Spectral Orders, Conditional Expectations and Martingales

Kong-Ming Chong*

1. Introduction

In this paper, we characterize conditional expectations and martingales in terms of the strong spectral order \prec and submartingales in terms of the weak spectral order \prec . Using these characterizations, we prove that the conditional form of Jensen's inequality is, in fact, a particular case of an extended form of a theorem of Hardy-Littlewood-Pólya obtained in [3, Theorem 2.5], and we give conditions for equality which we have not found mentioned in the literature before. Moreover, we also obtain a new proof of Doob's optional sampling theorem.

If X and Y are integrable random variables defined on a probability space (Ω, \mathcal{F}, P) , then we write $X \prec Y$ whenever

$$E[(X-t)^{+}] \leq E[(Y-t)^{+}]$$
(1)

for all $t \in R$, and we write $X \prec Y$ to mean $X \prec Y$ and E[X] = E[Y].

The notation \prec and \prec are respectively referred to as the strong and weak spectral order.

If $X_i \prec Y_i$ (respectively $X_i \prec Y_i$) and $P[X_i \neq 0, X_j \neq 0] = 0$ and $P[Y_i \neq 0, Y_j \neq 0] = 0$, $1 \leq i < j \leq n$, then it is easy to see that

$$\sum_{i=1}^{n} X_i \prec \sum_{i=1}^{n} Y_i \tag{2}$$

(respectively $\sum_{i=1}^{n} X_i \ll \sum_{i=1}^{n} Y_i$). Moreover, if $X \prec Y$ (respectively $X \ll Y$) and if A is an event containing $\{\omega: X(\omega) \neq Y(\omega)\}$, then

$$X \mathbf{1}_A \prec Y \mathbf{1}_A \tag{3}$$

(respectively $X \mathbf{1}_A \prec Y \mathbf{1}_A$).

2. Spectral Orders and Conditional Expectations

Theorem 1. If $X \in L^1(\Omega, \mathcal{F}, P)$ is any random variable, if \mathcal{G} is any sub- σ -algebra of \mathcal{F} , and Y a \mathcal{G} -measurable random variable, then $Y \leq E(X|\mathcal{G})$ (respectively Y = E(X|G)) if and only if

$$Y \mathbf{1}_{A} \prec X \mathbf{1}_{A} \quad (Y \mathbf{1}_{A} \prec X \mathbf{1}_{A}) \tag{4}$$

for all $A \in \mathcal{G}$.

^{*} This paper formed a part of the author's doctoral dissertation written under the guidance of Professor N.M. Rice and submitted to the Department of Mathematics, Queen's University, Canada in November 1972.

Proof. The condition is clearly sufficient.

To prove its necessity, suppose $Y \leq E(X|\mathscr{G})$. Then $E[Y1_A] \leq E[X1_A]$ for all $A \in \mathscr{G}$. Since Y is \mathscr{G} -measurable, the set $A \cap \{Y1_A > t\}$ belongs to \mathscr{G} for any $A \in \mathscr{G}$ and any $t \in R$. Thus, $E[Y1_{A \cap \{Y1_A > t\}}] \leq E[X1_{A \cap \{Y1_A > t\}}]$ which implies that $E[(Y1_A - t) 1_{\{Y1_A > t\}}] \leq E[(X1_A - t) 1_{\{Y1_A > t\}}] \leq E[(X1_A - t)^+]$, i.e., $E[(Y1_A - t)^+] \leq E[(X1_A - t)^+]$ for all $A \in \mathscr{G}$ and for all $t \in R$. Hence (4) follows.

The following corollaries are obtained by the usual standard argument.

Corollary 1. $Y = E(X|\mathcal{G})$ if and only if $YZ \prec XZ$ for all \mathcal{G} -measurable random variables Z such that $XZ \in L^1(\Omega, \mathcal{F}, P)$.

Corollary 2. $E(XZ|\mathcal{G}) = ZE(X|\mathcal{G})$ for all \mathcal{G} -measurable random variables Z such that $XZ \in L^1(\Omega, \mathcal{F}, P)$.

Theorem 2. (Jensen's Inequality). Suppose $X \in L^1(\Omega, \mathcal{F}, P)$. Then

$$\Phi \circ E(X|\mathscr{G}) \leq E(\Phi \circ X|\mathscr{G}) \quad a.s.$$
(5)

for all convex functions $\Phi \colon R \to R$ such that $\Phi \circ X \in L^1(\Omega, \mathscr{F}, P)$.

If, in addition, Φ is strictly convex, then equality holds in (5) if and only if $E(X|\mathcal{G}) \mathbf{1}_A$ and $X \mathbf{1}_A$ are identically distributed for each $A \in \mathcal{G}$ or, equivalently, $E(X|\mathcal{G})$ and Xare identically distributed.

Proof. Let $Y = E(X|\mathscr{G})$. Since $Y \mathbb{1}_A \prec X \mathbb{1}_A$ for all $A \in \mathscr{G}$, we have, by Theorem 2.5 in [3], $E[\Phi(Y \mathbb{1}_A)] \leq E[\Phi(X \mathbb{1}_A)]$ which implies that

$$\int_{A} \Phi \circ Y dP \leq \int_{A} \Phi \circ X dP = \int_{A} E(\Phi \circ X | \mathscr{G}) dP \quad \text{for all } A \in \mathscr{G}$$

and for all convex functions $\Phi: R \to R$ such that $\Phi \circ X \in L^1(\Omega, \mathcal{F}, P)$. Since both $\Phi \circ Y$ and $E(\Phi \circ X | \mathcal{G})$ are \mathcal{G} -measurable, inequality (5) follows directly from the last inequality.

If Φ is strictly convex such that $\Phi \circ X$ is integrable, then equality holds in (5) if and only if, for all $A \in \mathcal{G}$, $E[\Phi \circ (E(X|\mathcal{G}) \mathbf{1}_A)] = E[\Phi \circ (X \mathbf{1}_A)]$ which is the case if and only if $E(X|\mathcal{G}) \mathbf{1}_A$ and $X \mathbf{1}_A$ are identically distributed, by Theorem 2.3 in [3].

Finally, using the fact that two integrable random variables Y and Z are identically distributed if and only if $Y \prec Z$ and $Z \prec Y$, it is easily seen that $E(X|\mathscr{G})$ and X are identically distributed if and only if $E(X|\mathscr{G}) \mathbf{1}_A$ and $X \mathbf{1}_A$ are identically distributed for each $A \in \mathscr{G}$.

3. Spectral Orders and Martingales

In what follows, we let N denote the set of natural numbers, i.e., $N = \{1, 2, 3, ...\}$, and $\{\mathcal{F}_n : n \in N\}$ an increasing sequence of sub- σ -algebras of \mathcal{F} .

Theorem 3. Suppose $\{X_n, \mathscr{F}_n : n \in N\}$ is a martingale (respectively a submartingale, a supermartingale). Let \mathscr{F}_{∞} be the σ -algebra generated by $\mathscr{F}_n, n \in N$. Let $\sigma : \Omega \to N \cup \{0\}$ and $\tau : \Omega \to N \cup \{0\}$ be two \mathscr{F}_{∞} -measurable random variables such that $\sigma \leq \tau$, $\{\sigma = 0\} = \{\tau = 0\}, \{\sigma = n\} \in \mathscr{F}_n$ and $\{\tau = n\} \in \mathscr{F}_n$ for all $n \in N$. Suppose further that one of the following two conditions is satisfied:

(i) $\{X_n : n \in N\}$ is uniformly integrable;

(ii) σ and τ are essentially bounded.

If X_0 is any \mathscr{F}_{∞} -measurable integrable random variable, then $X_{\sigma} \prec X_{\tau}$ (respectively $X_{\sigma} \prec X_{\tau}, -X_{\sigma} \prec -X_{\tau}$).

Proof. Assume that $\{X_n, \mathscr{F}_n : n \in N\}$ is a martingale.

Let $A_n = \{\sigma = n\}$ and $B_n = \{\tau = n\}$, $n \in N \cup \{0\}$. Then the inequality $\sigma \leq \tau$ implies that $\bigcup_{i=0}^{n} B_i \subseteq \bigcup_{i=0}^{n} A_i$ for all $n \in N$. Define $Y_n = \sum_{i=0}^{n} X_i \mathbbm{1}_{B_i} + X_n \mathbbm{1}_{C_n} + X_\sigma \mathbbm{1}_{D_n}$, where $C_n = \bigcup_{i=0}^{n} A_i - \bigcup_{i=0}^{n} B_i$ and $D_n = \Omega - \bigcup_{i=0}^{n} A_i$, $n \in N$. Clearly $Y_1 = X_\sigma$. We claim that $Y_n \prec Y_{n+1}$ for all $n \in N$. Now, for each $n \in N$, we have $C_n \in \mathscr{F}_n$ and so $X_n \mathbbm{1}_{C_n} \prec X_{n+1} \mathbbm{1}_{C_n}$, by Theorem 2. Thus, it follows from (2) that

$$Y_{n} = \sum_{i=0}^{n} X_{i} \mathbf{1}_{B_{i}} + X_{n} \mathbf{1}_{C_{n}} + X_{\sigma} \mathbf{1}_{D_{n}} \prec \sum_{i=0}^{n} X_{i} \mathbf{1}_{B_{i}} + X_{n+1} \mathbf{1}_{C_{n}} + X_{\sigma} \mathbf{1}_{D_{n}}$$
$$= \sum_{i=0}^{n+1} X_{i} \mathbf{1}_{B_{i}} + X_{n+1} \mathbf{1}_{C_{n+1}} + X_{\sigma} \mathbf{1}_{D_{n+1}} = Y_{n+1},$$

where $n \in N$.

Now if (i) is satisfied, then it is easily seen that both X_{σ} and X_{τ} are integrable, and so $\{Y_n: n \in N\}$ is uniformly integrable, since $|Y_n| \leq |X_{\tau}| + |X_n| + |X_{\sigma}|$ for all $n \in N$. Moreover, it is clear that $Y_n \to X_{\tau}$ pointwise everywhere. Thus, $Y_n \to X_{\tau}$ in L^1 by Theorem T21 in [6, p. 18]. But $X_{\sigma} = Y_1 \prec Y_n$ whence we conclude by taking limits that $X_{\sigma} \prec X_{\tau}$.

Next, if (ii) is satisfied, then it is easily seen that there exists a number $m \in N$ such that $Y_n = X_\tau$ a.s. for all $n \ge m$. Hence $X_\sigma \prec X_\tau$.

The case that $\{X_n, \mathscr{F}_n : n \in N\}$ is a submartingale or a supermartingale is treated analogously.

It is now easy to derive Doob's Optional Sampling Theorem [4, Theorem 2.2, pp. 302–303].

References

- Chong, K. M.: Equimeasurable Rearrangements of Functions with Applications to Analysis. Thesis. Queen's University, Kingston, Ontario, Canada 1972
- Chong, K. M.: Spectral Orders, Uniform Integrability and Lebesgue's Dominated Convergence Theorem. Trans. Amer. Math. Soc. 191, 395–404 (1974)
- Chong, K. M.: Some Extensions of a Theorem of Hardy, Littlewood and Pólya and Their Applications. Canad. J. Math. XXVI, 1321-1340 (1974)
- 4. Doob, J.L.: Stochastic Processes. New York: Wiley 1953
- Hardy, G. H., Littlewood, J. E., Pólya, G.: Some Simple Inequalities Satisfied by Convex Functions. Messenger of Math. 58, 145–152 (1929)
- 6. Meyer, P.A.: Probability and Potentials. New York: Blaisdell 1966

Kong-Ming Chong Departments of Mathematics University of Malaya Kuala Lumpur 22-11 Malaysia

(Received May 17, 1974; in revised form October 2, 1974 and January 7, 1975)