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Continuity and Convergence of Some Processes 
Parameterized by the Compact Convex Sets in R s *  

A. de H o y o s  

1. Counting Random Partitions 

Let 3/1, X 2 . . . .  be a sequence of  independent  identically distributed N(0, I) 
r a n d o m  variables in R s. Let F,, = {X 1 . . . .  , X2m } be a r a n d o m  set of points. Denote  
by ~-d(A) the closed convex hull of A. Let K be the set of  all closed convex sets 
in R s and Km={-d-6(Cc~Fm): CeK}. We give an upper  bound  on the expected 
number  of  sets in Kin. 

L e m m a  1. For any integer b > 0 

[22b'~, s = 1 
E cardb(Km)__< 0(1). ~22b,,/~+,, s > 2 .  

Note 1. The same bound  is obtained if we replace N(0, I) by the uniform 
distr ibution on the unit ball of  R S. 

Note 2. In [-4] we showed that  if we let 

Fro= )( {j2 -m" j = 0 ,  ..., 2m}, 
1 

then for s < 2 the bound  of  L e m m a  1 is obtained for card b K,,, however  in order  
to get a useful bound  for s > 2 it is necessary to consider r a n d o m  parti t ions as 
in L e m m a  1. 

Proof of Lemma 1. 

The Case s- -1 .  This is trivial since 

The Case s>2. Let 4~ denote the normal  cumulat ive distribution N(0, 1) 
in R and q~ its density with respect to the Lebesgue measure. Set an-2-2s log n 
and denote  by CTE a generic positive constant  that  may  depend on s but not  
on any free index. 

* This paper i s -  essentially-the author's dissertation submitted in partial fulfilment of the require- 
ments for the Ph.D. degree in statistics at the University of California, Berkeley, June 1970. The paper 
was prepared with the partial support of the National Science Foundation Grant GP-8690, of INIC of 
Mexico, and of CONICYT of Chile. 
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Now by integrating by parts and then iterating we have, 

a n  

Icb" (x) q~S (x) d x < (C rE~n) [q~ (a,) + (affn) ~ - 1]. 
- - 0 0  

Also 

and by [8]: 

o0 

exp ( -  x2/2) dx <= exp ( -  a2./2) 
a n  

P(X~+~-d-5(X~ . . . .  , X,))< CTEn ~-1 ~ q)'-~(x) go*(x)dx. 
- - o 0  

Therefore, 

e(x.+ir .... ,x.))<__crEn +q,(a. 
~ - - o 0  

<= C r E  n ~- 1 [(affn)~-l(1/n) + q~ (a,)] <= C r E  n -~, 

for every eE(O, I) as soon as n>n~ large. 

Let Bj_I be the event {X1 . . . . .  Xj_~ are the extreme points of ~(X1 .. . . .  X~_I)} 
and B~_I denote its complement. Then 

Bj-2=Bj-2B;_I+Bj_2Bj_,=B~_2B~_I+Bj_I .  

Moreover, given X l = X l , . . . , X j _ 2 = x j _ 2 ,  U5(Xl, . . . ,Xj_z,Xj_O is at least as 
large if Bi_ 1 occurs as it is if Bj_2B~_ 1 occurs. Hence 

nr(XjeU6(Xl, ..., Xj_,)[Bj_ 1)~ nr(XjeU6(X~ . . . . .  Xj_O [Bj_ 2 B;_,) 

so that 

P r ( X ~ ( X ~ ,  ..., Xj_I)IB~_~)>=Pr(Xfi~(X~, ..., Xj_I) ]Bj_2), 

and by proceeding similarly we get 

Pr(Xjr . . . . .  Xj_,) [Bj_ 2) >=Pr(Xje U6(X1, ..., Xj_ O). 
Hence 

k 
n(Sk) = [I  Pr(X fl~U6(X1, ..., Xj_I)IBj-1) 

j = l  

k k 

< I-IPr(Xjr . . . . .  XJ-1))<= 1-[ CTEj-~=(CTE)k(k!)  -~, 
j = l  j= l  

so that by Stirling's approximation 

P(Bk) <= O(1) ( CTE/k) ~k. 
Finally, if we let 

Kk,n = {CeK,,: card (extreme points of C)=k}. 

then by symmetry it follows that for any integer b => 1, 

[ 2 m \  b 

E cardb(Kkm)< ( k ) P(Bk) 
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and hence 
F 2'- -I b 2 m b 

Ecardb(K,.)=E[l-[card(Ka,,)| <29m max [ [  ] P(Bk)] 
k=a .a = O<-k<-2=k\k] J' 

so that by Stirling's approximation 

E cardb(Km)<O(1)2 bm max [(CTE2m/k)bk(CTE/k)~k] 
O < k < 2  TM 

_< 0(1) 2 bm max (CTE2"/21")b2e=(CTE/2e")~ee" < 0(1) 22~/(~+*) 
- -  o = < f l _ - < l  

2. A Continuity Result 

Let K be the space of all compact convex sets in R ~ and # the measure 
#(A)=2(A c~ S) where S denotes the unit ball of R ~ and 2 the Lebesgue measure 
on R s. We endow K with the topology induced by the metric obtained by taking 
the measures of symmetric differences of sets in K. This metric is equivalent to 
the Hausdorff metric: We say that a process is path continuous or simply 
continuous if there is a version, having the same finite dimensional distributions, 
for which almost every path is continuous on K. The following theorem, which 
gives the continuity of Gaussian processes satisfying a natural HSlder condition, 
is the central result of this work. 

Theorem 1. Let Z be a Gaussian process parametrized by K and such that for 
some c>0 ,  and for all A, B6K, 

EIZ(A)-  Z(B)] 2 =< c #(A A B). 

Then Z is continuous. 

Other Related Results. Let F be the space of all nonempty closed subsets 
of L0, 1] s with the Hausdorff metric d. Then the minimum number of subsets 
of F of d-diameter less or equal to 2~ needed to cover F, 

N(F, e) = 0(1) ~-~ 

so that Dudley-Strassen's result (Theorem 3.1 in [6]) gives continuity of Gaussian 
processes Z parameterized by F, under the condition 

EIZ(A)-Z(B)I2<cdZS(A,B), for every A, BeF, where c > 0 .  

For  s > 1 this condition is too strong to yield the convergence of the series 
2 -m logl/2N(F, 2 -m) which is the Dudley-Strassen's continuity condition. 

m 

A result closer to the one in Theorem 1 is due to X. Fernique. As shown 
in Dudley [-6] this result gives a condition for continuity of Gaussian processes 
parametrized by the space of all polyhedra in R s with at most k vertexes. 

This is accomplished by imbedding this parameter space into R k~ and by 
using in this space the following type of condition for continuity of Gaussian 
processes: E ]Z (x ) -  Z(y)[ 2 <c I x -  y[. 
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Strength of the Result. Continuity conditions of the necessary and sufficient 
type are in general not known. However, in our case, and even for s=  1, if we 
remove the condition that Z be Gaussian, then the Poisson process satisfies the 
HSlder condition but is a jump process, and if we remove the HSlder condition 
then, as is shown in Berman [1], the paths of Gaussian processes are not only 
discontinuous but actually extremely irregular. 

Proof of Theorem 1. 1. Centering of Z. Given 

e [Z(A)-  Z(B) I 2 =< c/~ (A zx B), 
then 

[E [Z (A) -  Z(B)]] 2 __< E [ Z ( A ) -  Z(B)] 2 ___ c/~ (A zx S). 

Hence Z is continuous iff Z -  EZ is continuous. Therefore, we are going to assume 
from now on that EZ(A)=O for every A6K.  

2. Bounding the Oscillations of Z. Let P be the probability measure, on a 
space denoted by ~, associated to the process Z. Let Q be the product measure, 
on a space denoted by S, induced by a sequence Xa, X2, . . .  of independent 
identically distributed N(0, I) random variables in R s. Consider the product 
measure P x Q. 

Let a, 7 > 0 and fl = ~ - 2 7  > 2/3. As in Lemma 1 let 

Fm={X1,...,X2m } and Km={U6(Ac~F,,): AeK} .  

Given A e K  denote by Am the largest set in Km contained in A or the empty 
set if there is none, and denote by A" the smallest set in Km containing A or the 
unit ball S of R ~ if there is none. 

Set cm=max[p(Am n A~): A e K ]  
and set 

b~, = (2 pm cm) 1/2. 

It follows from these definitions that 

(Am c~ S)~_(A,,.I ~ S)~. . .  ~(A c~ S)~. . .  ~(A'~. 1 c~ S)~_(A" c~ S) 
and 

#(A,, zx Am+O<=l~(Am /, A)< #(Am zx A')<Cm. 
Observe that 

(1/27r a2) 1/2 ~ exp( -xZ/2a  z) dx <(1/2 ~)l/z (a/b) exp(bZ/2a2). 
x '>b 

Hence, given a ~06~ both 

max n [co e (2: ]Z [Am (~o)] (co)- Z [Am + 1 (~o)] (co)] > b~ (~o)] 
A E K  

and 
max P [co6 Y2: IZ[Am(~o)] (co)- Z[A'~ (~-o)] (co)l > b~,(~. 0)] 
A c K  

are less than or equal to 

CTE.  exp [ -(1/2) [b" (~o)/C~/2 (s 2 ] = CTE exp [ - (1/2) 2 a~] 

by definition of b~,. 
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Now if we denote 

~ = P  x Q [qo, ~)ef2 x E: maxlZ[Am (~_)] (co)- Z[A,,+I(~.)] (co)l > b~(~)] 
A E K  

and 

P" = P x Q [(co, r e f2 x S : max I Z [A" (#)] (co)- Z JAm (~)] (o))[ > b~ (~)], 
A e K  

then both P~ and P.~ are less than or equal to 

C TE ~ card = (Kin +~(r exp(-(1/2) fire) dQ (~) 

= C TE exp ( - (1/2) 2 r E card2 (Kin + 1) 
< 0 (1) 2-  2 [O-(2/3)]m, 

by Lemma 1. On the other hand, given a ~o e Z 

max[P(me[2: IZ(A)(co)- Z(B)(oJ)I> 2-Tm): A, BeKm(~o) and /~(Azx B)<2 -=m] 

< CTE. exp [ - (1/2)(2- ~m/2- ~m/2)2] 

so that if we let 

P,~'=PxQ[(co,~)ef2xE: lZ(A)-Z(B)l>2 -~m for some A, BEKm(~ ) 

such that B c_ A and /~ (A a B) < 2-=m], 

then 
P[,'< CTE S card2 (Km (~.)) ' exp [ - (1/2)(2-~m/2-~m/2)2] dQ (~) 

< CTE exp [ - (1/2)  ffm] E card 2 (Kin) 

<0(1)  9 -2E~-'~/~1'~ 

by Lemma 1. It follows that 

(Pro +P~, +P.~')<O(1)~ 2 -2t'  ,2/3,~=< 
m m 

so that if we let bm = m a x ( b ' ,  2-~m), then by the Borel-Cantelli lemma for almost 
every (oo, ~), there is an mo (co, ~) such that for all m > mo (co, {): 

IZ(Am)-Z(A,~+Ol<b'm<b,, and IZ(A~)-Z(A~+,)l<b~<bm 

for every AeK. Moreover, [Z(A)-Z(B)I<2-~m<b,,, for every A, BeK,, such 
that B_c A and/z (A zx B) < 2 - ~m. 

Now 7>0  so that ~ 2-~m< O0 and hence to show ~ bin< oo Q-a.s. is equivalent 
m i n  

to showing ~ b~,< oo Q-a.s. 
m 

Let ode(0, 1). Then Q(cm>2-~'m)<o(1)2 ->'-='~ 
Hence on the one hand given a positive c(' = (:( - fi)/2 there is an ml sufficiently 

large so that outside a set of probability 

Pr[ U (b'>2-~"m)]<= CTE 2 2->'-'"m 
m > 4 ~ t  1 m > m 1 

~b~,=_< ~ b~,+ ~ 2-~ 'm<oo.  
m m < = m l  m > m  1 
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On the other hand, 

Q [/t(A/x Am)> 2 -~'m] <= O (1) 2 - 2''-' ' '  m. 

Hence, since Km T (.J Km this implies that U K,, is dense in K with Q-probability 1. 
Moreover m m 

E IZ(A)-Z(A,,,)I2<E CTE #(A/, Am) 
.<= O (1) [2-~'m + 2 -  2"-")"3 

so that Z(Am) converges to Z(A) in the L2-sense. 

We shall show that on U K~, Z is uniformly continuous with P x Q-prob- 
m 

ability 1. Its extension to K is then, by Fubini's theorem, a version of Z with 
continuous sample functions. 

3. Uniform Continuity of Z on [9 Kin. Given t/, 6 > 0 let 
m 

(Pz + Pro' + P2)< ~ 

and also 
2 bm<c~" 

Given A~ U K m w e  have shown that Z(Am) converges in the L2-sense, hence 
m 

in probability, to Z(A). Observe now that outside the set 

{max fZ(Ak)- Z(Ak+Of > bk} 
k>mn, 6 

we have 
y" IZ(Ak)--Z(Ak+i)l<= ~ bk<r 

k>mn= ,6 k>mn,6  

so that outside this set Z(Am) converges a.s. to Z(A). 
Let A, Be U Km and assume without loss of generality that B~_A. Observe 

m 

that /~(AmzXB)<e implies t~(AmA(BnAm)'~)<e. The following inequality is 
satisfied for each m: 

]Z(A) - Z(B)[ ~ ] Z ( A ) -  Z(Am +1)] + ]Z(B) - Z(B,,,+I) I 
+ IZ(B,.~, ~)-  Z((B n A,.~, ~)~,., ~)] + [Z(Am.,~)- Z((B n Am.,~)~,~,~)] 

+ ~ IZ(Ak)-Z(Ak+OI+ ~ IZ(Bk)-Z(Bk+I)I. 
k= m~, 6 k ~  mrl, 6 

Hence outside a set of P • Q-probability less than 6r/ 

sup [ IZ(A)-  Z(B)I: A, Bs [.) K., and #(A z, B)<=2-~m., ~] <=46. 
r t !  

This implies that on [.)K,., Z is uniformly continuous with P x Q-prob- 
m 

ability I and hence the desired result follows. 
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3. Applications 
In this section we show how the results and methods of Theorem 1 can be 

used to obtain the convergence of some process parameterized by K. We refer 
to Billingsley's book [-3] for the terminology. 

Compactness of Gaussian Processes Parameterized by K. As in Section 2 we 
let K be the space of all compact convex sets in R s and g be the Lebesgue measure 
on the unit ball of R s. We denote by C(K) the space of all real valued continuous 
functions on K. 

Corollary 1. Let ( Z i ) i ~  1 be a family of Gaussian processes parameterized by K 
and satisfying the conditions: 

lira sup Pr(IZi(A)] >k)=O,  
k ~ c o  i~I  

and 

for some A 6 K :  

for every A ,B~K,  

so that Z is continuous by Theorem 1. 

sup E IZi(A)-  Zi(B)]; < c  g(A zx B), 
i s I  

where c > O. 

Then (Zi)i~1 is tight on C(K). 

Proof of Corollary 1. We can make K into a compact metric space by metrizing 
it with the g-measure of symmetric differences. Now 

ElZi(A)-Zi (B) j2<cg(AzxB)  for every i~I 

so that by Theorem 1 every Z i is continuous. 

Hence by Arzela-Ascoli's and Prohorov's theorems it follows that to obtain 
the desired result it suffices to present an equicontinuity set R on C(K) which 
carries almost all of every one of the measures associated to the processes Zi. 
This R is obtained from the proof of Theorem 1 by replacing Zb y  Z i all throughout 
the proof. 

A Central Limit Theorem. We follow Dudley [7] very closely in the next 
corollary. 

Corollary 2. Let Xa, Xa, . . .  be mean zero independent identically distributed 
C (K)-valued random variables satisfying 

E fXI(A)-  XI(B)J k< [cg(A zx B)] k/z for every A, BEK, 

and for every k >=2, where c>0.  Then Z,=(X1 +...-I-Xn)/n 1/2 converges in distribu- 
tion on C(K) to a continuous Gaussian process. 

Proof of Corollary 2. The finite dimensional distributions of Z, converge, by 
the multidimensional central limit theorem, to those of a Gaussian process Z. 
Moreover 

EZ(A)=EZ. (A)=EX,(A)=O,  EZ(A) Z(B)=EXI(A) XI(B), 

E IZ(A) -  Z(B)] 2 --E 1Z,(A)- Z, (B)I 2 

= E IX~(A)-X~(B)I 2 <cg(A  zx B), 
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Let 

then 
=0 

Y j = n - m ( X j ( A ) -  Xj(B)), 

and E ] Yj[ k <= [c p (A A B)/n] k/2 

Now as in Lemma i of [7] we have 

j - - l ,  . . . ,n ,  

for every j =  1, ..., n. 

E exp(t Y1) = 1 + ~ tkE [Yx[k/k! 
k = 2  

<_ 1 + ~ tk[cp(A a B)/njk/2/k! 
k=2 

= exp [t [c # (A zx B)/n] 1/2] _ t[c p (A ,5 B)/nJ 1/2 

< exp [8 t z c p (A zx B)/9 n]. 

Hence, for every n 

Pr[IZ,(A)-Z.(B)I>e]=Pr ~__IYjj >~, 
J 

\ j = l  

=<2exp(-t )Eexp (ti  
\ j = l  

_< 2 exp [ - t ~ + (8 tz/9) c p (A `5 B)] 

__< 2 exp [ - ez/9 c # (A ,5 B)]. 

This exponential type of bound is of the same type as the one used for the 
Gaussian case in Theorem 1. Hence to obtain the convergence of Z, we simply 
have to follow the proof of Dudley's central limit theorem [7] using the approach 
of Theorem 1. 

Convergence of Empirical Processes Parameterized by K. The following 
corollary solves a problem posed by Peter Bickel, and helps to extend some of 
his results in [2] as well as some results by Dudley [51. 

Corollary 3. Let X~, X 2 . . .  be independent random variables all uniformly 
distributed on the unit ball of R s. Let 

Z.(A)=(1/n) 1/2 Z 
j=l 

then the empirical processes Z,  converge in distribution to a continuous Gaussian 
process Z parameterized by K and satisfying 

EZ(A)-=O, EZ(A)  Z ( B ) = p ( A  n B)-I~(A) t~(B). 

Proof of Corollary 3. 
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Let S(X, 5) be the ball of radius e and center X in R s, and S=S(0,  1). Let 2 be 
the normalized Lebesgue measure on the unit ball S of R s. 

Define 
3~A={xsR~: Ix-yl<~ for some y ~ boundary of A}, 

C~=2(S(0,~)), and 2~(A,X)=C~3~(Ac~S(X,e)). 

Then the X~(A)=2~(A, Yj)-p(A) are independent identically distributed C(K)- 
valued random variables. Moreover for any A c_ S c~ (0~ S) ~, by Fubini's theorem, 

E ).e(A, g )= ~ (C~ S 1ArtS(Y, ~)(X) d)L(X)) d#(y) 

=C, 2• x~Ac~X(y,~)} 

=C, 2• y~Ac~S(x,e)} 

= S ( C~ S 1A n s (x, ~) (Y) d). (x)) d IA (y) 

=S 1A(y)(Ce ~ IS( X, e)(Y)d)o(x))dl2(y) 

=~ 1A(y) d#(y)=/~(A). 

Hence in this case EX~ (A)= O. 

N o w  
g ]XI(A ) - -  Xl(B)]k < [4 C2 2 p (A zx B)] k/2 . 

Therefore, by corollary 2, the smoothed empirical processes 

Z~ = (X~ + . . .  + X,,)/n ~/2 

converge in distribution to a continuous Gaussian process Z ~, with 

EZ*(A)=EZ~(A)=O, 
and 

EZ ~ (A) Z ~ (B) = EZ~ (A) Z~ (B) = 2 ~ (A, Y1) 2~ (e, Y1) - I~ (A) l~ (e). 

On the other hand, by the multidimensional central limit theorem, the finite 
dimensional distributions of Z~ converge to the finite dimensional distributions 
of the continuous (by Theorem 1) Gaussian process Z. 

Finally, if we can show that both Z~ and Z ~ converge in L 2 as e ~ 0 to Z n and 
Z respectively, then the convergence in distribution of Zn to Z will follow. But 

~(I,~(A, ~ ) -  L,(~)I > 0) = ~ ( V l ~  A)<= C T ~  

and 
]EZ~(A) Z~(B)-EZ(A) Z(B)[ = ]EZ~(A) Z~(B)-EZ,(A) Zn(U)[ 

< IE 2~(A, Y~) 2~(U, Y1)-g(A c~ S)l < CTE. 

hence the corollary follows. 
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