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Abstract. Given a point d and a convex polyhedron or polyhedral cone in a real complete 
inner product space. We shall describe a numerical method to find a point in the polyhedron 
(cone) which has minimum distance to d. The characteristics of our method are the description 
of the polyhedron (cone) by its extreme points (rays) and the introduction of a one-parameter 
family of problems including a trivially solvable problem and the given problem. The knowledge 
of the solution of the problem corresponding to one value of the parameter makes it easy 
to find a larger parameter value for which the solution can again be found. Starting with the 
trivially solvable problem, the given problem is reached in a finite number of steps. Computa- 
tional experience shows that the computation time is about proportional to the product of 
the dimension of the space and the number of extreme points in the polyhedron, when these 
two quantities are of the same order of magnitude. 

1. Introduction 

Define an  inner  p roduc t  in Rs b y  (x, y)----x-CCy, where C is a posi t ive  
semidcfini te  (s X s ) -mat r ix  and let  II x l l - - - - V ( x ~  �9 W h e n  C is s t r ic t ly  posi t ive  
definite,  th is  is a no rm and  when i t  is only  semidefinite,  i t  is a seminorm.  Le t  
A ~ {al ,  a2 . . . . .  a~v} be a finite set of  points  in Rs, d a given po in t  (in R s) and 
consider  the  p rob lem 

inf  {]] x - -  d If: x e conv (A)}, (I) 

where cony s tands  for the  convex hull  of. 
W e  shall  descr ibe a numer ica l  me thod  (algori thm) to  solve (I) and  also a s l ight  

modif icat ion of  i t  t h a t  solves 

inf  {H x - -  d I]:x ~ cone (A)}, (II)  

where cone (A) means  the  convex cone with  ve r t ex  a t  the  origin t h a t  is genera ted  
b y  A ( tha t  is the  conical  hull  of  A).  

Our me thod  is cons t ruc ted  to  handle  problems in which the  const ra in ing 
po lyhedron  is descr ibed b y  i ts  ex t reme  poin ts  and  no t  as the  in tersec t ion  of 
halfspaces,  which is the  descr ip t ion  used in most  o ther  quadra t i c  p rog ramming  
methods .  See e . g . P .  WOLFE, who describes his own and  o ther  me thods  in [1]. 
See also HOUTIIAKKER [2], who has p resen ted  a technique  resembl ing ours. 
Of course, our  formula t ions  can be t r ans fo rmed  to such wi th  halfspaces,  b u t  we 
t h i n k  t h a t  each k ind  of  p rob lem shah be solved b y  a me thod  t h a t  t akes  a d v a n t a g e  
of  the  special charac te r  of  i ts  formulat ion.  

Our in te res t  in quadra t i c  p rog ramming  problems  fo rmula t ed  as (I) and  (II)  
or iginates  f rom a s t u d y  of  the  wide class of  p roblems  t h a t  arise when one has  to  
ex t r ac t  in format ion  f rom d a t a  ob ta ined  in measur ing  posi t ive  quan t i t i e s .  W e  

�9 The Swedish Natural Science Research Council has partly sponsored the work. 
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have shown in [3] how such problems in m a n y  cases are least square problems 
with inequalities as subsidiary conditions and t h a t  these problems have the 
forms (I) and (II),  t ha t  is, they  are quadrat ic  programming problems. I n  a 
second paper  [4], we have shown how an approximate  solution with error estimate 
of  a problem like (I) bu t  with nonfinite A can be obtained by  solving (I) with A 
as a sui tably chosen finite subset of  the originally given A. 

The description of  the algori thm and the proofs will be carried th rough  in 
detail for problem (I) when ]I H is a norm. The same algori thm works when 
lI I] is a seminorm, bu t  a completion of  the proofs is needed. The seminorm case 
is t rea ted  in section 8. The change of  the algori thm needed for problem (II) is 
described in section 7. 

R e m a r k  1. By  a solution to (I) resp. (II), we mean a point  xa E cony(A)  
resp. cone(A) tha t  satisfies IIxa--dll ~ ]lx--dll for all x e cony(A)  resp. cone(A). 
W h e n  1] ]] is a norm, xa is unique. 

R e m a r k  2. I t  is only the number  of  points N in A t h a t  mus t  be finite to 
assure the finiteness of  the algorithm. Since it is only the inner products  (ai, am) 
and (d, am) t h a t  are used in the calculations, our me thod  can even be used in 
an infinite-dimensional real Hflbert  space. The "dimension of  the calculations" 
is the smaller of  the numbers  s and N. 

2. A General Outline of the Quadratic Programming  Method 
for Problem (I) 

We shall describe a "con t inu i ty  me thod"  which considers a one-parametr ic  set 
(with parameter  2) of  problems of  type  (I) : 

inf  {ll x - -  c - -  2 (d - -  c)I]: x e conv (A)}, (Iz) 

where c is a point  in R s. 
~or  2 = 1 (Ia) equals (I). We shall choose c sui tably so t h a t  we know the 

solutions of  (I0) and can "cont inue"  the problem and its solution across the interval 
0 --< 2 --< 1 to get  the solution of  (I). We shall show tha t  this interval  can be 
divided by  a finite number  of  points 2i 

0 = 2 0  _--<21 ~ 2 2  ~ . . . .  ~ 2 t =  1, 

such tha t  the solution of  (Iz) is an affine funct ion of  2 in each closed interval 
(hi, 2r Moreover, ff ]i (2) are these affine functions, we shall show t h a t  it is 
fairly easy to determine 2f+1 and ]1+1 (2) w h e n / i  (2) is known. 

3. Proofs for Problem (I) when [] ]l is a Norm 

I t  is well known tha t  our problems have unique solutions when 1[ [I is a norm. 
This uniqueness makes the proofs nearer and easier to unders tand  in the norm 
than  in the : seminorm case. This is the reason why  we confine ourselves to the 
norm case in this section. The changes in the proofs and definitions needed for 
the seminorm case are small and postponed to section 8. 

We shall introduce some definitions and notations,  which all depend on the 

set A = {al,  a2, a3 . . . .  , aN}. 
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1. By an index set, we mean a subset of (1, 2, 3 . . . .  , N} .  An index set 
K ~- (ml ,  m2 . . . . .  rap} is defined to be degenerate if it is possible to find numbers 
~m, not all zero, such that Zu~m = 0 and Zu~raam=0 ,  e.g. if the points am 
(m ~ K) are affinely dependent. 

2. An index set K is nondegenerate if it is not degenerate. 
Note: Degeneracy of K implies linear dependence of the points am, (me K). 

Thus, linear independence implies nondegeneraey. 
3. For an index set K, we define 

L ( K )  = {z: z = Xm~mam,  ~m~ra = 1, r e e K } ,  

that  is the affine variety spanned by {ara:m ~ K}.  
4. We write C(K) for the interior relative to L ( K )  of conv(am:m e K).  I f  

there is only one m e K ,  C(K) - - - -L(K)= am. 

C (K) = {z : z = Zm ~ra am, Zm > 0, ~V'm ;4m = 1, m e K} 

The sets C(K) may overlap. 
5. We consider the solution xa of (I) as a function of d and define the nonlinear 

operator P by P :d- ->  xa. We call xa the projection of d and P the projection 
operator. 

6. For an index set K, we define 

B(K) -~ {z: P z  =- Zmzraam,  zra > 0, ZmZm : 1, m e  K}.  

B ( K )  is the set of all points whose projection on cony(A) are in C(K).  Since A 
is finite, there are only a finite number of sets B (K). When two sets C (K) overlap, 
tile corresponding B (K) do so too. 

We list now some more or less well known propositions and give also the 
proofs, since we want to refer to these proofs when we generalize to the case of 
a seminorm. 

Proposition 1. I n  s-dimensional space, a set K o/ more than s-}-1 indices is 
degenerate. 

Proo[. Let K contain s -~ 2 indices among which n is one. Consider the s-~ 1 
points am --  an (m 4: n). Since s -~ 1 points are linearly dependent, there exist Vm, 
not all zero, such that  ~m Vm (am -- an) = O, (m . n, m ~ K). Putting Vn ~- --  z~-,ra vra , 
we get Zravmam = 0 and ZmVm ~- 0 (reeK) .  QED. 

Proposition 2. The barycentric representation o/ a point x ~ L ( K )  is unique 
i ] K  is nondegenerate. 

Pro@ Assume two representations 

x~ -  Zm~raam, Zm/Zra = 1, ( m ~ K )  

x----- Zmvraara, ZmVm ~-- 1, ( r eeK) .  

Subtraction gives 

0 = ff"ra (~Ira --  Vm) am, Era (/zra -- vra) = O, 

which implies #ra ~--Ym when K is nondegenerate. QED. 
Proposition 3. A point z belongs to B (K) i / a n d  only i] there exists a point x 

(intended to be P z )  satis/ying: 

1. x =-- Zra /~ra ara , /zra ~ O , Zratzra ~ l , (m ~ K) 

2. ( z - - x ,  a n - - x ) ~ O  for l ~ _ n ~ N .  
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Proof. First, it is well known (see e.g. [5]) that  2. is the necessary and sufficient 
condition for x to be the projection of z on cony(A) also in the semidefinite case. 
I f  z E B ( K ) ,  we take x ~ Pz .  Then x satisfies 1. by the definition of B ( K )  and 
2. since it is the projection on eonv(A). Conversely, if there exists a point x 
satisfying 2., x is the projection of z on cony(A), that  is x ~ Pz .  Since x satisfies 
1., we have z e B (K). QED. 

Note: We have (z - -  x, am --  x) ~ 0 for m e K. 

Proposition 4. The operator P is normdecreasing, that is 

!l P x -  PYll ~= ]lx--  Yll" 

Proof. By 2. of prop. 3 we have 

(x - -  P x ,  P y  - -  P x )  <= 0 

and 
( y - -  P y ,  P x - -  P y )  <= 0. 

Changing the signs in the first inequality and adding it to the second, we obtain 

( y - - x ,  P x - -  B y )  ~- ] l P x - -  Pyl l  2 <= 0, 

o r  

f I P x - -  Py]]~ ~ ( x - - y ,  P x - -  P y )  <= I[x--yl] " II p x -  PY]I. 

I f  iI P x  --  P y  1] r O, this gives II P x - -  P y  il ~= li x - -  y H, and ff I[ P x - -  P y  U ~- 0 the 
proposition is trivially true. QED. 

Corollary. P is continuous. 

Proposition 5. The restriction of P to B ( K ) ,  which we shall denote PK is an 
affine operator, that is 

PKZi~Ixi=Z~;41PKxi if Z~n~---- 1. 

Proof. Since for every z ~ B ( K ) ,  the point P z  ---- xz "closest" to z is in C(K) ,  
which is an open subset of L(K), it coincides with the point in L ( K )  "closest" 
to z. Thus, for the points in B ( K ) ,  P is the orthogonal projection operator on the 
affine snhvariety L ( K ) .  This operator, whose properties are well known, is 
among other things affine. QED. 

Proposition 6. The sets B (K) are convex. 
Proof. B ( K )  is the inverse image under PK of C(K) ,  which is convex. The 

inverse image of a convex set under an affine transformation is itself convex. 

Proposition 7. The sets B (K) with nondegenerate K cover the space. 
Proof. Let z be an arbitrary point. We have to prove that  there exists a 

nondegenerate index set K (depending on z) such that  

Pz----xz~Zmltmam, ~tm~ O, ~m~tm~ 1, rusK. 

Since every z has a projection on cony(A), and this projection must be in some 
simplex generated by points of A, the existence of an index set K (degenerate 
or not) is selfevident. We shall show that  every degenerate K, such that  z E B (K) 
contains an index q such that  z~  B ( K -  (q}). 

I f  K is degenerate, there exist Vm, not all zero, such that  ~mVm -~ 0 and 
Zmvmam ~ O, r e e K .  
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Define 
= min - -  ~tm/Vm, 

v,n < 0 

and put ~m = tim + ~ Vm. 

Then ~m ~ 0  and Uq= 0 for at least one index q ~ K. Further, ~mgm = 1 and 
~ m g m a m  = ~ m / s  @ g ~ m V m a m  = x z ~ cony (am : m  ~ K - -  { q } ) .  QED. 

We shall study the solutions of (I~)for 0 _< ~--< 1 by considering the projec- 
tions of 

y ( 2 ) = ( 1 - - 2 ) c + 2 d = c + 2 ( d - - c ) = c + ~ b  ( 0 ~ 2 _ ~ 1 )  

as a function of ~. We have introduced the notation b = d --  c. 
Proposition 8. When y (~)~  B (K)  with K nondegenerate, we have a unique 

representation 

Py(~)=Xm(Cem@ flm~)am, XmO:m= l,  X m f i m = O ,  m ~ K .  

Pro@ Py(2)  = PKy(2) = PK[(1 -- 2)c + 2d] = (1 -- +~) PK c + 2P~d 
= PKc + ~ (PKd ~ PKC). We can write 

P t ~ c = Z m ~ m a m ,  ZmCCm= l, m s K  
and 

P ~ d = X m ~ m a m ,  Z m y m = l ,  r e e K .  

Putting tim = y m -  am so that  Zmflm-~-O, we get the representation. I ts  un- 
iqueness follows from prop. 2. 

~orollary. By  prop. 4, corollary, the representation 

Py(2)  = Xm(O~m @ )~flm)am 

is valid also on the boundary b] B(K) .  (Points on the boundary may or may not 
belong to B(K) . )  

Theorem. To every starting point c there exists a finite sequence o I parameter 
values 

0 = ~ o  ~_~1 < = ~ " "  g ~ t =  1 

and a corresponding sequence o/ nondegen- 
crate index sets Ki such that 

y (it) ~ B (Kl) /or ,~ < ,~ < A~+I i/ ~i < A~+I 

and such that y(Ai) is in at least one o/ 
B (K~) and B (Ki+l). We shall reler to such 
a sequence o/pairs as a (,~, K)-sequence. 

Fig. 1 

Proo] (Cf. Fig. 1). By proposition 7 we can take a covering of the space by 
B (K) with nondegenerate K. Since the sets B (K) are convex, those who intersect 
the line-segment between c and d, cut out intervals of it. Since there are only 
a finite number of sets B (K), these intervals are finite in number and they cover 
the line-segment. Thus, we can choose points 2~ so that  the theorem is true. QED. 

4. The Geometry of an Algorithm for Problem I 

Construction of a (~, K)-sequence 

We shall describe an algorithm for the construction of a (~, K)-sequence. 
A step of this algorithm is to determine 2~+1 and K~+I when ~ and Ki are known. 
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Since we always choose c in or on the boundary of cony (A) in our method, 
we confine ourselves to describe an algorithm tha t  works with such a c. In  the 
discussion, ef. Fig. 2. First, we describe the procedure for such 2 tha t  y (~) ~ cony (A), 
so tha t  y(2) . P y ( 2 ) .  Suppose tha t  y (g )  e B(Ki ) ,  where 2' >_-- 2t. We shall s tar t  

BO) a ~  "~ 

/ 
/ 

/ 
/)~-~ d 

B (2) ,," ~ .  
////, y 0~) 

';\ ~ ]~/ ~ (2,3) // 
\ /-/ , ,  

B(~2~ ~ i . / "  , /  

B(7,3) I 
I 
I 
I 
I 
I 

Fig.  2 

by determining ~ i + 1 .  I f  we increase X from g ,  y (X) moves on a straight line and by 
proposition 5, P y  (~) moves on a straight line in L (Ki). Consider the hyperplane 
H(~):  (y (~) - -  P y(~), x --  P y(~)) ---- O. I f  L(Ki)  has dimension s - -  1 (is a hyper- 
plane), H(~) equals L(Kt ) ,  but  if the dimension of L(Ki )  is less than s - - 1 ,  H(~) 
"rotates  around" L(Ki )  when ~ is changed. By proposition 3, y(g) remains in 
B ( K f )  as long as Py(X)  e C(Ki)  (condition 1) and H(~) separates all the points 
an c A  from y(~) (condition 2). Since P y ( ~ ) e  C(Kt), we can write (ef. prop. 8) 

P y ( , ~ ) =  Z m # m ( ~ ) a m ,  ,am()O ~ O ,  Xm/lm(~.)=- l, m ~ K i .  

Thus, y (~) reaches the boundary of B (Kl) either when /Zm(~) becomes zero for 
an index m e Kl (condition 1) or when H(~) is turned so much tha t  it touches a 
point an ~ K~, tha t  is 

hn(~) : (y(,~) - -  PY()O,  an - -  Py(~) )  <= 0 

becomes zero for an index n ~ Ki (condition 2). 
We define 

E l + l =  max 
,u ,n( )J  >~ 0 

~/+1 = max ~. 
h,~()J  < 0 

I f  we put  
)~i+l = min (~+i, Ni+i) 

and ff this i i+i > 2i, we have y (2) e B (Kl) for ~ < ~ < ~+i .  Now, we turn to 
the determination of Kt+i.  
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I f  $/+1 < ~i+1 and there is only one index m ~ Kl such that/~m (2/+1) = 0, we 
have by definition that  Y(~,+I) ~ B ( K I -  {m}), so we put 

K,+I = Zi  --  {m}. 

Since K, is nondegenerate, its subset Ki+l is too. 
I f  on the other hand, ~i+1 < ~t+1, and there is only one index n 6 Ki such that 

hn (2i+1) = 0 we put 
K/+l = K~ + {n}. 

The motivation for this is that  y(~t+l) is on the boundary of B(KI+I) and y(~) 
is moving into this set since it comes from the adjacent set B(K~). Since, for 
,~i~,t~,~i+l, y - - P y  is orthogonal to L(KI) and P y e L ( K i ) ,  hn(,~)==-O ff 
an ~ L(K~). I f  an determines ~]~+1, hn().) must vary with )~, that  is an ~ L(Ki), 
so Kf+l is nondegenerate. 

I f  ~+1 ~ ~]i+l or if there are more than one index determining ~+1 or ~t+~, 
we c~ll y(~+l) a degenerate point. In  section 10 we describe how to choose Ki+l 
at such a point. 

I t  may happen that ~+1 : ~l, namely when L(K~_~) contains a point 
aq, q ~ Kl-~ and Ki : Kl-~ -- (m). The hyperplane H (4) which turned around 
L(Ki-~) for ~ =< hi, then should turn around the smaller variety L(K~) for 

=< ~ ,  but it may be locked by the point a a ~ H(~) ,  so that  ~+1 --~ hi. By the 
rules described above, we then put Ki+~ -~ K~ ~ {q) and obtain ~+~ ~ ~1+1 : hi. 
(Some reasoning using the continuity of flu (4) and hn (4) shows that  we always 
have $i+~ ~ ~ ,  and that  ~i+~ ~ hi in all situations except the one just described.) 

/ 

C / ff \ 

~ i + 3  

Fig. 3 

Now, we shall describe the geometry when y (4) e cony (A). Then P y ( t ) =  y (,[) 
and B (Ki) ~ C (Ki). I f  Ki has s-~ 1 elements, L (K~) is the whole space, and 
hn(),) := 0 for all n. Then y(~) reaches the boundary of B(Ki) when one #m(~) 
becomes zero. We put Kl+l = K~ -- (m) since y (~/+1) c C (Kt+l). L (Kt+I) is now 
a hyperplane bounding C(Ki) at y()Ll+l). The vector y(2) --  Py(X) for 2 > ~+1 
is the perpendicular to L (Ki+l) pointing out of C (Ki) (cf. Fig. 3). The quantities 
hn (4) will increase from zero at ~+1 to positive values when ~ is increased for all 
an strictly on the y(X) side of L(Ki+I), so that  all these an will act to make 
~t+2 ~ 2.l+1. By taking any of these n, and form Ki+2 ---- Kf+l ~- {n), we get 
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a nondegenerate simplex C(Ki+, , , )~  B(K~+2) into which y(2)- - - -Py(~)  moves 
for ~ ~ ~+2 ~ Xl+l, tha t  is 2t+a > ~i+s = ~+1. We shall use the rule to choose tha t  
n for which an is most  far away from L (Kt+I). I f  there is no an strictly on the 
y(~) side of L(KI+I),  this hyperplane is a supporting hyperplane of conv(A), 
and we have the case y(2) ~ P y ( ~ )  described first. Thus, when y(~) ~ cony(A), we 
use the same formulas and rules to determine ~i+1 and K~+I as when y (~) ~ cony (A), 
but  we need an extra rule to determine which n to choose every second step. 

5. The Algebra of the Algorithm for Problem (I) 

By prop. 8, the barycentric coordinates of P y ( 2 )  have the following form 
when y (X) ~ B (Kd : 

~am (;t) -~ am -{- )~ tim ( m e  Ki) 
with 

and 
Zmam = 1 (m ~ Ki) (1) 

Zm~m = 0 (m ~ K~). (2) 

We begin with the determination of tim. We use the fact tha t  c - -  PKiC and 
d -  PKid are orthogonal to L(Kt ) ,  tha t  is 

(c - -  PKiC, a t - - a s )  = 0  ( r , s ~ K t )  

(d ~ PKi d, ar - -  as) -~ 0 (r, s e Ki ) .  

With the notations of prop. 8, this gives 

(b - -  Z m  tim am, ar - -  as) = 0 (m,  r, s z K i )  
o r  

(b --  Zm tim am, at) = const. = 8o (m, r ~ Kt) .  (3) 

The relations (2) and (3) give a system of linear equations, which is solvable 
since K~ is nondegenerate. 

A similar discussion gives 

(C - -  X m ( X m a m ,  ar) ~-ao (m, rEKi ) .  (4) 

The relations (4) together with (1) give a0 and am (m ~ Ki).  However, the follow- 
ing discussion leads to an easier way to find a0 and am. 

By putt ing an = fin ---- 0 for n ~ Ki ,  we can write 

P y ( ) . ) = Z m ( a n d - ~ f i n ) a n  (1 ~ n _ ~ N ) .  

Let an and fin (1 ~ _ n ~ N )  be the coefficients corresponding to B(Kt ) ,  and let 
a~ and fi~ be those corresponding to B (Kt-1). By the corollary of prop. 8, we have 

Py(,~i)----_~,n(an-~- ,~ifln)an--= Z~n(a~+ ~ifl~)an ( l _ < n _ < N ) .  

Since one of the varieties L ( K t )  and L(Ki+I)  contains the other, we have by 
prop. 2 

p p 

an  + & fl~ - -  an + ~ fl~ (1 --< n --< N) .  (5) 

Using (3) and (4) we can write 

#0(~) = ao ~- ~flo = (Y(~) - -  PY(~) ,  am) for all m e K i .  (6) 
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Since y(~) and  P y ( 2 )  are cont inuous  funct ions  of  X, we ob ta in  

#o (ttf) = ~o + ~-~/~o = ~,: + ~i ~o. (7) 
Thus,  we can use 

an = ~n - -  ~* (fin - -  fin) (0 ~ n _~ N) (8) 

to  calculate  an when fin has been computed  f rom (2) and  (3). 
The condi t ion/~m (~) ~ 0 gives a t  once 

~f+1 = min - -  am~tim (m e K~). (9) 
flm < O 

To get  ~+1 ,  we inser t  the  expl ic i t  expressions in 

hn(~) = (y(],) - -  Py( ,~) ,  an - -  P y ( X ) ) .  

I t  would  seem t h a t  hn (X) is a quadra t i c  funct ion  of  X, b u t  using (6) we ge t  

(Y(~) - -  PY(2),  P y ( ~ ) )  = (y(X) - -  Py( ,~) ,  Z m ( a m  ~ X f im)am) 

~- X m ( a m  -~ ~.[~m)(Y().) - -  P y ( , t ) ,  am) = ~o -~ ),flo. 
Thus, 

hn()O = (y(,~) - -  P y ( ~ ) ,  an) - -  ao - -  ,~ rio 

= (c ~- ~ b - -  Z m  (am + ,~ tim) am, an) - -  ao - -  ~ flo 

= [(c - -  X m a m a m ,  an) - -  a0] + 2[(b - -  Z m f l m a m ,  an) - -  rio] = un § ~vn,  

where we have  defined un and  vn.  
The condi t ion  hn (~) ~ 0 gives 

~i+1 = min - -  un/vn (n r Ki ) .  (10) 
vn>O 

Also here i t  is obvious t h a t  hn (~) are  cont inuous  funct ions  of ~, so t h a t  we have  
(with the  usual  no ta t ion)  

/ �9 

Un § ~ vn -= u~ § ~ vn ,  

f rom which equat ions  we get  Un when 

Vn ~-- (b, an) - -  flo - -  2 m  tim (am, an) ( m e  K i ,  n r K~) 

are computed .  

6. The Starting Point 

To be able  to  s t a r t  our  a lgor i thm,  we need a nondegenera te  index  set K0 
and  a po in t  c E B (K0), such t h a t  hn (~) ~ 0 for n CK0 in an  open in te rva l  (0, ~1). 

I f  N ~ s, this  can be accompl ished  b y  choosing for K0 any  nondegenera te  
index  set  consist ing of  s ~- 1 indices and as c any  po in t  

C = Z m f m a m , f m > O ,  Z m l t m = l ,  m e K o .  (11) 

W i t h  this  choice of c we have  P y = y  in C(Ko) ,  so t h a t  hn(~) ~ 0  in an  open 
~-interval .  

I f  N ~ s, we t ake  as K0 a max ima l  nondegenera te  index  set  fo rmed from 
1, 2, 3, . . . ,  N,  and  choose c b y  (11). 

I f  we have  a n y  idea  of  wha t  the  solut ion of  (I) is like, of  course we choose c 
close to  the  expec ted  Pd.  W i t h o u t  any  in format ion  on a l ike ly  form of  the  solu- 
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tion, we suggest the s tar t ing algori thm discribed below to be used. This algori thm 
works with almost  the same computa t ional  scheme as the main algorithm. 

T ry  successively for K0 an increasing sequence of  index sets: 

Q1 = {q l ) ,  Q2 = {q l ,  q2), Qa - -  {q l ,  q2, q3) . . . . .  Qi = {q l ,  q2, . . . ,  qi) . . . .  

and a corresponding sequence of s tar t ing points 

ci = (1/i) Xm aqm ( l  --~ m _~ i).  

Star t  the algori thm with any  index as ql, for instance one such t h a t  11 d --  aq 11 
is minimum. 

W h e n  ql is chosen, s tar t  step i by  calculating #q~ (1 ~ m ~ i) and fi0 f rom 
(2) and (3) with b - - - - d -  el. Since ~q~ = 1/i > O, we have ~1 > 0, so Qi is 
admissible as K0 if ~ 1 > 0 .  Since ci----Pci, we have h n ( O ) : O  for all n, t h a t  is 
Un = 0 for all n, and we have hn (~) = ~Vn. The condition hn (~) ~ 0 then reduces 
to vn ~ O, so we calculate Vn for all n ~ Qi and if any  of  these is strictly positive, 
we take as qi+l t ha t  n which corresponds to the largest Vn. 

We can find a way  to  simplify this algori thm a little by  noting tha t  the only 
proper ty  of  c~ tha~ was used to get  hn(~) = ~vn, was ci = Pci .  Thus, since 
aq~ ~L(Qt ) ,  we get the same sequence of  qi ff we use c i ~ c l : a q ~ .  When  K0 is 
found and has r elements, we pu t  c ~-- (l/r) Zmam,  m ~ Ko. 

7. The Cone Problem 

I n  this section, we shall show tha t  our second problem 

inf {11 x - d II:x cone (A)}0 (II) 

can be t reated in almost  the same way  as problem (I). For  its solution we shall 
choose a s tar t ing point  c and consider the family of  problems 

inf {lI x - c - A (g - c)N: x e cone (A)}. (IIx) 

The necessary transcriptions of the formulas and definitions for problem (I) 
to make them valid for problem (II)  will not  be given in detail. We just  survey 

do,  

, ,  
" , ,  / 

B(o) 3o~~(o,z) " " ' "  
%% 

Fig. 4 

the main  changes. Thus,  we get  the cone problem from problem (I) by  adding 
the origin as a point  a0 to A and exclude the condition Zm#m = 1 on the represen- 
ta t ion  of  the projection (we keep the conditions tern > 0). All index sets K shall 
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contain the index 0, bu t  this is not  visible in the formulas because we never 
have to sum over the term/~0a0 since it does no t  contr ibute to the sums. (Cf. 
Fig. 4.) 

As to the geometry  of  the problem, all affine varieties L(K)  become linear 
subspaces, and degeneracy becomes linear dependence (in the norm case). 

The algebra of  problem (II) is obtained from tha t  of  problem (I) by  excluding 
the conditions Zmam = 1 and Zmfim = O, and put t ing  ~0 = fl0 = 0. 

8. Proofs for Problem (I) when II I] is a Seminorm 

When I] ][ is a seminorm, there m a y  be more than  one point  x~ ~ conv(A) 
satisfying l[ x~ --  d ![ < ]] x - -  d I/ for all x E cony (A). To t reat  the seminorm case, 
one can map the whole problem on the quotientspace Rs/S, where S is the linear 
subspace 

s = {~:  II ~ F] = o ) .  

The map of  the seminorm becomes a real norm there, and theoretically there is 
nothing more to prove. However,  our algorithm works well when ][ ]1 is a semi- 
norm, so we need not  do the computat ional ly  cumbersome mapping  on the 
quotientspace. Instead,  we apply the inverse of the map on the quotientspace 
to our proofs so tha t  we get proofs for the seminorm case. 

Thus, define an index set K to be degenerate (rood S) if it is possible to find 
Sm no~ all zero such tha t  ZmSm = 0 and [] ZmSmaml] = 0 .  An index set is defined 
to be nondegenerate  (mod S) if it is not  degenerate (rood S). 

Using the definitions of  L(K)  and C(K) of section 3, we get:  

Proposition 9. I / x l ,  x2 ~ L (K) with K nondegenerate (mod S) and J[ xl -- x2][ = 0, 
then xz ~ x2. 

Proo/. Let  

Xl  : . ~ , m ~ m a m ,  ~m~m = 1, m e K  
and 

X 2 :  ~mVmam, ~ m V m ~  l, m ~ K .  

Writ ing /lm~--~m--Vm, w e  get Z # m - = 0  and O-~[Ixl--x~l[ =]lZm(~m--vm)am][ 
a I = ]]Zm#m roll- Since K is nondegenerate (rood S), this means # m : 0 .  for all 

m e K .  QED. 
Let  Xa be the set of solution points of  (I) and define P by  P: d --> Xd. 

Proposition 10. Let Xl e Xa. A point x2 ~ conv(A) is in Xd i/ and only i/ 

El x l  - x 2  ii = o. 
Proo/. I f  ]1Xl - -  x2 ][ = 0, we get  [] x2 --  d I[ < ][ x2 - -  Xl ]] d- [[ xl - -  d iI -~ I] xl - -  d ]1, 

giving x2 ~ Xa.  Conversely, if x2 ~ Xd,  we have by  2. of  prop. 3 t ha t  

(d  - -  x l ,  x~ - -  x l )  < 0 .  

and 
(d - -  x2, xl - -  x2) < 0. 

Changing the signs in the second inequahty  and adding it to  the first, we obtain 
1[ x2 - -  xl ]] 2 < 0. QED. 

Corollary 1. I / x d  is a ~olution, we have Xd ---- (xa d- S) rh cony (A). 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 5 5 
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Corollary 2. For an arbitrary point z, the value o/II xa -- z 11 is the same /or  all 
x a e X a .  

In  view of the last corollary, we can define 

/~(K) ----- {z: [[ P z  -- ~m~gmam]l : O, ~m > O,~m2tm == 1, m c  K}.  

/~ (K) is the set of all points whose projection on conv (A) intersects C (K). 
Examining the proofs of prop. 1 and 2, we easily see tha t  these props, are true 

when degeneracy is replaced by degeneracy (mod S). In  the props. 3 and 4, 
degeneracy is not mentioned. 

Much of the explanation of why our method works well when 11 II is a seminorm 
is contained in 

Proposition 11. For z e B ( K ) ,  P z  intersects C(K)  in a single (unique) point 
when K is nondegenerate (mod S). 

Proo]. Follows immediately from props. 9 and 10. QED. 
We shall soon prove tha t  our algorithm works with sets K which are non- 

degenerate (mod S). From prop. 11, it then follows tha t  we work all the t ime with 
unique projections in the algorithm, so tha t  the discussions of section 4 also 
can be done when we have a scminorm. 

Yet  we have to prove the existence of a finite algorithm when ]1 !! is a semi- 
norm, tha t  is we have to prove the generalizations of prop. 5, 6 and 7. 

For K nondegenerate (mod S), we define P/( with domain B ( K )  as the 
operator which takes a point to its unique projection on C(K).  

Thus, when K is nondegenerate (rood S), the definition of/~ (K) can be written 

B(K)  = {z: PKZ = Z m ~ m a m ,  ;r O, Zm~m : 1, m E K } .  

Proposition 12. PK is an alfine operator. 
Proo/. The same as for prop. 5. 

Proposition 13. B (K) with K nondegenerate (mod S) is convex. 
Proo/. Follows immediately from prop. 12. 
Note: In  fact, every B (K) is convex. They are actually the inverse images 

for the map of the convex sets B (K) in Rs/S. 

Proposition 14. The sets B (K) with K nondegenerate (mod S) cover the space. 
Proo]. We follow the line of proof of prop. 7. Thus let K be an index set 

(degenerate (rood S) or not) such tha t  

P z  s x z  = ~,m[~mam, ~m ~" O, ~ m ~ m  ~ 1, r eEK.  

I f  K is degenerate (mod S), there exist Vm, not all zero, such that  XmVm = 0 
and II Zm Vm am]l = O, m e K.  Define z and Zm and Uq as in prop. 7. Pu t  x~ ---- Zm~m am. 
Then, I[ xz --  x~ ]1 = II ~ Xm Vm am [] ---- 0, so x~ is a solution by  prop. 10. QED. 

To show tha t  our algorithm described in section 4 works we have to prove 
tha t  it chooses index sets tha t  are nondegenerate (mod S) and tha t  the system 
of equations (2) and (3) are solvable. Nothing else can cause trouble. 

Thus, assume tha t  Ki is nondegenerate (mod S), tha t  n has been chosen with 
the aid of formula (10) which implies tha t  vn ~ O. We shall prove tha t  Kt+l --~ Ki + 
+ {n} is nondegenerate (mod S). Assume against the hypothesis tha t  it is degene- 
rate (mod S). Then, there exist Vr, not all zero, Z r v r ~ l ,  r e Ki  such tha t  
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Ilan-- Zrvrarl] ~- 0 (r e Ki). For any point x, the Cauchy-Schwarz inequality 
gives 

I(x, an - Zr~rar)l -<__-II xl]" iI~ - Zr~rarl[ ~-0 .  

From Vn = (b --  Zm/3m am, a~,.) --/3o > 0 we get 

/30 < (b --  Zm t3m am, an) : ~r Vr (b - -  Zm/3m am, at) : Zr  Vr ~o --  1~o, 

Since this is impossible, Ki+l is nondegenerate (mod S). 
Further,  suppose tha t  there are two solutions /301,/3m] and /302, fim2 of (2) 

and (3). From (3) we get 

(b, at) ----/3oi + Zm/3ml (am, at) ~-/302 -[- Zm [3m2 (am, ar) (m, r e K),  
o r  

/301 --/302 : ~(/3m2 --/3ml) (am, at) (m, r e K). (12) 

Introducing ~m = / 3 m 2 -  tirol we get Zm~m = 0 .  Multiplying by  nr in (12) and 
adding we get 

0 = ~'r ~m ~r ~tm (ar, am) = l] ~m ~m am ][ 2 

contradicting the hypothesis tha t  K is nondegenerate (mod S). 

9. Computational Aspects and Experiences 

The main numerical work in a step of our algorithm is needed for the solotion 
of the system of equations (2) and (3). Introducing the symmetric matrix Me 
and the vectors ~ and g~ 

'0:: 1 1 1 1" 

1 
J 

M i =  1 (am, an) 

1 

 /3o �9 0 ! 
~ i :  tim gl== ( a l ,  b) m, n e K i ,  

we can write the system (2) and (3) in the form 

M~ fii = g~. 

For the determination of fii, we suggest the calculation of the inverse of Ml.  
We do this because M~ -1 is easily calculated when M~-11 is known. When K~ 
= Ki - l~ - (q} ,  this can be done by the bordering method (see e.g. [6]). When 
Ki = K ~ - I -  {q}, a method analogous to the bodering method gives M~ -1 with 
very little computation. Straightforward matrix manipulations also show that  
fil can be obtained from fit-i,  g~ and only the last column of M~ 1 or the deleted 
column of M~-_ll. 

The algorithm has been tested on 150 problems generated by random numbers. 
The largest problems had s : 20 and N : 40. As a condensed description of the 
tests, we give the average computing time T as a function of N and s: 

50 ~ C1 (Ns) ~ when d was far away from cony (A), 
N C1 (Ns) ~ when d was close to or inside cony (A). 

(C1 ~ 0.2 sec on a Ferranti  Mercury computor.) 

5* 
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10. Degeneracy Procedures 

We shall give two ways of  dealing with a degeneracy encountered at y (~+1)�9 
Our first me thod  is to displace the s tar t ing point  c. This does no t  mean tha t  we 
have to restart  the calculations from the beginning. First, we describe a way  of  
displacing c, and then  we prove t h a t  nothing much is lost in doing so. 

We denote quanti t ies pertaining to the displaced start ing point  by  the sub- 
script 1. Let  

cl (~) = c + ~ .  w 

be a prel iminary new star t ing point,  where w is a vector  not  parallel with b and 
s > 0 a number  to  be determined so tha t  Yl(]) ~ B(Ki) ,  where ] ~  �89 ~t). 
Take for instance w as a uni t  vector  (w = (0, 0 . . . . .  1 . . . . .  0, 0)) and calculate 

I 

0r  z ~ m  - ~  8 0~ m m e Ki 

~ 1  = t ~  + ~ ~ m e g ~ .  
p 

The quanti t ies ~m and fl~ are easily found when we have the inverse of  the 
matr ix  M corresponding to Kl�9 A short  calculation shows tha t  

For  Yl (~) to be in B (Kl), the conditions 1. and 2. of  prop. 3 mus t  be satisfied, 
giving the following conditions on s: 

,Ulm().) = OCm + ,~ flm + e( l -- -)~)o~l"m ~ O for m e  l;~ 

hln (~) -~ un -t- ~Vn + s(1 - -  4)[(an, w) -- o: o --  ZmO~'m(am, an)] ~ 0 

for n ~ K i .  

I f  ~ is the largest value of  s satisfying these conditions, choose as a new star t ing 
point  Cl (sl) where el < ~, so tha t  Yl (~) is strictly inside B (Kt). Star t  the algori thm 
again by determining 41(1+1). 

Since we have changed c, our proof  of  the finiteness of  the algori thm breaks 
down. This can be remedied, however, if we can prove tha t  no B (Kj) with ] < i 
intersects yl (4) for 4 > ~1(t+1). This is a two-dimensional problem in the plane 
through c, Cl and d. The intersection between B (Ki) and this plane is a convex 
set. Now, consider the interval  t ha t  B ( K i )  cuts out  of  the half  line through 
el(s) with d as endpoint .  L e t / j ( e )  be the length of  this interval�9 Since B(KI )  is 
a connected set, ]j(s) is str ict ly positive in one interval  (connected set). Since 
y(4) intersects B(KI )  for some 2 < 4 t + 1 ,  we h a v e / i ( 0 )  > 0 .  I f / j ( e )  becomes zero 
for some e < el,  ]j (el) = 0, t h a t  is B (Kj) does not  intersect yl  (4) for ~ > 41(,+1). 
Cf. Fig. 5. I f  c has to be displaced several times, the proof  of  the finiteness holds 
provided the same w is chosen every time�9 

Our second way  of dealing with a degeneracy consists in solving an auxil iary 
subproblem of kind (II).  
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Wr i t e  y (hf+l) = y for the  degeneracy  po in t  and  P y  (2i+1) = ] for i ts  project ion.  
Le t  M be the  set of indices m for which ( y - -  ], am - -  ]) = O. W e  have  KI c M.  
Consider  the  p rob lem 

inf  {[1 z - -  b I]: z e c o n e ( a m  - -  [, m e M ) } .  ( I I I )  

I t s  solut ion has  the  form 

z 0 = Z m z m ( a m - - / ) ,  ~ m > 0 ,  m E M .  

W e  claim t h a t  the  ma in  p rob lem can be cont inued  across 2i+1 b y  pu t t i ng  

Ki+1 = {m: m E M ,  Um > 0} 
and  moreover  t h a t  

PKi+ 1 (2) = ] ~- (2 - -  hi+l) z0. 

No te :  I f  y----/, which is the  case when y ~ cony (A) resp. cone (A) ,  M conta ins  
all indices.  Then,  p rob lem ( I I I )  is equa l ly  ha rd  to solve as any  of the  p rob lems  (I) 
and  (II) ,  so in this  case the  first  me thod  of th is  sect ion shall  be used. 

Fig. 5 

Firs t ,  we note  t h a t  i f  / = Zm/~m am, m a K i ,  we have  

[i+1(2) = P K i + I ( 2 )  ~- c o n s t . +  2 Zm[~m -- (Zn ~n) /.tin] am, m,  n c M .  

Thus, i f  #m = 0, the  new f i m = ~ m - - ( ~ ' n ~ C n )  ~m >~0, SO t h a t  ~i+2 > 2~+1. Fu r the r ,  
we prove  the  exis tence of  a ~i+2 > 2i+1 such t h a t  hn (2) ~< 0 for all n in the  in te rva l  
2/+1 ~ 2 < ~i+2. Since z0 is the  solut ion of  ( I I I ) ,  we have  

(b - -  zo, zo) = 0 (13) 

( b - -  z o , z o - - a m - F  ]) > O  m ~ M ,  
or in  view of (13) 

( b - - z o , [ - - a m )  > 0  m ~ M  (14) 
and  

(y - -  [, zo) = Zm~Zm(y  - -  [, am - -  1) = 0. (15) 

By  (13) and  (15) we ge t  

hn (2) = (y (2) - -  1i+1 (2), an  - -  1i+1 (2)) 

= ( y - - / ,  a n  - -  ] )  Jr- ( 2 - -  hi+l) (b  - -  z o ,  a n  - -  ] )  - -  ( 2  - -  2~+1) ( y - - / ,  z0) ~- 

-4- (2 - -  2~+1)~(b - -  Zo, zo) = (y - - / ,  an  - -  1) -f- (2 - -  2i+1)(b - -  zo, an  - -  [). 
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S i n c e ( y - - / , a n - / )  ~ 0 for n d~M, there  exists  a ~+2 ~ ~i+1 such t h a t  
hn(~) ~ 0 for ~ + 1 ~  ~ i + 2  and  n ~ M .  F o r  n ~ M ,  hn(~) ~ 0  b y  (14) and  the  
defini t ion of  M.  
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