
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
40, 159- 167 (1977) 

Zeitschrift  f0.r 

Wahrscheinlichkeitstheorie 
und verwandte Gebiete 

�9 by Springer-Verlag 1977 

Stability for Sums of i.i.d. Random Variables 
when Extreme Terms are Excluded 

Toshio Mori 

Department of Mathematics, Yokohama City University, Mutsuura-cho, Kanazawa-ku, Yokohama 
236 Japan 

Let {X,} be a sequence of i.i.d, random variables and let X~r)=Xj if IX~l is the 
r-th maximum of Ix~l,...,lxnl. Let S , = X a + . . . + X ,  and (~)Sn=S,-(X~I)+ ... 
+X(,~)). Suppose a sequence {a,} of normalizing constants satisfies (i) a,/n 1/~ is 
nondecreasing for some c~, 0<c~<2, and (ii) sup(a2ja,)<oo. An integral crite- 
rion for the stability of (r)S,/a, is obtained. This extends a previous result [4] on 
the stability of (~)S~/n. 

1. Introduction and Results 

Let {X,},e 1 be a sequence of i.i.d, random variables with common d.f. F and 
put ~(x )=P{[Xl l>x} .  For r > l  and n>r let X(~r)=Xj if ]Xj] is the r-th 
maximum of IX~f,. . . ,[x,I.  More precisely let M,0"), n > l ,  l < j < n ,  be the 
number of Xi's satisfying either I Xi] > IX j I, 1 < i<  n, or I Xil= I X~l, 1 <= i< j, and 

r 

let X(,r)=Xj if M,(j')=r. Let S ,=  ~ Xi, (~ and (r)S,=S,,- ~ X(,, k) for r > l ,  
i = 1  k = l  

n>_r. 
In [4] an integral criterion for the stability of (r)S,/n was obtained. In this 

paper we consider the stability of (r)Sja,. Throughout this paper we suppose the 
sequence {a,} of normalizing constants a , > 0  satisfies the following two 
conditions" 

(A1) {a,/n 1/~} is nondecreasing for some c~, 0<c~<2, 

(12) sup(a2Jan)< oo. 
n > l  

If {an} satisfies (11) and (A2) then we can define an absolutely continuous 
increasing function A on [0, oo) with A(0)=0, A(n)=a, for n = l ,  2,...  and 
satisfying 

(AI') A(x)/x 1/~ is nondecreasing, 

(A2') sup(A(2x)/A(x))< oo. 
x > O  
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Since A(oo) = ~ the inverse function B of A is absolutely cont inuous increasing 
on [0, oo) with B(0 )=0  and B(oo)=oo.  Let  us denote  by J~, r > 0 ,  the integral 
oo 

~r(x)  dBqx), where ~ r ( x ) =  {J (x)}  ~ etc. If 0 < r < s  then 
0 

s 
Js= r ~ (~(x)  B(x)) S-r ~ q x )  dBqx) 

0 

and therefore Jr < oo implies J~ < oo (see L e m m a  3 below). 
The purpose of this paper is to prove the following two theorems which 

extend a result of [4]. Theorem 1 should be compared  with a classical result due 
to Feller ([1] or [6] p. 132). When r = 0  Theorem 2 reduces to Marcinkiewicz 
strong law of large numbers  ([6] p. 126). 

Theorem 1. Suppose r > 0 is a f ixed integer and {a,} is a sequence satisfying (A 1) 
and (A2). If J~+a<oo then 

limX~'+l)/a,=O a.s. (1) 

and there exists a sequence {c,} of constants satisfying 

l im(( ' )S, /a,-c,)=O a.s. (2) 

In this case c, may be chosen according to the formula 

n 
c . = - -  J xde(x) (3) 

an ]xl<ra~ 

where z > O  is an arbitrary constant. I f  Jr+ l = ~ then 

lim sup IX~ r+ 1)I/a, = oo a.s. (4) 

and 

lira sup [(~)S,/a,-c,l= oo a.s. (5) 

for every sequence {c,}. 

Theorem 2. (i) I f  

S XO~(v+I)-I~'r+I(x) dx< oo (6) 
0 

for some ~, 0 < c~ < 1, and r > 0 then 

(r)S,/nl/~--,O a.s. 

(ii) I f  (6) holds with c~ = 1 and r >_ 0 then for every z > 0 

(")S./n- j x dF(x)--,O a.s. 
Ixl <=n~ 
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(iii) I f  (6) holds for  some ~, 1 <c~<2,  and r>O then E[XI[ < oo and 

((~)S, - n E X 1 ) / n l / ~ O  a.s. 

(iv) Conversely i f  (r)Sn/nl/~--Cn---~O a . s .  for  some e, 0 <c~ <2,  and for  some {c,} 
then (6) holds. 

2. Proofs 

L e m m a  1. I f  0 < bn Y oo then 

P{lX(~r+X)l>b . i . o . }=0  or 1 

according as ~ n r ~  r+ Z(b.) converges or diverges. 
n = l  

Proof  This is L e m m a  3 of [4]. 

L e m m a  2. For every g > 0 

P{ IX ( f+ l ) l>ea .  i . o . }=0  or 1 

according as J~+l < m or Jr+a = m. 

Proof  It  is easy to see that  

n = l  

iff 

xr ~ r+ l(e A(x)) dx  < m.  (7) 
0 

By (AI ' )  we have A ( s ~ x ) < e A ( x ) < A ( x )  if 0 < e < l  and A ( x ) < e A ( x ) < A ( e ~ x )  if 
e > 1. Therefore  for every e > 0 (7) holds iff 

S x r ~  '+  1 (A(x)) dx  = (r + 1)- 1jr+ 1 < m.  
0 

Hence  the l e m m a  follows f rom L e m m a  1. 

L e m m a  3. I f  Jr + 1 < ~ for  some r >_> 0 then 

lira Y(x )  B(x) = O. 
x ~ m  

Proof  Write ~ +  l(x) B y+ l(x) as 

x 

( ~ ( x ) / ~ ( y ) ) r  + l y ~  + l(y) dB r +1 (y) 
0 

and apply  the domina ted  convergence theorem.  
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Lemma 4. I f  Jr+ l < oo for some r>O then 

J x2 elF(x)= o(y2/B(y)) as y ~  c~. 
Ixl<y 

Proof. Integrating by parts we have 

y 
x2 d F ( x ) = - y 2 ~ ( y ) + 2 ~ x ~ ( x ) d x ,  y > 0 .  

Ixl__<x o 

It is immediate from Lemma 3 that y2.~(y)=o(y2/B(y)).  It follows from (AI') 
that x/B1/~(x)<y/B1/~(y) for x < y  and therefore 

y y 
y -  2 B(y) j x ~ ( x )  dx < y -  2 j (y/x)~ x B(x) Y ( x )  dx 

0 0 

Y 

= y - 2 + ~  x I - ~ B ( x ) ~ ( X )  d x .  

o 

y 

Applying Lemma 3 again we obtain j x ~ ( x ) d x  = o(y2/B(y)). 
0 

In the next three lemmas we impose the following condition: 

(F) ~ is positive and differentiable on (0, oo). 

Let us define 0 by O(x)=(B(x) /~(x) )  1/2, x>O. Under the assumption (F) 0 is 
absolutely continuous strictly increasing with 0(0)= 0 and 0(oo)= oo. Hence the 
inverse function qo of ~b is also absolutely continuous increasing with cp(0)=0 
and q0(oo)= oo. By Lemma 3 dr+l < oo implies lim O(x)/B(x)= oo and therefore 

lim x/B(cp(x))= oo. Since (A 1') implies 
x ~ c o  

A (y)/q9 (y) = A (y)/A(B(qo (y))) => (y/B(cp (y)))1/~ 

for large y we have lim A(y)/cp(y) = c~ if Jr+ 1 < oo. 
y ~ o ( 3  

Lemma 5. I f  Jr+ l < c~ for some r > 0  and if k>=2r+2 then 

oo oO 

j x k- l~k(cp(x)) dx = j x - k -  1Bk(cp(x)) dx = (2/k)Jk/2 < co. 
0 0 

Proof. The first equality is obvious from B(cp(x))=x2y(cp(x)). The second 
equality is shown by a routine calculation using Lemma 3. 

Let Ira, m>0,  denote the set {2~,2m+l,...,2m+X--1} and let 0n=99(2 m) if 
nMm. Define X'n=Xn. I([Xnl < 0,). The following lemma plays the central role in 
this paper. The proof is obtained by modifying the method used in Nagaev [5]. 

Lemma 6. Assume (F). I f  dr+ 1 < oo for some r>O then there exists a sequence {G} 
of constants satisfying 

X;,/a, - c,--,O a.s. 
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Proof Let {Xs be a sequence of independent random variables independent of 
{X',} and having the same distribution as {X~}. Then {Y,}, Y~=X~-X',', is a 
sequence of independent symmetrically distributed random variables with 
IY,1<20,, and every Y,, nslm, has the same d.f. F~. 

For  a proof of the lemma it suffices to show that 

f Yk/a,~O a.s. 
k = l  

(see [3] p. 247 or [6] p. 1,17). It is known ([6] p. 158) that under the assumptions 
(A 1) and (A2) this is equivalent to 

f P{ ~ Y,>eA(2~)}<oo (8) 
m= 1 nEIm 

for every e > 0. 
Let Gm and Q,, denote the d.f. and the m.g.f, of ~ Y, resp. Denoting by f,, 

n ~ I m  

the m.g.f, of Y~, helm, we have Q~(h)= {fro(h)} 2m. It is shown that 

d logQm(h) = 2 m d log fm (h) 

is an increasing function of h and vanishes at h = 0  (see [5]). For an arbitrarily 
fixed e > 0 let h~ be the (minimum) solution of the equation 

d 
log Qm (h) = e A(2")/2. 

If this equation does not have solution then define hm = 1/7~ where 7m = qo(2~) - By 
this definition we have 

hm d 
logQm(hm) = ! d/~logQm(h) dh<8 hmA(2m)/2. 

Defining a d.f. G,, by 

Gin(x)= ~ ehmYdGm(y)/Qm(h,,) 
y<--x 

we find that 

1 - Gm(eA(2")) = Qm(h,~) 
X > 8 A ( 2  m) 

= Qm(hm) exp [ - hm eA(2m)] 

< exp [ - hm e A(2")/2]. 

Suppose hm<l/Tm. Since fro(h)>1 and 
inequality e x - e-X < 2x e x we have 

e -  hm x d d ~  (x) 

(9) 

]Ynl<27m for n~I,,, by using an 
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7 A(2 m) e/2 =< 2mf.~ (h~)/f(hm) N 2 m X e h~x dF m (x) 
- 0 o  

= 2  ~ 7x(eh~X-e-h~X) dFm(x)Gam+lhmTx2eh~XdFm(x) 
0 0 

o0 

G2m+lhmeZh'v" ~xZdFm(x)~2m+leZhm ~ xZdF(x) . 
0 Ixl_<2v~ 

Thus by Lem ma  4 if hm < 1/7m and if m is sufficiently large then 

A(2 ~) < 2 ~ hm 72/B(7~). 

Consequently we find that  for large m 

either hm>l/Tm or hm>A(2m) B(?m)/(2mT2). (10) 

Let s > max(2~(r  + 1), 2~(r + 1)/(2 - ~)). Since 

~o (x)/B 1/~ (~o (x)) <= A (x)/x 1/~ 

it follows from Lemma  5 that  

0 x tA(x)J - 0 

Similarly we obtain 

1.s 
o x [ A 2 ~ x ) ) J  dx< o0. 

In view of (A2') these inequalities imply 

~ r 2 m y  2 I s 
[ 7m ] s < o  o and /- - " -/ <oo  
[A(2")J  [A2(2m) B(?~)J " 

m =  m =  1 

Thus it follows from (10) that 

~, [h~A(2m)]-s < oo. 
m - - 1  

This implies 

~ exp[-hm~A(2m)/2] < oo. 
m - - 1  

By (9) this proves (8) and therefore the lemma. 

Lemm a  7. Assume (F). Let Nm denote the number of f s  such that IXj[>Cp(2m), 
j____<2m+l--1. I f J r+l<oo  then P { N ~ > 2 r + 2  i.o.} =0.  
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Proof By Lemma 5 we have 

n2r+ *y2r+ l(0n) < const. • ~ X 2r + l f f 2 r +  1(~ 0 (X)) dx < 00. 
n = l  0 

Hence by Lemma 1 

P{Xm>2r+2 i.o.}~e{lx(n2r+2)l~On i.o.}=0. 

Proof of Theorem 1. First suppose Jr+ 1 < OO. Then (1) follows from Lemma 2. By 
the same reasoning as in [-4] it suffices to prove (2) assuming (F). For an 
arbitrary e > 0 let 

S,(e)-- ~ Xj.I([X~l<__a,e) 
j = l  

and let S'n= ~ Xj. If n~l m and n is so large that O,<~a, then 
j=l 

k = l  

k = l  

because a,/az, <(n/(2n))l/~= 2-1/~ <�88 Hence by Lemma 7 we obtain 

limsupazllS,(e)-S',]<(2r+ 1)[1+ ~ (�88 e = 5 ( 2 r +  1)e a.s. 
k = l  

By Lemma 2 we have almost surely IS.(e)--<~)Snl < r a ,  e for large n. Thus 

limsupay*l(~)S~-S',l<(llr+5)e a.s. 

Since e was arbitrary 

lima2~[(~)S,-S'~l=O a.s. 

Combined with Lemma 6 this shows (2). 
It remains to prove (3). By Lemma 3 and the inequalities used in the proof of 

Lemma 2 we have lira x~(eA(x))=O for all e>0.  Hence for every k > l  
x ~ o o  

n 

P{Ix(~k'l>ea~}=j~=k C)f f ' (e  a~, [1 -- ~(ea~)] ~-j. 

[n.fi(e a,)Jk/k !---,O 

as n~oo.  This shows 

x(~k)/a,--~O in prob. 
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for k > 1 and therefore (2) implies 

S , / a , - c ,  oO in prob.  

Hence  c, may  be chosen according to the formula  (3) (see [2] p. 135). 
Next  suppose Jr+l  = ~ .  Then  (4) is immedia te  f rom L e m m a  2. When  r >  1 it 

is found that  

[(r)sn+ 1 - - ( r )Sn[  = min([X.+ 1[, [x.(r)[) - (11) 

Let r + 1 __~ n I =_ n 2 ~ . . .  be successive indices n with ~,~((r ++ 11) f" l~,v(r+ 1) . It  is easy to 
see that  

[X.(~ + I)[ = min(lX.j+ 1t, IX.(~)l): [(r)S.j+ 1 -(r)sojI. 

Fur ther  [X(~r+l)]>a,M for infinitely m a n y  n iff v ( ,+  ~.~+ ~)] > a.j+ 1M for infinitely 
m a n y  j. Thus (4) implies 

P{l(r)S.+ 1 -(r)S~l > a , M  i.o.} = 1 (12) 

for every M > 0 .  When  r = 0  (12) is immedia te  f rom (4). On the other  hand  by the 
zero-one law limsup[(r)S,]a,,-c,[ is either = oo a.s. or < oo a.s. Suppose  

limsupI(r)S,/a,-c,I < oo a.s. (13) 

for some {c,}. It follows f rom (11) that  

agll(')S,+l-(r)S,l<=ayllX,+l[-,,O in prob.  

Therefore  (13) implies 

s u p l c , - ( a , +  1/a,) c,+ 11 < oo. 

Together  with (13) this shows 

lira sup a~- 11(')S, + 1 - (~)S,[ < ~ a.s. 

This contradicts  with (12) and  therefore (4) must  imply (5). 

Proof of Theorem 2. Put a,=n ~/~, A(x )=x  1/~ in Theo rem 1. Then the theorem is 
immedia te  f rom T h e o r e m  1 except for assert ions on the centering constants  c, in 
(i) and (iii). Let (6) be satisfied and let c, be chosen according to (3). 

If  0 < a < 1 then by L e m m a  3 

I S xdF(x)l< ~ Ixldf(x) 

nl/~ T 
=--nX/~(nl/~z)+ ~ ~(x) dx 

0 
nll~T 

= _ nile- i n,,~(nl/~ z) + S x - ~ ( x ~ ( x ) )  dx 
0 

= o(/~/1/a- 1). 
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Hence 

c,=n ~-~/~ ~ xdF(x)~O. (14) 
Ix[ <n:/~ 

Suppose 1 <c~ < 2. H61der inequality shows 

~ g ( x )  dx<= (xC~-l/P~a~(x))Pdx . (x-C~+l/p)qdx 
r 

where p > l  and 1/p+l/q=l. If r>1  then by putting p = r + l  and q = ( r + l ) / r  
we obtain 

~@(x) dx<Kc -~+1 x~(r+z)-ly~+l(x)dx 
c 

(15) 

for c > 0 where K = [ ( e - 1 ) ( r +  1)/r]-r/(,-+ 1). When r = 0  it is easy to see that (15) 
oo 

holds with K =  1. Thus (6) implies EIXI[ = ~ ~(x)dx< oo. It follows from (15), (6) 
0 

and Lemma 3 that 
[nl-1/~'EX1 - c . ]  

= r / I - l / a [  ~ xdf(x)l<=rt 1-1/c~ ~ Ix]dF(x) 
Ixt > nl/=~ Ixl > nl/~z 

=nl-1/~[nl/~r~(nZ/~z)+ f ~(x) dx] 

<=n'cY(nl/~'c)+ K z - ' +  l [  ~ x~(r+ l)-  l ~ r+  l(x)dx]l/(r+ l)-+O. (16) 
n l / ~  

The relations (14) and (16) complete the proof of (i) and (iii) resp. 
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