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Pointwise Convergence in Terms 
of Expectations 

D. G. Austin, G.A. Edgar, A. Ionescu Tulcea 

Introduction 

This paper is concerned with the connection between almost sure convergence 
of a sequence of random variables and convergence of certain related expectations. 
Theorems of the kind we are interested in were proved by Meyer I-7, p. 232] and 
Mertens [6, p. 47-1 in the continuous-parameter case, and by Baxter 1-11 in the 
discrete-parameter case. For example, Baxter's theorem is the following: Let 
(X~)~_>_I be a sequence of random variables with values in a compact metric 
space S, and let the set F of bounded stopping times be directed by the obvious 
ordering. Then (X~)n_>l converges almost surely if and only if the generalized 
sequence (6 ~b (X~))~r of expectations converges for every real-valued continuous 
function q5 on S. 

In the present paper we generalize this theorem in two ways: we replace S 
by an arbitrary complete separable metric space, and we use as few test functions ~b 
as possible. IfS is the real line, the single test function ~b (x) = x suffices (Theorem 2); 
for any complete separable metric space, a countable set of functions suffices 
(Theorem 3); and for a separable Banach space, there is a countable set of convex 
functions which suffices (Theorem 4). We have included a different proof of the 
key step in Baxter's proof (Corollary 1), in order to make the present paper self- 
contained. 

We wish to thank T. Figiel for simpler proofs of two of our theorems. 

w 1. Notation and Terminology 

Throughout this paper (f2, Y, P) is a probability space. We recall that a real 
random variable is a mapping X: f2-~R which is Y-measurable. If S is a Polish 
space (i.e. S is a complete separable metric space), an S-valued random variable 
is a mapping X: Q ~ S which is measurable as a mapping of (O, ~ )  into (S, ~(S)), 
where ~(S) is the a-algebra of Borel sets of S. 

If (Xi)id is any family of real (or S-valued) random variables, we denote by 
a((Xi)i~) the smallest sub-a-algebra of ~ with respect to which every Xi, isl,  is 
measurable. 

Let (~)n =>1 be an increasing sequence of sub-a-algebras of ~ We recall that a 
mapping z: 12 ~ N* w { + ~ } = {1, 2, 3, ..., + ~ } is called a stopping time (with 
respect to (~),,__>i) if { o ) [ z ( o ) ) = n } ~  for each n~N*. 

In what follows, whenever (Xn)n__>l is a sequence of real (or S-valued) random 
variables, we let ~ = a ( X 1 , . . .  , X~) for each n_>_ 1, and we denote by F the set of 
all bounded stopping times (with respect to (~)n__>l)- 
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w 2. The Case of Real-Valued Random Variables 

We begin with the following elementary but extremely useful result: 

Lemmal.  Let (Xn)n>=l be a sequence of real random variables. Let o~= 
a (X~ . . . .  , X,) for each integer n >_ 1 and assume that ~ = a ( U ~,)" Let Y be a real 

n>_l 

random variable with the following property: For each a ~ ,  Y(o) is a cluster 
value of the sequence (X,(o~)),>__x. Then given any e>0,  3 > 0  and integer m>=l, 
there is a bounded stopping time z such that z > m and 

I r( o)l > a})<__ 

Proof Since ~ - - a  ( U ~ ) ,  there is an integer N > m and a random variable Z, 
n>l 

measurable with respect to ~ ,  such that 

P o ) [ I Y ( o ) - Z ( o ) l <  > 1 - ~ - .  (1) 

is an integer N ' > N  such that 

P a) I IX, ( o ) -  Z (e))l < ~ for some n with N <_ n < N' > 1 - ~-. Define the 

bounded stopping time ~ as follows. Given e)e[2, if there is an integer n such that 

N < n_< N' and IX, g o ) - Z  (o)1--<2' then let-c (co) be the smallest such integer; if 

there is no such integer, then let z (eT)= N'. Thus 

p g 0711X,(~)(aT)-Z(aT)l<= > 1 -  T ,  (2) 

so that, by (1) and (2), 

P({o[ ]X~(~,)(o)- Y(o)[ ~3})>  1 - e .  

Thus Lemma 1 is proved. 

From Lemma 1 we easily obtain the following 

Theorem 1. Let (X,),=I be a sequence of real random variables. For each 
integer n>= 1, let ~ = o ' ( X 1 ,  ... , Xn) and assume that Y = a (  U ~)" Let  

n > l  

Y: ~2--,/#= [ - o o ,  oo] 

be ~-measurable and such that: For each o7 ~ g2, Y (e)) is a cluster value of the sequence 
(X, (o~)). > 1. Then we have: 

i) There is a strictly increasing sequence (r (n)),> 1 of bounded stopping times such 
that 

lim X,(.)(o)= Y(o), P-almost surely. 

ii) I f  in addition, there is a constant C>O such that ~[X~] < C for each bounded 
stopping time a, then Y is integrable. 
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iii) In particular, if there is a random variable g_>-0, g integrable such that 
]XnJ <=g for all n, then (X~(n))n_>1 converges to Y in the Ll-mean and hence (~X~(,)),=>I 
converges to ~ Y 

Proof Since ii) follows from i) and Fatou's lemma, and iii) follows from i) and 
the Lebesgue dominated convergence theorem, we need only prove i). 

We consider first the case when Y is real-valued, Y: f2 ~ R. In this case the 
existence of the sequence (~ (n)),> 1 is obtained by applying Lemma 1 inductively. 

We pass now to the general case, Y: ~2~R. Let f :  R--* [ -  1, 1] be the homeo- 
morphism given by 

X 
f ( x ) = - -  f o r x e R ,  f ( - o o ) = - l ,  f ( + o o ) = l  

l+lxl 
and let g be the inverse homeomorphism. We can reduce this case to the previous 

case by considering Xj =f(X,) ,  and Y' =f (Y)  

and then composing back with g. Thus Theorem 1 is proved. 

In the case when the function g below reduces to a constant C > 0, the result 
of Corollary 1 is due to Baxter (see [1]); for the continuous parameter case see [7], 
Prop. 6 (a), p. 232. 

Corollary I. Let (Xn),=> 1 be a sequence of random variables and suppose there 
is an integrable random variable g > 0 such that ]Xn[ < g for all n. The following asser- 
tions are then equivalent." 

1) lira X n (co) exists P-almost surely. 
n 

2) The generalized sequence (~ X~)~ r is convergent. 

Proof The implication 1)~2) is trivial (a version of the Lebesgue dominated 
convergence theorem). 

2)~1). By Theorem 1, there exist strictly increasing sequences (r(n)),>=~ and 
(a (n)). = 1 of bounded stopping times such that 

lira X~(.)(co) = l imsup X. (co), P-almost surely, 

lira X~(.) (co) = lim inf X. (co), P-almost surely. 
Then " 

(lim sup X. - lim inf X.) = lim ~ (X~(n))-- 0 
n l~ n 

so that lira sup X. = lim inf X., P-almost surely. Thus the corollary is proved. 
n n 

Remarks. 1) It is easy to construct an example of a sequence (X.). >~ of integrable 
random variables such that X. > 0, ~ X~ < 1, lim X. (co) exists P-almost surely, and 

n 

yet for which the generalized sequence (S X~)~r fails to converge. {Take for (f2, Y,, P) 
the Lebesgue measure space on [0, 1] and define X2.(a))=0 and 

X2n+ 1 (co)={20" forcoe(0,2-")  
for 0)6(0, 2-")" 

2) Let (X.)n>~ be a sequence of integrable real random variables. It is easily 
seen that the generalized sequence (~ X~)~r is monotone increasing (that is, the 
2* 
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r e l a t i o n s  T1, "C 2 (~ F, T 1 ~ "/J2 imply ~ X,I < ~ X~2 ) if and only if (X,), >= t is a submartin- 
gale. 

Lemma 2. Let (X,),=I be a sequence of integrable real random variables and 
suppose that sup ~lX, l<oe .  n 
Then the following assertions are equivalent: 

1) The generalized sequence (~ X~)~ r converges. 

2) The generalized sequences (~ X +)~r and (~ X~-)~r both converge) 

Proof: Since 2)~1) clearly, we only have to prove the implication 1)~2). 

Assume 1). We divide the proof into parts: 

I) We show first that under our assumptions 

sujp Sx+<oo, sunup Sx -<oo. 
Since the generalized sequence (5 X~),~r converges, it is eventually bounded, and 
hence to prove our assertion it is enough to show that (~ X~+),~r is bounded above. 
Let then r e F; choose n >__ ~ and define the stopping time o- by 

a(@ = {,(;)) on {X,>O} 
on {X~ < 0}. 

Then X + < X , +  [X,[ and so ~ X + <S x~ + ~]xo]. This proves our assertion. 

II) We now show that the generalized sequence (~ X+),~r converges (this of 
course will imply that the generalized sequence (~XU),~r converges also). The 
device used below is borrowed from Baxter's paper. 

Given e>O, choose an integer n o such that the relations a~F, ~ F ,  a>n o, 

z>no imply IS X~-~  X~I <e. (1) 

Next choose roeF,  zo>no such that for any a~F,  ~r > %  we have 

X + __< ~ X~ + e. (2) 

Let now ~ e F, o-__ ro and define the new stopping time (h by 

0.1(09)~_. f. O'((D) on {X~o>__O } 
~%(o)) on {X~o<0 }. 

Then, on the one hand by (1) we have 

and on the other hand 

X +o+ S 
{X~ o > O} {X~ o < 0} 

I X f f l :  ~ XO" -~- ~ g,to. 
{X~o> 0} {X~o< o} 

1 Lemma 2 and Theorem 2 remain valid if for instance we replace the condition 

sup ~ IX.] < c~ 

by the condition 
sup ~ X 2 < oo. n 



Pointwise Convergence in Terms of Expectations 21 

We deduce 
(3) 

{X~ o _-> O} 

Combining (2) and (3) we obtain for any aeF, a >= %: 

and thus Lemma 2 is proved. 

We may now state our main theorem in the real-valued case: 

T h e o r e m  2. Let ( X n ) n >  1 be a sequence of integrable real random variables. 
Suppose that 

sup I l x ,  l< oo. 

Consider the following assertions: 

1) The generalized sequence (~ X~),~r converges. 
2) The sequence (X,),>I converges P-almost surely. 

Then 1)~2). 

Proof. We assume that 1) holds. By Lemma 2, it follows that the generalized 
sequences 

converge. Hence in proving the implication 1)~2) of our theorem we may assume 
without loss of generality that X, > 0 for all n. 

We now prove the implication 1)~2) by proving the contrapositive. Suppose 
then that the sequence (X,), e 1 does not converge P-almost surely. There are then 
real numbers c~ < fl such that P(A)> 0, where 

A = {o) l lim inf X.(o)) < c~ < fl < lim sup X~(o))}. 

We will show that the generalized sequence (~ X~)~r is not Cauchy. For 

(fl - c~) n (A) 

2 

we show that given any integer M > 1 there exist bounded stopping times rl > M, 
"c2~M with ~X~2-SX~>=e. 

Let b=e/2fl and let M_>_ 1 be any integer. There exists a set B and an integer 
N>M such that B ~ J ~  and P(AAB)<=s There exist integers N">N'>N such 
that if: 

flo={e)lninfNX,(o))<a<fl< sup X,(e))} 
- - ' N ' < n < N "  

then P(A-~2o)<6.  Define now 

CI={o)eB[ inf Xn(e))<a }, 
N < _ n < N  ' 

C2={o)~CllN sup X,(e))>fl}. 
, < n < = N ' ,  
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Then 
C I ~ N , ,  C2E~N,,, C 2 c C 1 c B  

P ( C z ) > P ( A ) - 2 5 ,  P(C1 - C2)<26. 
(1) 

Define now stopping times Zl, "~2 by: 

N' 
zl(e))= inf{n I N<_n<_N', 

N' 

z2(o)= N" 
inf{n I N ' < n < N " ,  x.  (o)) > fi } 

O ) E  C 1 , 

O)r 1 

o~ Cz. 

Then M < N < _ z  I < z  2 and by (1) we have 

I (x::-x:,) 
C1 

i x : : -  S 
C2 C 1 -- C2 e l  -- C2 

> (fl-  ~) P(C2) + 0 -  ~P(C1 - C2) 

>(B-~)  (P(A)- 2 ~ ) -  2 ~ ~ 

= ( f l - ~ ) P ( A ) - 2 5 f l = 2 ~ - e = a  

X*~ 1 

This completes the proof of Theorem 2. 

Corollary 2 (Submartingale Convergence Theorem, see [2, p. 324], [8, p. 1313, 
or [4, p. 1463). Let (X,),>I be a sequence of integrable random variables such that: 

i) E(X,+I [~,)>X, for all n> l, 

ii) sup ~ [X,] < oc. 
n 

Then (X,),>=I converges to a limit P-almost surely. 

Proof Since the generalized sequence (~ X~)~r is monotone increasing and 
bounded, this is an immediate application of Theorem 2. 

Remarks. 1) The proof of Theorem 2 is completely elementary and makes use 
only of Lemma 2. 

2) The implication 2):~1) in Theorem 2 is in general false, as Remark 1) at 
the end of Corollary 1 shows. 

3) Without the assumption of Ll-boundedness on the sequence (X,).=>I, 
Theorem 2 is in general false, as the following simple example illustrates: Let 
(u,),~l be a sequence of independent identically distributed random variables 
with u ,=  1 or - 1  with probability 1/2 and set X,=  Ul + . . . + u , ,  for each n> 1. 
This seems to contradict Remark 2) on p. 50 of [6]. 
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w 3. The Case of Abstract-Valued Random Variables 

In this section S is a Polish space (that is, a complete separable metric space) 
and we consider S-valued random variables. We denote by CR(S) the set of all 
real-valued continuous functions on S. 

We begin by introducing the following 

Definition. We say that an at most countable set {(@jsd}, where c~jE CR(S) 
for each j~ J ,  is a determining set for S if: 

The mapping ~: x~(4)j(x))j~s of S into RJ=I]  Rj is a homeomorphism of S 
onto a closed subset of R s. j~s 

Remarks. 1) Let Sf  c CR(S) be an at most countable set. It is easily seen that 
the following are equivalent assertions: i) ~ff is a determining set for S; ii) when- 
ever (x,),>l is a sequence of points in S such that lira qS(x,) exists, for each qSeY, 

n 
then there is x e S such that lim x, = x. 

n 

2) For  S = R the following are examples of determining sets: 

a) {qS}, where qS(x)=x for x~R; 
b) {q51 , ~b2}, where q51(x)=x +, q52(x)=x- for xeR;  
c) {01,02}, where Ol(x)=lx[,  O2(x )= [x+ l l  for xeR. 

3) Suppose that S is a Polish space and that sr  ~ CR(S) is a determining set 
for S. Then the set 

{lq~l 1 r  u {re + 11 [q~eX} 

is a determining set c C + (S). 

4) Let S be compact metric. Let s ( ( c  CR(S) be any (at most) countable set 
separating points of S. Then ~(( is a determining set for S. 

We now establish the existence of a determining set for an arbitrary Polish 
space: 

Theorem 3. Let S be an arbitrary Polish space. There exists then a determining 
set for S. 

Proof We are indebted to T. Figiel for the proof below, which is much simpler 
than our original proof. 

The existence of a determining set follows from the following classical facts 
of topology (for these we refer the interested reader to I-5]): 

I) There is a homeomorphic embedding q~: S--,R N (here N =  {0, 1, 2,...}). 

II) S is an absolute G~, therefore R N-  0 (S)= U Fn, where each F. is a closed 
subset of R N. ,~N 

III) The mapping 

1 

is a homeomorphic embedding of S onto a closed subset of R N x R N. 

This completes the proof of Theorem 3. 
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We next show how to construct "nice" determining sets in separable Banach 
spaces. The construction below was shown to us by Figiel. It considerably simpli- 
fies and generalizes our original construction. The construction is based on the 
following Lemma: 

Lemma 3. Let X be a separable Banach space. Let f: X ~ [ 0 ,  + ~ ]  be a convex 
function, finite on a dense subset of X and such that f l  ([0, a]) is compact for all 
ae R + = [0, + ~) .  For each integer n > 1 define 

f,(x)=inf{f(y)l ,[y-x,,< ~-t, for x~X; 

then f. is finite-valued, continuous and convex. 

Proof Since f is finite on a dense subset of X, it is clear that f,(x)< oo for each 
x~X. 

To prove continuity off ,  it is enough to establish that f l ([0, a]) is closed for 
all a~R +, and j~l ([0, a)) is open for all a e R  +. The first assertion follows from the 
identity: 

J~l ([0, a ] )=f~ ([0, a ] )+  ! z~X I IJz,,<__ 1_! 

which representsf, ~ ([0, a]) as the algebraic sum of a compact set and a closed set. 
To prove the second assertion we note first that, since f is convex, we also 

have: 

f , ( x )=in f f f (y ) l , , y -x l ,<l t ,  for x~X. 

It follows that we have the representation 

and thusf ,  1 ([0, a)) is open. Hence the continuity off .  is proved. 
We next turn to the proof of convexity. Let xeX, yeX, c~R with O_<e_< 1 

and let z=ex+(1-e )y .  Let e>O. Choose.x 'eX,  y'~X such that 

1 
[Ix'-  x[[ < - - ,  f(x')<f.(x)+s, 

n 

1 
[[y'-YI[ < - - ,  f(y')<-L(y)+e. 

n 

Let z'=c~x'+(1-c~)y'. Then we have: 

1 
IIz '-zl[--II~(x'-  x)+ (1 -c~)(y'-y)ll <~  IIx'-xll +(1 -~)IlY'-Y[I < - -  

n 

and hence 
f" (z) <<_ f(z') < . f(x') + (l - ~) f(y') 

< ~ (f. (x) + e) + (1 - ~)(f"(y) + e) 

=~f . (x )+(1  - ~ )  f . (y)+e .  
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Since e > 0 was arbitrary, the convexity of f~ is proved. This completes the proof 
of Lemma 3. 

The following remark will be used in the proof of Theorem 4 below: 

Remark. Let X be a Banach space, E c X .  Suppose that for each n>  1 there is a 
compact set K ,  c X  with the property 

1 
x e E  ~ d(x, K , ) < - - .  

n 

Then E is (strongly) relatively compact. 

Theorem 4. Let X be an arbitrary separable Banach space. There exists then a 
determining set for X consisting of convex functions. 

Proof Let (Y,),el be a sequence of points in X such that lim I]Y.]I =0 and such 
n 

that the linear space spanned by A =  {y~, Y2 . . . . .  Y . . . . .  } is dense in X. The set 
A w {0} is compact. Let K be the closed convex symmetric hull of A w {0}; then K 
is also compact. Let f be the gauge function of K:  

[ in f{2 '2>0 ,  x } f ( x )  = = z e K  , if this set is non-void 

[ + oo otherwise. 

It is clear that f :  X-~ [0, + oo] and that (see for instance [3], p. 411): 

f ( a x ) = a f ( x ) ,  for x e X ,  a e R  +, 

f(x+y)<___f(x)+f(y), for any x e X ,  y e X .  

Furthermore, it is easily seen that fa  ([0, a] )= a K for every a~R +. Thus f satisfies 
the assumptions of Lemma 3. For each integer n > 1 let f ,  be defined from f as in 
Lemma 3. 

Let X' be the dual of the Banach space X and let {x~, x~ . . . .  , x',, ...} c X '  be a 
countable total set (see [3, p. 418]); this means that the relations x e X  and x', (x)= 0 
for all n > 1, imply x = 0. 

We now define ~ as follows: 

if{" -= { f l ,  f 2  . . . . .  fn  . . . .  } U {Xl ,  X i . . . . .  X n , . . . } .  

We show that S is a determining set for X. It is enough to show that if (Xk)k>=a 
is any sequence of points in X such that lim 4) (Xk) exists for each 4~ e W,, then lim x k 

k k 
exists (strongly). For each n > l ,  let a, e R  such that a,>supf,(Xk), and let K , =  

k 
f l  ([0, a,]). Then K,  is compact and it is easily seen that: 

For each 
1 

k> 1, d(x k, K , ) < - - .  
n 

By the Remark preceding Theorem 4, we deduce that the set {xl, x z . . . .  , Xk, ...} 
is (strongly) relatively compact. Let (Xk(p))p>=a be a convergent subsequence of 
(Xk)~_> 1 and let x = lira Xk(p). We show that (Xk)k >= ~ itself must converge to x. In fact, 

P 
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otherwise there would exist another subsequence of (Xk)k>_l converging to some 
element y + x. Since lim x'/1 (Xk) exists, we deduce x', (x) = x'/1 @), for each n > 1. Since 

k 
{x'l, x~ . . . . .  x'/1, ...} is total, it follows that x = y. Hence lim Xk= X and Theorem 4 is 
proved, k 

Remarks. 1) Let (S, d) be a Polish space. Let A c S  be a countable dense set 
and for each aEA, let 

49a(x)=d(x, a), for x~S.  
We have: 

i) The mapping ~ '  x ~ (49a (X))a~A of (S, d) into R A = 1--1Ra is a homeomorphism 
of (S,d) o n t o  ~ ( S ) c R  A. aeA 

ii) Suppose the distance d is bounded. Then {490 ]aE A} is a determining set for 
(S, d) if and only if (S, d) is compact. 

2) Let X be a separable infinite-dimensional Banach space, let A c X  be a 
countable dense set and for each aeA,  let 

49a(3r = I I x - - a l l ,  for x e X .  

Then {49,1aeA} is not a determining set for X. 
We may now state the abstract version of Theorem 2: 

Theorem 5. Let S be a Polish space and let (X/1)/1>=1 be a sequence of S-valued 
random variables. Suppose there is ~ r c  Cg(S), a determining set for S, with the 
following property: For each 49~X, we have: 

i) sup ~ [49 (X/l)[ < ~ ; 
/ I  

ii) The generalized sequence (~ 49 (X~))~r converges. 

Then the sequence (X/1)/1>=1 converges to a limit P-almost surely. 
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