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In this paper  we introduce quasi-invariant cylindrical measures on Banach 
spaces. The definition generalizes the notion of quasi-invariant measures. How- 
ever, contrary to the measure case, there exist non-trivial quasi-invariant cyl- 
indrical measures on infinite dimensional Banach spaces. It  is shown that a 
Banach space is isomorphic to a Hilbert space if and only if it admits a quasi- 
invariant cylindrical measure of type 2. Moreover, we prove that each rotation- 
invariant cylindrical measure on an infinite dimensional Hilbert space is quasi- 
invariant, whenever the cylindrical measure satisfies an additional assumption. 
For  instance the canonical Gaussian cylindrical measure on a Hilbert space is 
quasi-invariant. 
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Throughout  the paper  E is a real Banach space and H is a real Hilbert space. By 
E' we denote the dual space. Let a,, . . . , a ,  be a finite system of elements of E'. 
Then by a i we denote the operator from E into R, mapping x onto the vector 
( (x ,  a l )  , . . . , ( x , a , ) ) .  We write (x, al) instead of ai(x ). By ~ ( R , )  we denote the 
Borel sets of R, .  A set Z~_E is said to be a cylindrical set if there are 
a 1 . . . . .  a ,~E'  and B e ~  (R,) such that Z = (al)-I(B). A map/~ from the algebra of 
all cylindrical sets into [0, 1] is called a cylindrical measure if it satisfies the two 
following conditions: 

(i) ~(e)=1 
(2) Restrict # to the a-algebra of cylindrical sets which are generated by a fixed 
system of functionals. Then each such restriction is o--additiv. 

By putting 

# ... . . . . . .  (B) = # ((a~)-~ (B)) 

each cylindrical measure # defines a family of normed Borel measures. Then the 
family {# ......... } satisfies the following consistency condition: 
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Let a I . . . .  ,a n and b 1 . . . . .  b,, be two finite systems of functionals on E. 
Moreover  let A and B be two Borel sets of R, and R m respectively. Then 
(ai)- 1 (A) = (h ) -  1 (B) implies that/1 ......... (A) = #bl ..... b~,(B) ' 

Conversely each family of normed Borel measures satisfying the consistency 
condition defines a cylindrical measure and the correspondence is one-to-one. 

A cylindrical measure/~ is of type r (for r > 0) if there is a constant c such 
that 

ItL~dtza(t = <cl la  

for all aeE'. A cylindrical measure/~ is of type 0 if #a,[ -P,P]  tends to 1 for all 
p > 0, whenever a, tends to 0 in E'. 

For  each cylindrical measure /~ the complex valued function q)u from E' 
denotes its characteristic function. It  is known that # is of type 0 if and only if q0 u 
is continuous with respect to the norm-topology of E'. 

Suppose that for every e > 0  and every xoeE there is a 3 > 0  such that 

NZ+x0)<e 

for every cylindrical set Z of E for which 

~(z)<3. 

Then # is said to be quasi-invariant. 
Now let us state two equivalent definitions for later use. 

(1) Let e > 0  and xosE be given. Then there exists a 6 > 0  such that 

]2aJ. . . . . . . .  (B + <Xo, ai>) <e  

for every finite system al, . . . ,  a, eE' and every B ~  (R~) for which 

# ......... (B) < 3. 

(2) Same as in (1) with " B e N  (R~)" replaced by "B~_R n and B compact".  

Let # be a quasi-invariant cylindrical measure on E. Let us further assume 
that /1  is o--additiv. Then # has an unique extension to the a-algebra generated 
by the cylindrical sets. Of course this extension is a quasi-invariant measure. 
Hence, by a theorem of Sudakov [9], E is finite dimensional. This shows that 
quasi-invariant cylindrical measures on infinite dimensional Banach spaces 
cannot be a-additiv. 

The following theorem generalizes a result of Xia (cf. [11]). We prove it for 
cylindrical measures instead of measures. 

Theorem 1. Assume that E admits a quasi-invariant cylindrical measure ~. Then the 
mapping 

d(a,b)=Smin{1,1<x,a-b>l} d#(x), a,b~E', 
E 
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defines a metric on E'. The topology generated by d is stronger than the norm 
topology. In particularly, if p is of type r, 0 < r < co, then there is a constant c > 0 
such that 

I[al[ < c{~[(x, a)[r d #(x)} 1/, 
E 

for all aEE'. 

Proof 1 Let us first show that  d satisfies the axioms of  a metric. Of  course, d is a 
pseudometric.  If  

~min {1, [ ( x , a )  l} dl~(x)=0 
E 

then 

#{xEE; [(x,a)[> p} = 0  

for all p > 0. 
Hence, 

#{x~E; I (x  + x o ,  a) l  > p }  = 0  

whenever xo~E. 
This implies (Xo, a ) =  0 and, since x 0 was arbitrary, it follows a = 0. 
Now, let a,~E' be a sequence tending to zero with respect to d, that  is 

lim # { x ~ E ;  [(x,a,)[>p}=O 
n ~ c o  

for all p > 0. 
By assumption we get 

lira # {x~E; J(x o + x, G)I > P}  = 0  
n ~ o o  

for each xoeE. Consequently,  there are elements xoeE, n>N, such that the 
inequalities 

[(xn, G ) l < p  and I(Xo+xn,an)[< p 

hold. 
F r o m  this it follows l i m ( x o , G ) = 0  and by the Banach-Ste inhaus- theorem 

o ~ o o  

we get sup ][anti < oo. 
n 

Now, there exists a sequence of  positive real numbers  G such that lira ~n = oo 
n ~ o o  

and ~ a n tends to zero with respect to d (cf. [6], p. 40). This and the result above 
imply lim Jla~[I =0 .  This proves the first par t  of  the theorem. The second 

n ~ o o  

statement  of  the theorem follows immediately from the first one. 

Remark. The following example shows that  the converse of  Theorem 1 is not  
true in general. 

1 This proof is due to C. Borell. It is easier than the original one and it includes the case r = 0. The 
main idea of the proof can be found in [2] 
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Let r n be the n-th Rademacher  function. By setting 

X(a)(t)= ~ e, rn(t ) 
n = l  

for a=(c~,)~l 2 we define a continuous operator X from l z into Lr[0, 1] for each 
r>_0. 

The well-known Hincin inequality asserts that the cylindrical measure g on 
12 satisfies the statements of Theorem 1, where p is defined by 

#(Z) = 2 {te [0, 1] ;(X(al)(t), . . .  , X(a,)(t))eB} 

for Z = (ai)-I  (B), the Lebesgue measure 2 and a l . . . .  , a , e  12. But # is of course not 
quasi-invariant. 

As an easy consequence of Theorem 1 we get 

Theorem 2. Suppose that the Banach space E admits a quasi-invariant cylindrical 
measure of type r for r>O. Then there exists a finite measure space (~?,v) such 
that E' is isomorphic to a subspace of Lr(f2, v). 

Proof Let # be a quasi-invariant cylindrical measure of type r defined on E. 
Then there exists a continuous operator X from E' into a suitable space Lr(~2, v) 
such that v(f2)= 1 and that 

#(Z) = v {co,Q; (X(al)(o)) . . . . .  X(a~ 

for all cylindrical sets Z with Z = (a~)- ~ (B), (cf. [7]). Consequently 

~l~x,a}[rd#(x)=SIX(a)(co)lrdv(o~)=lkX(a)ll r, r > 0 .  

By Theorem 1 it follows that X is an injection. This concludes the proof  of 
Theorem 2, since the case r - - 0  follows in the same way. 

Taking r-= 2 we get an interesting corollary. 

Corollary 1. Suppose that there exists a quasi-invariant cylindrical measure of type 
2 on E. Then E is isomorphic to a Hilbert space. 

We will see later on that the converse of Corollary 1 is true, as well. Before 
we are able to prove this, we need some lemmas which are interesting in their 
own right. To start with, we introduce some notations. 

Let D be a subset of E'. Then a cylindrical measure # is said to be D-quasi- 
invariant if for each e > 0  and each xo~E there exists a 6 > 0  such that #(Z 
+Xo)<e  for all. cylindrical sets Z for which # (Z)<5 ,  where Z=(d i ) - I (B)  with 
d a .... ,d, eD and B~N(R, ) .  

If  K ~ R ,  and if p > 0 ,  the symbol I-Kip denotes the set 

[ K ] p = { ~ R , ; i n f  I[~-r/ll <p}.  
~teK 

Here and in the following by I1' II we mean the Euclidean norm. Now we can 
state a useful lemma. 
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Lemma 1. Suppose that D is a dense subset of E'. Then each D-quasi-invariant 
cylindrical measure of type 0 on E is quasi-invariant. 

Proof Let al,... , a, be a fixed finite system of elements of E'. Choose 6 > 0 such 
that #(Z+xo)  <~/2 for 

#(Z)<r and Z = ( d ) - I ( B ) ,  

where xo~E, d~, ..., d,~D and B ~  (R,). 
Now let K ~_ R, be a compact subset with #al ..... a,(K) < 6/3. Then there exists 

a 0- > 0 such that 

#al . . . . . . .  ( [ K ] 2 ~  \ K)  < 6/3. 

Moreover, there are elements d~,..., d,~D such that 

#(Z~) > 1 - rain (6/3, e/2), 

and 

rl (Xo,  ai - di)II < 0-/2, 

where 

Z~= {x~E; II (x, ai-di)ll <0-/2}. 

Now we define the following cylindrical sets: 

Zo = (a,)-2 (K), 

Z~ = (d,)- ~ ([K]~), 

Z 2  -- (a ) -  ~ (I-K] 2,). 

By Z 1 nZ,,~_Z 2 it follows that 

~(Z,) < #(Z,  n Z~) + #(E ". Z.) ___< #(Z2) + 6/3 

< #(Zo) + (2/3) 6 < 6. 

Thus 

/z(Z 1 +Xo) <e/2. 

Now let us assume for a moment that the inclusion 

(,) (Zo + xo)nZ~c_Zl + xo 

is already proven. 
Then it follows immediately that 

#(Zo -}- Xo) = #  ... . . . . . .  (K + (Xo, ai>) <e. 

Obviously, # is quasi-invariant. 
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Hence the proof is finished when we show (*). 
Put xE(Z o + Xo) c~Z.. Then from 

qL<X-Xo,al-di)ll < II<x, ai-di>ll + II<Xo,ai-di>ll <or 

and from < x - x o , a i ) z K  we conclude that 

<X-Xo,di>z[K-[ ~. 

So x~(Z1 + Xo). 
The next lemma can be easily proven. Thus, we omit the proof. 

Lemma2. Let A be an arbitrary subset of E'. Then each A-quasi-invariant 
cylindrical measure is (span A)-quasi-invariant. 

From Lemma 1 and Lemma 2 we derive: 

Corollary 2. Suppose that the linear hull of a subset A ~ E' is dense. Then every A- 
quasi-invariant cylindrical measure of type 0 on E is quasi-invariant. 

In the following by 7, we denote the Gaussian measure on R~ with density 

(2/r) -n/2 exp(--114111/2) for 4r 

Lemma3.  Let B e N  (R,), let 4oeR, and let a>0 .  Then the following inequality 
holds: 

7,(B+4o)<e~y,(B) + 5 eltl ilr dT~(t). 
Itl =>a/ll ~ol1 

Proof. Using the well-known fact that 

2,{4 eR,;  (4, 4o)eB} =21 {teR1 ;t. 114oil EB} 

and some elementary inequalities it follows that 

7,(B + 40) = 5exp [({, 4o) - [[ ~o [[ 2/2] dy,(4) 
B 

< 5 exp [I (4, 4o)1] d7,(4) 
B 

< ~ exp L(4, 40)1 d7.(4) 
Bn{~; I(~, go)I ~cr} 

+ ~ exp 1(4, 4o)1 dY,(4) 
{{; I(g, {o) I >= ~} 

< e  o 7.(B) + ~ eltl I1~o1[ d71(t)" 
I'I->-~'/II ~o I[ 

T h i s  p roves  L e m m a  3. 
We denote the cylindrical measure #, uniquely defined by # ......... =7 .  for 

(e~, e j )= 6~j (Kronecker's symbol), by 7, and call it canonical Gaussian cylindrical 
m e a s u r e .  

Remark, 7 is quasi-invariant. 
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This follows immediately from Lemma 1, Lemma2 and Lemma3. This 
remark has an interesting consequence. 

Let T be an operator (linear and continuous) from a real Banach space E 
into a real Banach space F. Moreover, let /2 be a quasi-invariant cylindrical 
measure on E. Hence the cylindrical measure T(#) (cf. [7] for the definition) is 
quasi-invariant under translations by elements of F, which are in the image of E 
with respect to T. 

If we apply this statement to the canonical Gaussian cylindrical measure on 
L 2 [ 0  , 1] and to the integral operator T from L2[0, 1] into C[0, i] with 

t 

T( f ) ( t )=~f (s )  ds for te[O, 1], 
0 

then we receive the well-known result, due to Maruyama [5], of quasi- 
invariance of the Wiener measure under translation by any function geC[O, 1], 
g(0)=0, which is absolutely continuous and for which g'~Lz[O, 1] (cf. [4]). 

Next we want to improve the remark above. More precisely, we show the 
quasi-invariance of a class of cylindrical measures including the canonical 
Gaussian cylindrical measure. 

A cylindrical measure /2 on H is rotation-invariant if whenever Z is a 
cylindrical set and U an isometric operator from H onto H, 

/2(z) =/2(u(z)). 

Note that the canonical Gaussian cylindrical measure is rotation-invariant. 
Since the (cylindrical) measure 5o defined by 6o(Z)=0 for OCZ and 6o(Z ) = 1 for 
0~Z, is rotation-invariant, but of course not quasi-invariant, rotation invariance 
does not imply quasi-invariance in general. However, we want to show that 
under some additional assumptions rotation-invariance implies quasi- 
invariance. Let us start with a lemma (cf. [1], p. 170 and p. 172, resp. [10]). 

Lemma4. Suppose that H is infinite dimensional. Let /2 be a rotation-invariant 
cylindrical measure on H. Then there exists a finite Borel measure 2 u on [0, oo) 
such that 

/2 ......... (B)= ~7 .  (B) d2u(t)+2u({O})bo(B) 
t > 0  

for every B ~  (R,) and every finite system e I . . . .  , e,~H for which (ei, ej)=3 u. 
Moreover, 2u({0})=0/f and only if  lim q~u(tx)=0 for all xeH,  x +O. Here q~u 

t ~ o O  

denotes the characteristic function of #. 

Now we are in position to prove the above mentioned connection between 
rotation-invariance and quasi-invariance. 

Theorem3. Let # be a rotation-invariant cylindrical measure on the infinite 
dimensional Hilbert space H. I f  lirrl (p~(tx)= 0 for all x~H, x ~ O, then/2 is quasi- 
invariant. 
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Proof. 2 Let # be a cylindrical measure on H satisfying the assumptions of the 
theorem and let H o be any complete orthonormal system of H. Since/~ is of type 
0, by Corollary 2 it follows that it is enough to prove the Ho-quasi-invariance of 
#. Consider a>0,  xo~H and e l , . . . , e ,~H o. Then by virtue of Lemma4 there 
exists a finite Borel measure 2 u on (0, oe) such that 

#el ....... ( B ) -  ~ ?,((1/t)B)d~u(t ) 
t > 0  

for each B e ~  (R,). 
Now we choose a number t o > 0  such that 

2;,(0, to) < e/3. 

Then we get the following inequality: 

/2 . . . . . . . . .  (B + (Xo, e~)) 

= ~ ,  (B+(x-t~ 
t > O  

< e/3 + e ~ ~ 7, ((1/t) B) d 2~ (t) 
t > O  

+ ~ ~ exp(lsl ]l(xo,ei)H/t)d71(s)d2~,(t) 
to [sl>=at/ll(xo,el)l] 

<e/3 +e~/2 ......... (B) +2,{(0, ~)} ~ exp([s[ IlXoll/to)dy~(s ). 
I sl >r  H 

This inequality is true for any a > 0. Now choose a so large that the last term in 
the last line becomes less than a/3. Putting 6 = e - ~ / 3  we obtain 

#e, ....... (B + (Xo, e~)) < 

for/2 ......... (B) < 6. 
This proves the statement of the theorem. 

Remark. The last theorem yields the quasi-ihvariance of the cylindrical measures 
#p corresponding to the characteristic functions q~p(x) = exp ( -  ]q x [] P) for 0 < p < 2 
and x~H. Since #p is of type r but not of type p for 0 < r < p < 2  we conclude the 
existence of quasi-invariant cylindrical measures not of type q for arbitrary small 
q > 0. Compare this with problem 2. 

Now we state the main result of this paper. This is an easy consequence of 
Corollary 1 and Theorem 3, resp. the remark after Lemma 3. 

Theorem 4. A Banach space E is isomorphic to a Hilbert space if and only if there 
exists a quasi-invariant cylindrical measure of type 2 on E. 

Finally, we state some open problems. 

2 The author is grateful to A. Tortrat for pointing out a completely different proof of Theorem 3. 
Although this version is easier we give ours since it proves that the absolute continuity is uniform 
whenever I[Xo] I <p 
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Since all known examples of quasi-invariant cylindrical measures are defined 
on Banach spaces isomorphic to a Hilbert space the following problem arises: 

Problem 1. Are there quasi-invariant cylindrical measures on Banach spaces which 
are not isomorphic to a Hilbert space 

By a result of Shepp [8] the cylindrical measures on lp, 2 < p < o% or c o with 
characteristic functions exp(-I[a[I p') for a~Ip, or exp(-]lair) for ael  1 are not 
quasi-invariant. 

Problem 2. Is every quasi-invariant cylindrical measure of type 0 ? 

If there exists a quasi-invariant cylindrical measure on a Hilbert space which 
is not of type 0, we would get a solution of the following problem: 

Problem3. Is every quasi-invariant cylindrical measure on a Hilbert space the 
translation of a rotation-invariant cylindrical measure 
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