathscr{F}(x))^{1 / 2}, x \geqq 0$. Under the assumption (F$) \psi$ is absolutely continuous strictly increasing with $\psi(0)=0$ and $\psi(\infty)=\infty$. Hence the inverse function φ of ψ is also absolutely continuous increasing with $\varphi(0)=0$ and $\varphi(\infty)=\infty$. By Lemma $3 J_{r+1}<\infty$ implies $\lim _{x \rightarrow \infty} \psi(x) / B(x)=\infty$ and therefore $\lim _{x \rightarrow \infty} x / B(\varphi(x))=\infty$. Since (A1') implies

$$
A(y) / \varphi(y)=A(y) / A(B(\varphi(y))) \geqq(y / B(\varphi(y)))^{1 / \alpha}
$$

for large y we have $\lim _{y \rightarrow \infty} A(y) / \varphi(y)=\infty$ if $J_{r+1}<\infty$.
Lemma 5. If $J_{r+1}<\infty$ for some $r \geqq 0$ and if $k \geqq 2 r+2$ then

$$
\int_{0}^{\infty} x^{k-1} \mathscr{F}^{k}(\varphi(x)) d x=\int_{0}^{\infty} x^{-k-1} B^{k}(\varphi(x)) d x=(2 / k) J_{k / 2}<\infty .
$$

Proof. The first equality is obvious from $B(\varphi(x))=x^{2} \mathscr{F}(\varphi(x))$. The second equality is shown by a routine calculation using Lemma 3.

Let $I_{m}, m \geqq 0$, denote the set $\left\{2^{m}, 2^{m}+1, \ldots, 2^{m+1}-1\right\}$ and let $\theta_{n}=\varphi\left(2^{m}\right)$ if $n \in I_{m}$. Define $X_{n}^{\prime}=X_{n} \cdot I\left(\left|X_{n}\right|<\theta_{n}\right)$. The following lemma plays the central role in this paper. The proof is obtained by modifying the method used in Nagaev [5].
Lemma 6. Assume (F). If $J_{r+1}<\infty$ for some $r \geqq 0$ then there exists a sequence $\left\{c_{n}\right\}$ of constants satisfying

$$
X_{k}^{\prime} / a_{n}-c_{n} \rightarrow 0 \quad \text { a.s. }
$$

Proof. Let $\left\{X_{n}^{\prime \prime}\right\}$ be a sequence of independent random variables independent of $\left\{X_{n}^{\prime}\right\}$ and having the same distribution as $\left\{X_{n}^{\prime}\right\}$. Then $\left\{Y_{n}\right\}, Y_{n}=X_{n}^{\prime}-X_{n}^{\prime \prime}$, is a sequence of independent symmetrically distributed random variables with $\left|Y_{n}\right| \leqq 2 \theta_{n}$, and every $Y_{n}, n \in I_{m}$, has the same d.f. F_{m}.

For a proof of the lemma it suffices to show that

$$
\sum_{k=1}^{n} Y_{k} / a_{n} \rightarrow 0 \quad \text { a.s. }
$$

(see [3] p. 247 or [6] p. 1617). It is known ([6] p. 158) that under the assumptions (A1) and (A2) this is equivalent to

$$
\begin{equation*}
\sum_{m=1}^{\infty} P\left\{\sum_{n \in I_{m}} Y_{n}>\varepsilon A\left(2^{m}\right)\right\}<\infty \tag{8}
\end{equation*}
$$

for every $\varepsilon>0$.
Let G_{m} and Q_{m} denote the d.f. and the m.g.f. of $\sum_{n \in I_{m}} Y_{n}$ resp. Denoting by f_{m} the m.g.f. of $Y_{n}, n \in I_{m}$, we have $Q_{m}(h)=\left\{f_{m}(h)\right\}^{2^{m}}$. It is shown that

$$
\frac{d}{d h} \log Q_{m}(h)=2^{m} \frac{d}{d h} \log f_{m}(h)
$$

is an increasing function of h and vanishes at $h=0$ (see [5]). For an arbitrarily fixed $\varepsilon>0$ let h_{m} be the (minimum) solution of the equation

$$
\frac{d}{d h} \log Q_{m}(h)=\varepsilon A\left(2^{m}\right) / 2
$$

If this equation does not have solution then define $h_{m}=1 / \gamma_{m}$ where $\gamma_{m}=\varphi\left(2^{m}\right)$. By this definition we have

$$
\log Q_{m}\left(h_{m}\right)=\int_{0}^{h_{m}} \frac{d}{d h} \log Q_{m}(h) d h \leqq \varepsilon h_{m} A\left(2^{m}\right) / 2
$$

Defining a d.f. \bar{G}_{m} by

$$
\bar{G}_{m}(x)=\int_{y \leqq x} e^{h_{m} y} d G_{m}(y) / Q_{m}\left(h_{m}\right)
$$

we find that

$$
\begin{align*}
1-G_{m}\left(\varepsilon A\left(2^{m}\right)\right) & =Q_{m}\left(h_{m}\right) \int_{x>\varepsilon A\left(2^{m}\right)} e^{-h_{m} x} d \bar{G}_{m}(x) \\
& =Q_{m}\left(h_{m}\right) \exp \left[-h_{m} \varepsilon A\left(2^{m}\right)\right] \\
& \leqq \exp \left[-h_{m} \varepsilon A\left(2^{m}\right) / 2\right] \tag{9}
\end{align*}
$$

Suppose $h_{m}<1 / \gamma_{m}$. Since $f_{m}(h) \geqq 1$ and $\left|Y_{n}\right| \leqq 2 \gamma_{m}$ for $n \in I_{m}$, by using an inequality $e^{x}-e^{-x} \leqq 2 x e^{x}$ we have

$$
\begin{aligned}
A\left(2^{m}\right) \varepsilon / 2 & \leqq 2^{m} f_{m}^{\prime}\left(h_{m}\right) / f\left(h_{m}\right) \leqq 2^{m} \int_{-\infty}^{\infty} x e^{h_{m} x} d F_{m}(x) \\
& =2^{m} \int_{0}^{\infty} x\left(e^{h_{m} x}-e^{-h_{m} x}\right) d F_{m}(x) \leqq 2^{m+1} h_{m} \int_{0}^{\infty} x^{2} e^{h_{m} x} d F_{m}(x) \\
& \leqq 2^{m+1} h_{m} e^{2 h_{m} \gamma_{m}} \int_{0}^{\infty} x^{2} d F_{m}(x) \leqq 2^{m+1} e^{2} h_{m} \int_{|x| \leqq 2 \gamma_{m}} x^{2} d F(x) .
\end{aligned}
$$

Thus by Lemma 4 if $h_{m}<1 / \gamma_{m}$ and if m is sufficiently large then

$$
A\left(2^{m}\right) \leqq 2^{m} h_{m} \gamma_{m}^{2} / B\left(\gamma_{m}\right)
$$

Consequently we find that for large m

$$
\begin{equation*}
\text { either } \quad h_{m} \geqq 1 / \gamma_{m} \quad \text { or } \quad h_{m} \geqq A\left(2^{m}\right) B\left(\gamma_{m}\right) /\left(2^{m} \gamma_{m}^{2}\right) \tag{10}
\end{equation*}
$$

Let $s \geqq \max (2 \alpha(r+1), 2 \alpha(r+1) /(2-\alpha))$. Since

$$
\varphi(x) / B^{1 / \alpha}(\varphi(x)) \leqq A(x) / x^{1 / \alpha}
$$

it follows from Lemma 5 that

$$
\int_{0}^{\infty} \frac{1}{x}\left[\frac{\varphi(x)}{A(x)}\right]^{s} d x \leqq \int_{0}^{\infty} x^{-s / x-1} B^{s / \alpha}(\varphi(x)) d x<\infty
$$

Similarly we obtain

$$
\int_{0}^{\infty} \frac{1}{x}\left[\frac{x \varphi^{2}(x)}{A^{2}(x) B(\varphi(x))}\right]^{s} d x<\infty
$$

In view of (A2) these inequalities imply

$$
\sum_{m=1}^{\infty}\left[\frac{\gamma_{m}}{A\left(2^{m}\right)}\right]^{s}<\infty \quad \text { and } \quad \sum_{m=1}^{\infty}\left[\frac{2^{m} \gamma_{m}^{2}}{A^{2}\left(2^{m}\right) B\left(\gamma_{m}\right)}\right]^{s}<\infty
$$

Thus it follows from (10) that

$$
\sum_{m=1}^{\infty}\left[h_{m} A\left(2^{m}\right)\right]^{-s}<\infty
$$

This implies

$$
\sum_{m=1}^{\infty} \exp \left[-h_{m} \varepsilon A\left(2^{m}\right) / 2\right]<\infty
$$

By (9) this proves (8) and therefore the lemma.
Lemma 7. Assume (F). Let N_{m} denote the number of j 's such that $\left|X_{j}\right|>\varphi\left(2^{m}\right)$, $j \leqq 2^{m+1}-1$. If $J_{r+1}<\infty$ then $P\left\{N_{m} \geqq 2 r+2\right.$ i.o. $\}=0$.

Proof. By Lemma 5 we have

$$
\left.\sum_{n=1}^{\infty} n^{2 r+1} \mathscr{F}^{2 r+1}\left(\theta_{n}\right) \leqq \text { const. } \times \int_{0}^{\infty} x^{2 r+1}{\mathscr{F}^{2 r+1}}^{2} \varphi(x)\right) d x<\infty
$$

Hence by Lemma 1

$$
P\left\{N_{m} \geqq 2 r+2 \text { i.o. }\right\} \leqq P\left\{\left|X_{n}^{(2 r+2)}\right| \geqq \theta_{n} \text { i.o. }\right\}=0 \text {. }
$$

Proof of Theorem 1. First suppose $J_{r+1}<\infty$. Then (1) follows from Lemma 2. By the same reasoning as in [4] it suffices to prove (2) assuming (F). For an arbitrary $\varepsilon>0$ let

$$
S_{n}(\varepsilon)=\sum_{j=1}^{n} X_{j} \cdot I\left(\left|X_{j}\right| \leqq a_{n} \varepsilon\right)
$$

and let $S_{n}^{\prime}=\sum_{j=1}^{n} X_{j}^{\prime}$. If $n \in I_{m}$ and n is so large that $\theta_{n}<\varepsilon a_{n}$ then

$$
\begin{aligned}
\left|S_{n}(\varepsilon)-S_{n}^{\prime}\right| & \leqq \varepsilon a_{n} N_{m}+\sum_{k=1}^{m} \varepsilon A\left(2^{m-k+1}\right) N_{m-k} \\
& \leqq \varepsilon a_{n}\left[N_{m}+\sum_{k=1}^{m}\left(\frac{3}{4}\right)^{k-1} N_{m-k}\right]
\end{aligned}
$$

because $a_{n} / a_{2 n} \leqq(n /(2 n))^{1 / \alpha}=2^{-1 / \alpha}<\frac{3}{4}$. Hence by Lemma 7 we obtain

$$
\limsup a_{n}^{-1}\left|S_{n}(\varepsilon)-S_{n}^{\prime}\right| \leqq(2 r+1)\left[1+\sum_{k=1}^{\infty}\left(\frac{3}{4}\right)^{k-1}\right] \varepsilon=5(2 r+1) \varepsilon \quad \text { a.s. }
$$

By Lemma 2 we have almost surely $\left|S_{n}(\varepsilon)-{ }^{(r)} S_{n}\right| \leqq r a_{n} \varepsilon$ for large n. Thus

$$
\left.\limsup a_{n}^{-1}\right|^{(r)} S_{n}-S_{n}^{\prime} \mid \leqq(11 r+5) \varepsilon \quad \text { a.s. }
$$

Since ε was arbitrary

$$
\lim a_{n}^{-1}| |^{(r)} S_{n}-S_{n}^{\prime} \mid=0 \quad \text { a.s. }
$$

Combined with Lemma 6 this shows (2).
It remains to prove (3). By Lemma 3 and the inequalities used in the proof of Lemma 2 we have $\lim _{x \rightarrow \infty} x \mathscr{F}(\varepsilon A(x))=0$ for all $\varepsilon>0$. Hence for every $k \geqq 1$

$$
\begin{aligned}
P\left\{\left|X_{n}^{(k)}\right|>\varepsilon a_{n}\right\} & =\sum_{j=k}^{n}\binom{n}{j} \mathscr{F} j\left(\varepsilon a_{n}\right)\left[1-\mathscr{F}\left(\varepsilon a_{n}\right)\right]^{n-j} \\
& \sim\left[n \mathscr{F}\left(\varepsilon a_{n}\right)\right]^{k} / k!\rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. This shows

$$
X_{n}^{(k)} / a_{n} \rightarrow 0 \quad \text { in prob. }
$$

for $k \geqq 1$ and therefore (2) implies
$S_{n} / a_{n}-c_{n} \rightarrow 0 \quad$ in prob.
Hence c_{n} may be chosen according to the formula (3) (see [2] p. 135).
Next suppose $J_{r+1}=\infty$. Then (4) is immediate from Lemma 2. When $r \geqq 1$ it is found that

$$
\begin{equation*}
\left|{ }^{(r)} S_{n+1}-{ }^{(r)} S_{n}\right|=\min \left(\left|X_{n+1}\right|,\left|X_{n}^{(r)}\right|\right) \tag{11}
\end{equation*}
$$

Let $r+1 \leqq n_{1} \leqq n_{2} \leqq \cdots$ be successive indices n with $\left|X_{n+1}^{(r+1)}\right|>\left|X_{n}^{(r+1)}\right|$. It is easy to see that

$$
\left|X_{n_{j}+1}^{(r+1)}\right|=\min \left(\left|X_{n_{j}+1}\right|,\left|X_{n_{j}}^{(r)}\right|\right)=\left|{ }^{(r)} S_{n_{j}+1}-{ }^{(r)} S_{n_{j}}\right| .
$$

Further $\left|X_{n}^{(r+1)}\right|>a_{n} M$ for infinitely many n iff $\left|X_{n_{j}+1}^{(r+1)}\right|>a_{n_{j}+1} M$ for infinitely many j. Thus (4) implies

$$
\begin{equation*}
P\left\{\left|{ }^{(r)} S_{n+1}-{ }^{(r)} S_{n}\right|>a_{n} M \text { i.o. }\right\}=1 \tag{12}
\end{equation*}
$$

for every $M>0$. When $r=0$ (12) is immediate from (4). On the other hand by the zero-one law limsup| ${ }^{(r)} S_{n} / a_{n}-c_{n} \mid$ is either $=\infty$ a.s. or $<\infty$ a.s. Suppose

$$
\begin{equation*}
\limsup \left|{ }^{(r)} S_{n} / a_{n}-c_{n}\right|<\infty \quad \text { a.s. } \tag{13}
\end{equation*}
$$

for some $\left\{c_{n}\right\}$. It follows from (11) that

$$
\left.a_{n}^{-1}\right|^{(r)} S_{n+1}-{ }^{(r)} S_{n}\left|\leqq a_{n}^{-1}\right| X_{n+1} \mid \rightarrow 0 \quad \text { in prob. }
$$

Therefore (13) implies

$$
\sup \left|c_{n}-\left(a_{n+1} / a_{n}\right) c_{n+1}\right|<\infty
$$

Together with (13) this shows

$$
\limsup a_{n}^{-1}\left|(r) S_{n+1}-{ }^{(r)} S_{n}\right|<\infty \quad \text { a.s. }
$$

This contradicts with (12) and therefore (4) must imply (5).
Proof of Theorem 2. Put $a_{n}=n^{1 / \alpha}, \boldsymbol{A}(x)=x^{1 / \alpha}$ in Theorem 1. Then the theorem is immediate from Theorem 1 except for assertions on the centering constants c_{n} in (i) and (iii). Let (6) be satisfied and let c_{n} be chosen according to (3).

If $0<\alpha<1$ then by Lemma 3

$$
\begin{aligned}
\left|\int_{|x| \leqq n^{1 / \alpha \tau}} x d F(x)\right| & \leqq \int_{|x| \leqq n^{1 / \alpha} \tau}|x| d F(x) \\
& =-n^{1 / \alpha} \mathscr{F}\left(n^{1 / \alpha} \tau\right)+\int_{0}^{n^{1 / \alpha \tau}} \mathscr{F}(x) d x \\
& =-n^{1 / \alpha-1} n \mathscr{F}\left(n^{1 / \alpha} \tau\right)+\int_{0}^{n^{1 / \alpha \tau}} x^{-\alpha}\left(x^{\alpha} \mathscr{F}(x)\right) d x \\
& =o\left(n^{1 / \alpha-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
c_{n}=n^{1-1 / \alpha} \int_{|x| \leqq n^{1 / \alpha_{\tau}}} x d F(x) \rightarrow 0 . \tag{14}
\end{equation*}
$$

Suppose $1<\alpha<2$. Hölder inequality shows

$$
\int_{c}^{\infty} \mathscr{F}(x) d x \leqq\left[\int_{c}^{\infty}\left(x^{\alpha-1 / p} \mathscr{F}(x)\right)^{p} d x\right]^{1 / p} \cdot\left[\int_{c}^{\infty}\left(x^{-\alpha+1 / p}\right)^{q} d x\right]^{1 / q}
$$

where $p>1$ and $1 / p+1 / q=1$. If $r \geqq 1$ then by putting $p=r+1$ and $q=(r+1) / r$ we obtain

$$
\begin{equation*}
\int_{c}^{\infty} \mathscr{F}(x) d x \leqq K c^{-\alpha+1}\left[\int_{c}^{\infty} x^{\alpha(r+1)-1} \mathscr{F}^{r+1}(x) d x\right]^{1 /(r+1)} \tag{15}
\end{equation*}
$$

for $c>0$ where $K=[(\alpha-1)(r+1) / r]^{-r /(r+1)}$. When $r=0$ it is easy to see that (15) holds with $K=1$. Thus (6) implies $E\left|X_{1}\right|=\int_{0}^{\infty} \mathscr{F}(x) d x<\infty$. It follows from (15), (6) and Lemma 3 that

$$
\begin{align*}
& \left|n^{1-1 / \alpha} E X_{1}-c_{n}\right| \\
& \quad=n^{1-1 / \alpha}\left|\int_{|x|>n^{1 / \alpha} \tau} x d F(x)\right| \leqq n^{1-1 / \alpha} \int_{|x|>n^{1 / \alpha} \tau}|x| d F(x) \\
& \quad=n^{1-1 / \alpha}\left[n^{1 / \alpha} \tau \mathscr{F}\left(n^{1 / \alpha} \tau\right)+\int_{n^{1 / / \tau}}^{\infty} \mathscr{F}(x) d x\right] \\
& \quad \leqq n \tau \mathscr{F}\left(n^{1 / \alpha} \tau\right)+K \tau^{-\alpha+1}\left[\int_{n^{1 / \alpha} \tau}^{\infty} x^{\alpha(r+1)-1} \mathscr{F}^{r+1}(x) d x\right]^{1 /(r+1)} \rightarrow 0 . \tag{16}
\end{align*}
$$

The relations (14) and (16) complete the proof of (i) and (iii) resp.

References

1. Feller, W.: A limit theorem for random variables with infinite moments. Amer. J. Math. 68, 257 262 (1946)
2. Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Reading: Addison-Wesley 1954
3. Loève, M.: Probability theory. Princeton: Van Nostrand 1963
4. Mori, T.: The strong law of large numbers when extreme terms are excluded from sums. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 189-194 (1976)
5. Nagaev, S.V.: On sufficient and necessary conditions for the strong law of large numbers (In Russian). Teor. Verojatnost. i Primenen. 17, 609-618 (1972)
6. Stout, W.F.: Almost sure convergence. New York: Academic Press 1974
