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Let {X,} be a sequence of i.i.d. random variables and let X”=X, if |X}| is the
r-th maximum of |X,|,...,|X,| Let S,=X,+--+X, and @S, =5, — (X" +-.-
+ X®). Suppose a sequence {a,} of normalizing constants satisfies (i) a,/n'’* is
nondecreasing for some o, 0 <o <2, and (i) sup(a,,/a,)<oo. An integral crite-
rion for the stability of *'S/a, is obtained. This extends a previous result [4] on
the stability of ®'S,/n.

1. Introduction and Results

Let {X,},>, be a sequence of iid. random variables with common d.f. F and
put F(x)=P{|X,|>x}. For rz1 and nxr let XP=X, if |X,| is the r-th
maximum of [X,|,...,|X,|. More precisely let M,(j), n=1, 1<j<n, be the
number of X/’s satisfying either | X;|>|X;|, 1<i<n, or |X,|=|X;|, 1£i<, and

let X=X, if M,(j)=r. Let S,= ) X;, ¥S,=8,and ¥S,=5,— ) X¥forrz1,
i=1 k=1

nzr.

In [4] an integral criterion for the stability of ©S,/n was obtained. In this
paper we consider the stability of 'S, /a,. Throughout this paper we suppose the
sequence {a,} of normalizing constants a,>0 satisfies the following two
conditions:

(A1) {a,/n'*} is nondecreasing for some o, 0 <o <2,
(A2) sup(a,,/a,) <.
nz1
If {a,} satisfies (A1) and (A2) then we can define an absolutely continuous

increasing function 4 on [0, 00) with A(0)=0, A(n)=a, for n=1,2,... and
satisfying

(A1) A(x)/x'* is nondecreasing,
(A2)  sup (A(2x)/A(x)) < oo.
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Since A(o0)=c0 the inverse function B of A is absolutely continuous increasing
on [0, o) with B(0)=0 and B(co}=o00. Let us denote by J,, >0, the integral
| #7(x) dB'(x), where F'(x)={F (x)}" etc. If 0<r<s then

0

S
Jo==
Ia

O— 8

(ZF(x) Bx)P ™" #(x) dB(x)

and therefore J, < oo implies J,< oo (see Lemma 3 below).

The purpose of this paper is to prove the following two theorems which
extend a result of [4]. Theorem 1 should be compared with a classical result due
to Feller ([1] or [6] p. 132). When =0 Theorem 2 reduces to Marcinkiewicz
strong law of large numbers ([6] p. 126).

Theorem 1. Suppose =20 is a fixed integer and {a,} is a sequence satisfying (A1)
and (A2). If J,. < o0 then

lim X¢*Y/q,=0 as. (0
and there exists a sequence {c,} of constants satisfying
lim(”S,/a,—c,)=0 a.s. (2)

In this case ¢, may be chosen according to the formula

C, =

n

2o xdF(x) (3)
Gn |x|<van

where 1>0 is an arbitrary constant. If J, .= o0 then

limsup | X¢*V|/a,=0 a.s. A
and
lim sup |”'S,/a, —c,| =00 as. (3)

for every sequence {c,}.

Theorem 2. (i) If

j‘ xa(r+ l)flg;r-f—l(x) dx < oo (6)
0
for some o, 0<a<1, and r=0 then
O /50 as.
(i) If (6) holds with a=1 and r=0 then for every t1>0

WS, /n— [ xdF(x)-0 as.

jx|snt
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(iii) If (6) holds for some o, 1 <a <2, and r=0 then E|X,| < co and
(@S, —nEX,)/n'" -0  as.
(iv) Conversely if ©'S, /n'/*—c,—0 a.s. for some o, 0<o<2, and for some {c,}

then (6) holds.

2. Proofs
Lemma 1. If 0<b,T o0 then

P{XT*1)>b, i.0.}=0 or 1

[se}
according as Y, n"F"*1(b,) converges or diverges.
n=1

Proof. This is Lemma 3 of [4].

Lemma 2. For every ¢>0
P{XI™Y>ea, 1.0.}=0 or 1
according as J, ., <o or J, . =c0.

Proof. It is easy to see that
[e9)
Y wF i ea)< 0
n=1
iff

X' FrrHeA(x)) dx < oo. (7

Ot 8

By (A1) we have A(g*x)SeA(x)SA(x) if O<e<] and A(x)=SeAd(x)£A(*x) if
&> 1. Therefore for every £>0 (7) holds iff

X FH A dx=(r+1)"1J.,, < o.

O 8

Hence the lemma follows from Lemma 1.

Lemma 3. If J, ;<o for some r=0 then

lim & (x) B(x)=0.

X+

Proof. Write Z7+1(x) B"* }(x) as

(FYF Q)Y F () dB ()

Oty &

and apply the dominated convergence theorem.
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Lemma 4. If J,. <o for some r=0 then

{ x*dF(x)=0(y*/B(y)) as y—oo.

[x] £y
Proof. Integrating by parts we have
y
[ x*dF(x)=—-y*ZF () +2[xF(x)dx, y>0.
[x] Sy 0

It is immediate from Lemma 3 that y2#(y)=o0(y*/B(y)). It follows from (A1)
that x/BY*(x) < y/BY*(y) for x<y and therefore

y=2B() [ xF () dX§y‘2(§y)(y/X)°‘xB(X)97(X) dx

y
=y 2 {x!~*B(x) # (x) dx.
4]

y
Applying Lemma 3 again we obtain | x.Z (x) dx=o0(y*/B(y)).
0
In the next three lemmas we impose the following condition:
(F) & is positive and differentiable on (0, o).

Let us define ¥ by y(x)=(B(x)/F (x))*/?, x=0. Under the assumption (F) ¢ is
absolutely continuous strictly increasing with y(0)=0 and y(c0) = 0. Hence the
inverse function ¢ of ¥ is also absolutely continuous increasing with ¢(0)=0
and ¢(o0)=oc0. By Lemma 3 J,_; <co implies lim y(x)/B(x)=co and therefore

lim x/B(¢p(x))= co. Since (A1) implies

X0

Ao () =AW/ AB@ () Z /Bl

for large y we have lim A(y)/o(y)=o0 if J,,; < 0.

y—=

Lemma 5. If J,, ;<o for some r=0 and if k=2r+2 then

xE =1 G (p(x)) dx = Gj? x T B¥((x)) dx = (2/k) Jyp < 0.
)

O ey 8

Proof. The first equality is obvious from B(¢(x))=x>%(¢(x)). The second
equality is shown by a routine calculation using Lemma 3.

Let I,, m=0, denote the set {27,2"+1,...,2"*1—1} and let 0,=¢(2") if
nel,. Define X,=X,-1(|X,]<8,). The following lemma plays the central role in
this paper. The proof is obtained by modifying the method used in Nagaev [5].

Lemma 6. Assume (F). If J., | <co for some r 20 then there exists a sequence {c,}
of constants satisfying

Xi/a,—c,—0 as.
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Proof. Let {X}'} be a sequence of independent random variables independent of
{X,} and having the same distribution as {X;}. Then {Y,}, Y,=X,— X/, is a
sequence of independent symmetrically distributed random variables with
|Y,|=<20,, and every Y,, nel,,, has the same d.f. F,,.

For a proof of the lemma it suffices to show that

Y Y/a,~0 as.
k=1

(see [3] p. 247 or [6] p. 7). It is known ([6] p. 158) that under the assumptions
(A1) and (A2) this is equivalent to

i P{Y Y,>eA2™} <o (8)

m=1 nely,

for every ¢>0.
Let G,, and Q,, denote the d.f. and the m.g.f. of ) Y, resp. Denoting by f,

nel,,
the m.g.f. of Y,, nel,,, we have Q,,(h)={f,(h)}*". It is shown that

d d
1080, (W) =2"—T-log £,

is an increasing function of 4 and vanishes at h=0 (see [5]). For an arbitrarily
fixed ¢>0 let h,, be the (minimum) solution of the equation

d
7 log@,,(h)=¢eA(2™)/2.

If this equation does not have solution then define 4,,= 1/y,, where 7y, = ¢(2™). By
this definition we have

o
1080, )= { 1080, dhSeh, AC)2.
0

Defining a d.f. G,, by

Gu(x)= [ €™ dG,()/Qp(hy)

yEx

we find that

1-G,(eA2")=0un(h,) | e ™7 dG,(x)

x>ed(2™)
<exp[ —h,eA(2")/2]. ©)

Suppose h, <1/y,. Since f, (h)=1 and |Y,|<2y, for nel,, by using an
inequality e*—e~*<2x¢e* we have
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A2y e/2 227 f(h)/ f (B) =27 ]? x e dF,,(x)

=2" [ x(e"*—e ") dF,(x) 2" ', | x* e dF,(x)
0

0

<omtlp, etmim [(x2dF,(x)<2"*'e?h, | x*dF(x).
0

[%] £ 2y

Thus by Lemma 4 if h,,<1/y,, and if m is sufficiently large then

AR Z2" By Y/ B()- )
Consequently we find that for large m

either h,=1/y, or h,=AQ2™) B(y,)/(2"v2).

Let szmax(2a(r+1), 2a(r+1)/(2 —a)). Since

@(x)/B*((x)) S A(x)/x '
it follows from Lemma 5 that

;Zg;]sdx < O(f X~ LB (g(x)) dx < 0.

1
X

Ot 8

Similarly we obtain

x0T
2 B ] <

In view of (A2’) these inequalities imply

i [Aj();’m)] <0 and i [———Azéz);(]}m)]s<oo.

m=1

1
X

Q= 8

Thus it follows from (10) that
Z A(@2™)] < oo.

This implies
Y. exp[ —h,eA(2")/2] < .

m=1

By (9) this proves (8) and therefore the lemma.

T. Mori

Lemma 7. Assume (F). Let N, denote the number of j's such that |X|>qo(2'")

jEomt A If J..,<oo then P{N,z2r+21i0.}=0.
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Proof. By Lemma 5 we have

[e9)
Y. n?rlE g, ) Sconst. x | x*PTHLFE 2T (g(x)) dx < oo.
n=1 0

Hence by Lemma 1
P{N,z2r+2 1.0} <P{X? *?|=0, i0.} =0.

Proof of Theorem 1. First suppose J,, ; <oo. Then (1) follows from Lemma 2. By
the same reasoning as in [4] it suffices to prove (2) assuming (F). For an
arbitrary ¢>0 let

5,(6)= Y, X 10X)|Sa,9

j=

and let S,= ) Xj. If nel, and n is so large that 6,<¢aq, then
j=1

1S.(e) =S, sea, N, + ), eAQ" )N,

k=1
égan [Nm+ Z (%)k_le—k:I
k=1
because a,/a,,<(n/(2n)**=2-1*<2. Hence by Lemma 7 we obtain
limsupa, [S,(e)—S,|<Q2r+1) [1 + > (%)k‘l] e=52r+1e as.
k=1

By Lemma 2 we have almost surely |S, (s} —7S,| £ra,¢ for large n. Thus
limsupa; '|”S,~S,|<(11r+5)e  as.

Since ¢ was arbitrary
lima; 1[®S, —5|=0 as.

Combined with Lemma 6 this shows (2).
It remains to prove (3). By Lemma 3 and the inequalities used in the proof of
Lemma 2 we have lim x# (e A(x))=0 for all ¢>0. Hence for every k>1

X— 00

PUX®|>sa) =Y ") Fea)l1 - Flea)

j=k
~[nZF(a,)]/k! -0
as n—»00. This shows

X®/a,—~0  in prob.
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for k=1 and therefore (2) implies
S,/a,—c,—~0 in prob.

Hence ¢, may be chosen according to the formula (3) (see [2] p. 135).
Next suppose J,, ; =co. Then (4) is immediate from Lemma 2. When r>1 it
is found that

98,11 =8, =min(| X, . ;| I X"). (11)

Let r+1<n;<n, <--- be successive indices n with [XV V> |XF*+D| It is easy to
see that

1X5 1 Pl=min(X,, 1], X)) =17S,4 1 =S,

Further |X{*"|>a,M for infinitely many n iff |X"'t]|>a, . M for infinitely
many j. Thus (4) implies

P08,y = S,|>0,M i0}=1 (12

for every M >0. When r=0 (12) is immediate from (4). On the other hand by the
zero-one law limsup|™S,/a,—c,| is either =00 a.s. or < oo a.s. Suppose

lim sup|®”S,/a,—c,| <o as. (13)
for some {c,}. It follows from (11) that

a7 18,1 — 08,/ <4y "X, ,,|»0 in prob.
Therefore (13) implies

SUp|c, —(an4 1/an) Cpa 1} < 00.
Together with (13) this shows

limsupa; '|®S,,; ~"S, /< as.

This contradicts with (12) and therefore (4) must imply (5).

Proof of Theorem 2. Put a,=n"* A(x)=x'" in Theorem 1. Then the theorem is
immediate from Theorem 1 except for assertions on the centering constants ¢, in
(i) and (iii). Let (6) be satisfied and let ¢, be chosen according to (3).

If 0<a<1 then by Lemma 3

| | xdFIs | [x|dF(x)
|x| S nileg |x] <nt/c
nl/og

=—n'"Fn'" )+ | F(x)dx
0

ni/eg

=—n'""tnF @)+ [ xTH(x"F (%)) dx
0

=o(n'*~1).
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Hence

c,=n*"1" | xdF(x)-0. (14)

x| gnl/eg

Suppose 1 <a<2. Holder inequality shows

T T e I S

4 c

where p>1 and 1/p+1/g=1. 1If r=1 then by putting p=r+1 and g=(+1)/r
we obtain

O ey, &

o0 1/(r+ 1)
?(x)dngc‘““[fx“"+1)‘1§'+1(x)dx] (15)

4

for ¢>0 where K=[(0c—1)(r+1)/r]~"“* D, When r=0 it is easy to see that (15)

e}

holds with K=1. Thus (6) implies E|X;|= |  (x) dx < c0. It follows from (15}, (6)
0
and Lemma 3 that

'~ 1EX, —c,|
=nt=tf xdF(o|sn' Y [ x| dF(x)

|x}>nl/xg © |x] >nl/%t
=n' "M F @m0+ | F(x)dx]
nlleg
®
<neFner)+ Kot [ xa D=L g (3 dx] e DS, (16)
ni/%g

The relations (14) and (16) complete the proof of (i) and (ii1) resp.
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