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Abstract. Given a point d and a convex polyhedron or polyhedral cone in a real complete
inner product space. We shall describe a numerical method to find a point in the polyhedron
(cone) which has minimum distance to d. The characteristics of our method are the description
of the polyhedron (cone) by its extreme points (rays) and the introduction of a one-parameter
family of problems including atrivially solvable problem and thegiven problem. The knowledge
of the solution of the problem corresponding to one value of the parameter makes it easy
to find a larger parameter value for which the solution can again be found. Starting with the
trivially solvable problem, the given problem is reached in a finite number of steps. Computa-
tional experience shows that the computation time is about proportional to the product of
the dimension of the space and the number of extreme points in the polyhedron, when these
two quantities are of the same order of magnitude.

1. Introduetion

Define an inner product in RS by (,y) = 7 Cy, where C is a positive
semidefinite (s X s)-matrix and let |z = |/(x,2). When C is strictly positive
definite, this is a norm and when it is only semidefinite, it is a seminorm. Let
A={ay,az,...,ax} be a finite set of points in Rs, d a given point (in R$) and
consider the problem

inf {||# — d | :zeconv (4)}, (D

where conv stands for the convex hull of.
We shall describe a numerical method (algorithm) to solve (I) and also a slight
modification of it that solves

inf {} — d|:xecone(4)}, (IT)

where cone (4) means the convex cone with vertex at the origin that is generated
by A4 (that is the conical hull of 4).

Our method is constructed to handle problems in which the constraining
polyhedron is described by its extreme points and not as the intersection of
halfspaces, which is the description used in most other quadratic programming
methods. See e.g. P. WorLrg, who describes his own and other methods in [1].
See also HouTHAKKER [Z2], who has presented a technique resembling ours.
Of course, our formulations can be transformed to such with halfspaces, but we
think that each kind of problem shall be solved by a method that takes advantage
of the special character of its formulation.

Our interest in quadratic programming problems formulated as (I) and (IT)
originates from a study of the wide class of problems that arise when one has to
extract information from data obtained in measuring positive quantities. We
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have shown in [3] how such problems in many cases are least square problems
with inequalities as subsidiary conditions and that these problems have the
forms (I) and (IT), that is, they are quadratic programming problems. In a
second paper [4], we have shown how an approximate solution with error estimate
of a problem like (I) but with nonfinite 4 can be obtained by solving (I) with 4
as a suitably chosen finite subset of the originally given 4.

The description of the algorithm and the proofs will be carried through in
detail for problem (I) when | | is a norm. The same algorithm works when
| || is a seminorm, but a completion of the proofs is needed. The seminorm case
is treated in section 8. The change of the algorithm needed for problem (II) is
described in section 7.

Remark 1. By a sclution to (I) resp. (IT), we mean a point x4 € conv(4)
resp. cone(A) that satisfies |zg—d| < |« —d| for all € conv(A4) resp. cone(4).
When | || is a norm, x4 is unique.

Remark 2. Tt is only the number of points N in A that must be finite to
assure the finiteness of the algorithm. Since it is only the inner products (a;, @)
and (d, a,;) that are used in the calculations, our method can even be used in
an infinite-dimensional real Hilbert space. The ‘‘dimension of the calculations™
is the smaller of the numbers s and N.

2, A General Qutline of the Quadratic Programming Method
for Problem (I)

We shall describe a “‘continuity method” which considers a one-parametric set
(with parameter 1) of problems of type (I):

inf {|z —¢— A(d—¢)|:zeconv(4)}, )

where ¢ is a point in RS.

For 1 =1 (I;) equals (I). We shall choose ¢ suitably so that we know the
solutions of (Iy) and can “continue’ the problem and its solution across the interval
0 < 1 =<1 to get the solution of (I). We shall show that this interval can be
divided by a finite number of points A;

0= hshs....24=1,

such that the solution of (I) is an affine function of 2 in each closed interval
(A4, Ai+1). Moreover, if f;(A) are these affine functions, we shall show that it is
fairly easy to determine ;41 and fi11(A) when f;(A) is known.

3. Proofs for Problem (I) when | | is a Norm

It is well known that our problems have unique solutions when || || is a norm.
This uniqueness makes the proofs neater and easier to understand in the norm
than in the; seminorm case. This is the reason why we confine ourselves to the
norm case in this section. The changes in the proofs and definitions needed for
the seminorm case are small and postponed to section 8.

We shall introduce some definitions and notations, which all depend on the
set 4 = {al,az,ag,, ...,(,ZN}.
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1. By an index set, we mean a subset of {1,2,3,..., N}. An index set
K={mi,my, ..., mp}is defined to be degenerate if it is possible to find numbers
%m, not all zero, such that 2y, = 0 and XZpupman =0, e.g. if the points an,
(me K) are affinely dependent.

2. An index set K is nondegenerate if it is not degenerate.

Note: Degeneracy of K implies linear dependence of the points @, (m € K).
Thus, linear independence implies nondegeneracy.

3. For an index set K, we define

LEy={z:2=Lpumam, Zmnm=1,mekK},

that is the affine variety spanned by {an:meK}.
4. We write C(K) for the interior relative to L(K) of conv(a,:m e K). If
there is only one me K, C(K) = L(K)=ay.

C(K)= {Z:Zzzm%mam, wm >0, sy =1, me K}

The sets C(K) may overlap.

5. We consider the solution z4 of (I) as a function of d and define the nonlinear
operator P by P:d —x45. We call x4 the projection of d and P the projection
operator.

6. For an index set K, we define

B(K)y={2:Pz=Lpxmm, #m >0, Zpum=1, meK}.

B(K) is the set of all points whose projection on conv(A) are in C(K). Since 4
is finite, there are only a finite number of sets B(K). When two sets C (K) overlap,
the corresponding B(K) do so too.

We list now some more or less well known propositions and give also the
proofs, since we want to refer to these proofs when we generalize to the case of
a seminorm.

Proposition 1. In s-dimensional space, a set K of more than s+ 1 indices ts
degenerate.

Proof. Let K contain s4-2 indices among which # is one. Consider the s 1
points @, — ay (m + n). Since s -+ 1 points are linearly dependent, there exist vy,
not all zero, such that Xy, vy, (@, — ap) = 0, (m + n, me K). Putting vy = — 2 vm,
we get Zpvmam =0 and Zpvy =0 (meK). QED.

Proposition 2. The barycentric representation of a point x e L(K) is unique
if K is nondegenerate.

Proof. Assume two representations

=2ntmtn, Zmpm=1, (mekK)
= 2mVmm, 2mvm=1, (meckK).
Subtraction gives
0 zzm(ﬂm — Vm) O Zm(Mm - ) =0,
which implies g = vy when K is nondegenerate. QED.
Proposition 3. 4 point z belongs to B(K) if and only if there exists a point x
(intended to be Pz) sabisfying:
1L z=Znpmom, pm>0, Znim=1 (meckK)
2. z—z,ap—2) 0 for 1 <n<N.
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Proof. First, it is well known (see e.g. [§]) that 2. is the necessary and sufficient
condition for z to be the projection of z on conv (4) also in the semidefinite case.
If z € B(K), we take # = Pz. Then z satisfies 1. by the definition of B(X) and
2. since it is the projection on conv(4). Conversely, if there exists a point x
satisfying 2., z is the projection of z on conv(A4), that is # == Pz. Since z satisfies
1., we have ze B(K). QED.

Note: We have (z — x, @y, — z) =0 for me K.

Proposition 4. The operator P is normdecreasing, that is
|Pz— Py| =z —yl-
Proof. By 2. of prop. 3 we have
(¢ — Pz, Py— Px) =0

and
(y — Py, Px— Py)<0.

Changing the signs in the first inequality and adding it to the second, we obtain

(y —=, Px— Py)+ [Pz — Py|?=0,
or
1Pz —PylP=(@w—y, Px— Py)=|o—y| |Pz— Py|.

If |Pz — Py| +0, this gives |Pe— Py| =|x—y/|, and if |Px— Py| =0 the
proposition is trivially true. QED.
Corollary. P is continuous.

Proposition 5. The restriction of P to B(K), which we shall denote Pg is an
affine operator, that is

PKqu;xi =2¢%¢PKQ?¢ if Zi%z‘ =1.

Proof. Since for every z € B(K), the point Pz = x, “closest” to z is in C(K),
which is an open subset of L(K), it coincides with the point in L(K) “closest”
to z. Thus, for the points in B{K), P is the orthogonal projection operator on the
affine subvariety L(K). This operator, whose properties are well known, is
among other things affine. QED.

Proposition 6. The sets B(K) are convex.

Proof. B(K) is the inverse image under Pg of C{K), which is convex. The
inverse image of a convex set under an affine transformation is itself convex.

Proposition 7. The sets B(K) with nondegenerate K cover the space.

Proof. Let z be an arbitrary point. We have to prove that there exists a
nondegenerate index set K (depending on z) such that

Pr=u,=Cppumom, pm>0 Zpun=1, meckK.

Since every z has a projection on conv(4), and this projection must be in some
simplex generated by points of 4, the existence of an index set K (degenerate
or not) is selfevident. We shall show that every degenerate K, such that z € B(K)
contains an index g such that 2e B(K — {g}).

If K is degenerate, there exist v, not all zero, such that 2, v, = 0 and
EuVmm =0, mecK.



A Quadratic Programming Algorithm 59

Define
% = min — Um/vm,
v < 0
and put Hm = U - % Vm -
Then 4, =0 and ;=0 for at least one index ¢ € K. Further, 2x,=1 and
ZmtmOm = Zm fom O + % Zm ¥m@m =1, € conv (ay:m € K — {q}). QED.

We shall study the solutions of (I;)for 0 =<1=1 by considering the projec-
tions of

gy =1 —NetAdd=c+Ai(d—c)=cH+ib (O=i1<1)

as a function of 1. We have introduced the notation b =d —c.
Proposition 8. When y(1) € B(K) with K nondegenerate, we have a unique
representation

P?/(X):Zm(“m+5ml)am, Zmam=1, Emﬁm:(}, mekK.

Proof. Py(l)= Pgy(A) = Px[l—Ae+2Ad]=(1—A) Pxc+ APgd
= Pgec+ A(Pgd— Pgc). We can write

Pre=2untmtnm, Zmom=1, meK
and
Prd=2pymam Zmym=1 mekK.
Putting B = ym — am so that Xy f,, =0, we get the representation. Its un-
iqueness follows from prop. 2.
Corollary. By prop. 4, corollary, the representation

PyA) = 2ulom -+ A Bm) am
is valid also on the boundary of B(K). (Points on the boundary may or may not
belong to B(K).)
Theorem. To every starting point ¢ there exists a finite sequence of parameter

values
O=A=hSl Sh=1

and a corresponding sequence of nondegen-
erate index sels K; such thai

DR
y(A) e B(EKY) for 2o <A <hus if J<lin V"

and such that y(A;) is in at least one of
B(K;) and B(K;11). We shall refer to such
a sequence of pairs as a (A, K)-sequence.
Proof (Cf. Fig. 1). By proposition 7 we can take a covering of the space by
B(K) with nondegenerate K. Since the sets B(K) are convex, those who intersect
the line-segment between ¢ and d, cut out intervals of it. Since there are only
a finite number of sets .B(K), these intervals are finite in number and they cover
the line-segment. Thus, we can choose points 4; so that the theorem is true. QED.

Fig. 1

4. The Geometry of an Algorithm for Problem I
Construction of a (4, K)-sequence

We shall describe an algorithm for the construction of a (1, K)-sequence.
A step of this algorithm is to determine 4,11 and K;; when 1; and K; are known.
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Since we always choose ¢ in or on the boundary of conv(4) in our method,
we confine ourselves to describe an algorithm that works with such a c¢. In the
discussion, of. Fig. 2. First, we describe the procedure for such 4 that y (1) ¢conv (4),
so that y (1) = Py(A). Suppose that y(1') € B(K;), where 1’ = 4;. We shall start

Fig. 2

by determining 2;11.If we increase A from ',y (1) moves on a straight line and by
proposition 5, Py () moves on a straight line in L (K;). Consider the hyperplane
H(A): (y(A) — Py(d), x — Py(A)) = 0. If L(K;) has dimension s—1 (is a hyper-
plane), H (A) equals L(K;), but if the dimension of L(K;) is less than s —1, H(4)
“rotates around” L(K;) when 1 is changed. By proposition 3, y(A) remains in
B(K;) as long as Py(1) € C(K;) (condition 1) and H (1) separates all the points
an € A from y(A) (condition 2). Since Py(4) € C(K;), we can write (cf. prop. 8)

Py(A) = Xy tim (L) Om, Um () =0, Zmpm(A)y=1, mekK;.

Thus, y(A) reaches the boundary of B(K;) either when (1) becomes zero for
an index m € K; (condition 1) or when H (1) is turned so much that it touches a
point a, & K;, that is

ha(A) = (y(A) — Py(A), an — Py(A) =0

becomes zero for an index #n ¢ K; (condition 2).

We define
fip1= max 2
#m(A) =0
N+l = max A.
hn(2) =0
If we put

Aiv1 = min (&41, 7i+1)

and if this 441> 4;, we have y (1) € B(K;) for 4;<<A<<Aj+1. Now, we turn to
the determination of K;y;.
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If &41 < 44, and there is only one index m € K; such that pg, (i) = 0, we

have by definition that y(4;11) € B(K; — {m}), so we put
Ky = Ky — {m}.
Since K; is nondegenerate, its subset K; q is too.

If on the other hand, %41 << &i41, and there is only one index »n ¢ K; such that

bn(Ai1) = 0 we put

K= K+ {n}.
The motivation for this is that ¥ (4;+1) is on the boundary of B(K;y1) and y(4)
is moving into this set since it comes from the adjacent set B(K;). Since, for
li<<A<<ZAi+1, y— Py is orthogonal to L(K;) and Pye L(K;), hp(A)=0 if
an € L(Ky). If a, determines #;11, by (A) must vary with A, that is a, ¢ L(K}),
so K41 is nondegenerate.

If &;41 = 41 or if there are more than one index determining &1y or 1,
we call ¥ (4;+1) a degenerate point. In section 10 we describe how to choose K1
at such a point.

It may happen that A;11 = A;, namely when L(K;_;) contains a point
aq,q ¢ Kiq and K; = Ky 1 — {m}. The byperplane H (A) which turned around
L(K;_3) for 4 < 4;, then should turn around the smaller variety L(K;) for
A < A, but it may be locked by the point a, € H (4;), so that 741 == A;. By the
rules described above, we then put Kit1 = K; + {g} and obtain Ao > Ji11 = 4.
(Some reasoning using the continuity of ys, (1) and A, (2) shows that we always
have &;+1 > 44, and that n;11 > A; in all situations except the one just described.)

/
‘ C ki) =B Hirn)

Qn
Fig. 3

Now, we shall describe the geometry when y(4) € conv(4). Then Py () =vy(4)
and B(K;) = C(K;). If K; has s--1 elements, L(K;) is the whole space, and
ku(2) = 0 for all n. Then y(1) reaches the boundary of B(K;) when one p,(4)
becomes zero. We put K;1 = K; — {m} since y(di41) € C(Ks41). L(Ki41) is now
a hyperplane bounding C(K;) at 4 (Ai+1). The vector y (1) — Py(A) for 2 > A1
is the perpendicular to L (K;4;) pointing out of C(K;) (cf. Fig. 3). The quantities
hu(2) will increase from zero at A;41 to positive values when A is increased for all
oy strictly on the y(4) side of L(K;11), so that all these a, will act to make
Nes2 = Aip1. By taking any of these n, and form Ki.g = Kiq- {n}, we get
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a nondegenerate simplex C(K;49) = B(Kj12) into which y(4) = Py (1) moves
for A = Ajio= As11, that is ;43 > As9 = A;+1. We shall use the rule to choose that
n for which a, is most far away from L(K;1). If there is no a, strictly on the
y(A) side of L(K;y), this hyperplane is a supporting hyperplane of conv(4),
and we have the case y (1) = Py (1) described first. Thus, when y (1) € conv(4), we
use the same formulas and rules to determine 241 and K1 as when y (1) ¢ conv (4),
but we need an extra rule to determine which = to choose every second step.

5. The Algebra of the Algorithm for Problem (I)
By prop. 8, the barycentric coordinates of Py(A) have the following form

when y(4) e B(K;):

Um(A) =om + APm (meKy)
with

Zmom =1 (me Ky) (1)
and

Zmbm=0 (me Ky). (2)

We begin with the determination of §,. We use the fact that ¢ — Pg,c and
d — Pg,d are orthogonal to L(K;), that is
(c— Pg;c,0r —as)=0 (r,sekK)
(d=Pg,d,ar—as)=0 (r,seKy).
With the notations of prop. 8, this gives

(b—"zmﬁmam,dr~as)=0 (m, 1,8 K;)
or
(b — 2 Pmam, ar) =const. = o (m,reK;). (3)

The relations (2) and (3) give a system of linear equations, which is solvable
since K; is nondegenerate.
A similar discussion gives

(6 — 2 0m O, By) = g {m,re K;). (4)
The relations (4) together with (1) give «p and «yn, (m € K;). However, the follow-

ing discussion leads to an easier way to find og and oy,.
By putting ay = f» = 0 for n¢ K;, we can write

Let an and S, (1 =% < N) be the coefficients corresponding to B(K;), and let
«, and B, be those corresponding to B(K;—1). By the corollary of prop. 8, we have
Py(A) = Zn(on + A4 Ban) an = Zn(%’; + lilg;;)an {(1<n=N).

Since one of the varieties L(K;) and L(K;11) contains the other, we have by

prop. 2
oy + Ai o= oty + i B (1=n=<N) (5)
Using (3) and (4) we can write
po(A) = a0+ A Bo= (y(4) — Py(A), am) for all me K;. (6)
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Since y(A) and Py(1) are continuous functions of 1, we obtain

polds) = oo + 4 fo =, + i B, (7)
Thus, we can use
On=ty—i(fn—PF) (0=n=<DN) (8)

to calculate oy, when f, has been computed from (2) and (3).
The condition pn,(4) = 0 gives at once

Sivr=min —op/fm  (me Ky). 9)
Bm<0

To get 5.1, we insert the explicit expressions in
hn(d) = (y(4) — Py(2), an — Py(2)).
It would seem that &, (1) is a quadratic function of 4, but using (6) we get
(1) — Py(2), Py(4) = (y(4) — Py(2), Zm(om 4 A ) am)
= L (am + A fm) (y(2) — Py (), am) = oo + ABo.
Thus,
hn(2) = (y(A) — Py(2), an) — a0 — 4 fo
= (¢4 26— Zn(om + 2 Bm) @m, an) — oo — A fo
= [{c — Zmamm, an) — o] + A[(0 — ZpPmam, an) — Bol = Uy + Avy,

where we have defined u, and v,,.
The condition £, (A1) < 0 gives
Ni+l = Min — uyfvy, (0 ¢ K;). (10)
92>0

Also here it is obvious that A, (1) are continuous functions of A, so that we have
(with the usual notation)

Uy + Aoy = u;; -+ ziv;“
from which equations we get u, when
Un:(baan)_ﬂo_zmﬁm(amyan) (me Ky, n¢ Ky)

are computed.

6. The Starting Point

To be able to start our algorithm, we need a nondegenerate index set Ky
and a point ¢ € B(Kj), such that k, (1) < 0 for n¢ Ky in an open interval (0, 1;).

If N> s, this can be accomplished by choosing for Ko any nondegenerate
index set consisting of s + 1 indices and as ¢ any point

¢ =2 thm O b >0, Zpppum =1, meK,. (11)

With this choice of ¢ we have Py=y in ('(Ky), so that %, (1) <0 in an open
A-interval.

If N =<s, we take as K¢ a maximal nondegenerate index set formed from
1,2,3,..., N, and choose ¢ by (11).

If we have any idea of what the solution of (I) is like, of course we choose ¢
close to the expected Pd. Without any information on a likely form of the solu-
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tion, we suggest the starting algorithm discribed below to be used. This algorithm
works with almost the same computational scheme as the main algorithm.
Try successively for Kg an increasing sequence of index sets:

Qi={n} @={n.9} @B={n 0 6h.., G={0n 0 ....¢}h. .
and a corresponding sequence of starting points
ci=(1/i) Emag, (1=m=i).

Start the algorithm with any index as ¢1, for instance one such that |d — ag||
is minimum.

When g; is chosen, start step ¢ by calculating f4,, (1 =m = 1) and o from
(2) and (3) with b = d — ¢;. Since ag,, = 1/i > 0, we have £ >0, so @; is
admissible as Kg if 71 >0. Since ¢; = P¢;, we have ky(0)=0 for all , that is
uy = 0 for all #», and we have hy (1) = Av,. The condition Ay (1) <0 then reduces
to vy <0, so we calculate v, for all n¢ @; and if any of these is strictly positive,
we take as ¢;+1 that » which corresponds to the largest vy, .

We can find a way to simplify this algorithm a little by noting that the only
property of ¢; that was used to get hy(d) = Avy, was ¢; = Pc;. Thus, since
aq, € L(@;), we get the same sequence of ¢; if we use ¢;=—c1=a,,. When K is
found and has r elements, we put ¢ = (1/r) Zjpay, m e Kq.

7. The Cone Problem
In this section, we shall show that our second problem
inf {| z — d||: € cone (4)}, (IT)

can be treated in almost the same way as problem (I). For its solution we shall
choose a starting point ¢ and consider the family of problems

inf {|z — ¢ — A(d —¢)| : xccone (A4)}. (I1)

The necessary transcriptions of the formulas and definitions for problem (I)
to make them valid for problem (II) will not be given in detail. We just survey

d o
~

B©) 9 B2

Fig. 4

the main changes. Thus, we get the cone problem from problem (I) by adding
the origin as a point ao to 4 and exclude the condition Z'p um =1 on the represen-
tation of the projection (we keep the conditions g, > 0). All index sets K shall
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contain the index 0, but this is not visible in the formulas because we never
have to sum over the term poao since it does not contribute to the sums. (Cf.
Fig. 4.)

As to the geometry of the problem, all affine varieties L(K) become linear
subspaces, and degeneracy becomes linear dependence (in the norm case).

The algebra of problem (II) is obtained from that of problem (I) by excluding
the conditions Xy, a, =1 and 2y fr = 0, and putting «p = fo = 0.

8. Proofs for Problem (I) when | || is a Seminorm

When | || is a seminorm, there may be more than one point x4 € conv(4)
satisfying |zq — d| = | — d| for all x € conv(4). To treat the seminorm case,
one can map the whole problem on the quotientspace R$/S, where § is the linear
subspace

8={z:]z] =0}.

The map of the seminorm becomes a real norm there, and theoretically there is
nothing more to prove. However, our algorithm works well when | | is a semi-
norm, so we need not do the computationally cumbersome mapping on the
quotientspace. Instead, we apply the inverse of the map on the quotientspace
to our proofs so that we get proofs for the seminorm case.

Thus, define an index set K to be degenerate (mod 8) if it is possible to find
#m not all zero such that Xy s, =0 and | Zpxmam| =0. An index set is defined
to be nondegenerate (mod 8) if it is not degenerate (mod S).

Using the definitions of L(K) and C (K) of section 3, we get:

Proposition 9. If 1, x2 € L(K) with K nondegenerate (mod S) and | x1 — x2| =0,
then x1 = xa.

Proof. Let
21 =2mtm Ay, Zmrm=1, mekK
and
o= ZmVmm, Zmvm=1, mekK.
Writing pm =%m — vm, we get XZupn=0 and 0= oy —xs| = | 2 Gt — vm) am |
= [| Zmpmaml. Since K is nondegenerate (mod ), this means u,=0. for all
mekK. QED.

Let X4 be the set of solution points of (I) and define P by P:d — Xg4.

Proposition 10. Let 21 e Xyg. A point x € conv(A4) is in Xg if and only if
|21 — z2] = 0.

Proof. If | &1 — w2 =0, we get |25 — d| = [ag — 21| + o1 — d] = |21 — 4],
giving z9€ X 4. Conversely, if xz2€ X4, we have by 2. of prop. 3 that

(d— xy1, X2 — xl) gO
and
(d—as, 1 —22) = 0.
Changing the signs in the second inequality and adding it to the first, we obtain
” Xy — X1 ]|2.§0 QED
Corollary 1. If x4 s a solution, we have X4 = (xq -+ S) N conv (4).
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Corollary 2. For an arbitrary point z, the value of |xg — 2| is the same for all
Xg € X d-
In view of the last corollary, we can define

B(R)y={2:| Pz — Zpuman| = 0,%m >0, Zpxp=1,meK}.

B(K) is the set of all points whose projection on conv (4) intersects C (K).
Examining the proofs of prop. 1 and 2, we easily see that these props. are true
when degeneracy is replaced by degeneracy (mod 8). In the props.3 and 4,
degeneracy is not mentioned.
Much of the explanation of why our method works well when | || is a seminorm
is contained in

Proposition 11. For z e B(K), Pz intersects C(K) in a single (unique) point
when K is nondegenerate (mod S).

Proof. Follows immediately from props. 9 and 10. QED.

We shall soon prove that our algorithm works with sets K which are non-
degenerate (mod §). From prop. 11, it then follows that we work all the time with
unique projections in the algorithm, so that the discussions of section 4 also
can be done when we Lave a seminorm.

Yet we have to prove the existence of a finite algorithm when || | is a semi-
norm, that is we have to prove the generalizations of prop. 5, 6 and 7.

For K nondegenerate (mod §), we define Pg with domain B(K) as the
operator which takes a point to its unique projection on C(K).

Thus, when K is nondegenerate (mod S), the definition of B(K) can be written

BEY=1{z: Pra=2pumam,xm >0, Znum=1 meK}.

Proposition 12. Px is an affine operator.
Proof. The same as for prop. 5.

Proposition 13. B (K) with K nondegenerate (mod S) is convex.

Proof. Follows immediately from prop. 12.

Note: In fact, every B(K) is convex. They are actually the inverse images
for the map of the convex sets B(K) in R$/S.

Proposition 14. The sets B(K) with K nondegenerate (mod S) cover the space.
Proof. We follow the line of proof of prop. 7. Thus let K be an index set
(degenerate (mod S) or not) such that

Peox,=2npim@m, hm >0, L ppm =1, me K.

If K is degenerate (mod 8), there exist vy, not all zero, such that Xyvy, =0
and | X2 vm @) =0, m € K. Define x and %y, and s, as in prop. 7. Put &y = Zmdtmm -
Then, |z, — x, | = | *Zmyman| =0, s0 x, is a solution by prop. 10. QED.

To show that our algorithm described in section 4 works we have to prove
that it chooses index sets that are nondegenerate (mod S) and that the system
of equations (2) and (3) are solvable. Nothing else can cause trouble.

Thus, assume that K; is nondegenerate (mod 8), that » has been chosen with
the aid of formula (10) which implies that v, > 0. We shall prove that K;+; = K; -+
+ {n} is nondegenerate (mod S). Assume against the hypothesis that it is degene-
rate (mod §). Then, there exist v,, not all zero, 2y»,=1, r e K; such that



A Quadratic Programming Algorithm 67

lan — Zpvrar]| =0 (re K;). For any point z, the Cauchy-Schwarz inequality
gives
|, a0 — Zrvrar)| S 2] - | an — Zrvrar| =0.
From vy = (b — Xy fin G, @n) — fo > 0 we get
Bo<(b—2pfmam, an)=2rvr(b— 2 fmam, ar) = Zrv,fo= Po,
Since this is impossible, K;:1 is nondegenerate (mod S).
Further, suppose that there are two solutions Bo1, fm1 and foz, fme of (2)
and (3). From (3) we get
(b,ar) = ﬁOl + 2n ﬁml (@, ar) = ﬂOZ + X ﬁm2 (@, ay) (m, 7€K),
or
Por — Poz = 2 (Bme — Pm1) (@m,ar)  (m,reK). (12)
Introducing »m = Bma — fm1 we get Xy, =0. Multiplying by %, in (12) and
adding we get
0=2, Yprrnm (@r, am) = ” 2 om Oy ”2

contradicting the hypothesis that K is nondegenerate (mod §).

9. Computational Aspects and Experiences

The main numerical work in a step of our algorithm is needed for the solution
of the system of equations (2) and (3). Introducing the symmetric matrix M,
and the vectors §; and g¢;

0:1 1 1 . . 1) Bo 0 )
_,:_ ...................................... T N [
L
¥ ) , ) ,
Mi: 1 (a’Iﬂsaﬂ) AB'L = ﬁm gl = (am,b) m,'ﬂEKi,
1|
. \ p

we can write the system (2) and (3) in the form
MiBi=gi.

For the determination of B;, we suggest the calculation of the inverse of M;.
We do this because M; ! is easily calculated when M; % is known. When K;
== K; 1+ {¢}, this can be done by the bordering method (see e.g. [6]). When
K;=K; 1 — {q}, a method analogous to the bodering method gives M; ! with
very little computation. Straightforward matrix manipulations also show that
Bi can be obtained from B;—1, g; and only the last column of M; ! or the deleted
column of M; Y.

The algorithm has been tested on 150 problems generated by random numbers.
The largest problems had s =20 and N =40. As a condensed description of the
tests, we give the average computing time 7 as a function of N and s:

T ~ C1(N5)*% when d was far away from conv (4),

T ~ C1(N s)-% when d was close to or inside conv(4).

(C1 ~ 0.2 sec on a Ferranti Mercury computor.)

5*
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10. Degeneracy Procedures

We shall give two ways of dealing with a degeneracy encountered at y(4;11)-
Our first method is to displace the starting point ¢. This does not mean that we
have to restart the calculations from the beginning. First, we describe a way of
displacing ¢, and then we prove that nothing much is lost in doing so.

We denote quantities pertaining to the displaced starting point by the sub-
script 1. Let

ci(ey=c+e-w

be a preliminary new starting point, where w is a vector not parallel with b and
£>0 a number to be determined so that y; (i) € B(K;), where 1= }(Ajr1+ A).
Take for instance w as a unit vector (w=(0,0,...,1,...,0,0)) and calculate

omi = om + e, mek;
Bmi=Pm+€epf, mekK;.

The quantities «,, and f,, are easily found when we have the inverse of the
matrix M corresponding to K;. A short calculation shows that

For y; (A) to be in B(K;), the conditions 1. and 2. of prop. 3 must be satisfied,
giving the following conditions on &:

pam(A) = om + ABm + e(l — Doy, =0 for mek;
hln(z):*un—“zvn‘f‘a(l"‘M[(“n,w)—‘“(,)—zm“a’n(amaan)]éo
for né¢K;.

If € is the largest value of ¢ satisfying these conditions, choose as a new starting
point ¢1 (e1) where &1 << &, so that y1 (1) is strictly inside B(Kj;). Start the algorithm
again by determining Aj+1y.

Since we have changed ¢, our proof of the finiteness of the algorithm breaks
down. This can be remedied, however, if we can prove that no B(K;) with j <4
intersects y1(4) for A= A1¢+1y. This is a two-dimensional problem in the plane
through ¢, ¢1 and d. The intersection between B(Kj;) and this plane is a convex
set. Now, consider the interval that B(XK;) cuts out of the halfline through
c1(e) with d as endpoint. Let f;(¢) be the length of this interval. Since B(Kj) is
a connected set, f;(e) is strictly positive in one interval (connected set). Since
y(A) intersects B(Kj;) for some 1 << A¢11, we have f;(0)> 0. If f;(e) becomes zero
for some ¢ < &1, f;(e1) = 0, that is B(Kj) does not intersect y1(4) for 1 = A1¢4+1).
Of. Fig. 5. If ¢ has to be displaced several times, the proof of the finiteness holds
provided the same w is chosen every time.

Our second way of dealing with a degeneracy consists in solving an auxiliary
subproblem of kind (IT).
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Write y(A:+1) = y for the degeneracy point and Py (4;+1) = f for its projection.
Let M be the set of indices m for which (y—f, am—f)=0. We have K;c M.
Consider the problem

inf {[|z — b||: z€cone(an — f, me M)}. (ILI)
Its solution has the form
20 = Zm*m(@m —f), %m =0, melM.
We claim that the main problem can be continued across 4,41 by putting

Kivy={m:meM, sy >0}
and moreover that
Pg; 1 (A)=f+ (A — A1) %0-
Note: If y={f, which is the case when y € conv (4) resp. cone(d4), M contains
all indices. Then, problem (ITI) is equally hard to solve as any of the problems (I)
and (II), so in this case the first method of this section shall be used.

Y Coird=y ()=

=degeneracy point

Fig. 5

First, we note that if f = Xy, pm 0, me K;, we have
fis1(A) = Pg; (1) = const.+ A Zplum — (Xn %n) pm] @m, m, ne M.

Thus, if pm =0, the new Sy =sp — (Znxs) m =0, so that &5 > iy . Further,
we prove the existence of a 749 > As41 such that A, (1) <0 for all » in the interval
A1 = A = ni4g. Since zg is the solution of (III), we have
(b—20,20)=0 (13)
b—z20,20—m+f) =0 melM,
or in view of (13)
b—z,f —am)=0 meM (14}
and
(y—Ff20) = Zmom(y —f.am—f) =0. (15)
By (13) and (15) we get
by (R) = (Y (A) — fir1(4), @n — fir1 (A))
=y—fian—+ (A —2i1) (b —20,0n — ) — (A — Ais1) (¥ — [, 20) +
+ (A—44)2(b —z0,20) = (Y —foan—f) + (A— A11) (b — 20, an — f).
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Since (y — f,an — f) < 0 for n¢M, there exists a #42 > Aiq1 such that
hu(A) =<0 for Ain1 =A=142 and n¢M. For ne M, hy(A) <0 by (14) and the
definition of M.
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