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w 1. Introduction 

A one-dimensional Marker  branching process may  be characterized as follows. 
An organism, at  the end of its lifetime (of fixed duration), produces a random 
number  ~ of offspring with probabili ty distribution 

(1) P r { ~  = k }  = a~ ~ = O, 1, 2 . . . .  

where as usual 

ak ~ 0 ~ ak : 1. 
k=0 

All offspring act independently with the same lifetime and distribution of 
progeny. The population size X (n) at the nth generation is a temporally homo- 
geneous Markov chain whose transition probabili ty matrix is 

(2) P~i : P r { X ( n  + 1) = j IX(n)  : i} : Pr{$1  q- ~2 + "'" + ~ = j} 

where ~'s are independent observations of a random variable with the probabili ty 
law (I). An equivalent way to express (2) is through its generating function which 
is simply 

~ Pi1sl = [/(s)] / i = 0, 1 . . . .  
j~0 

o o  

k=o 

I t  is a familiar fact that  the n-step transition probabili ty matrix 

P ! ?  = p r { X ( n )  = i [ x ( 0 )  = i} 

possesses the generating function 

(4) ~ p~;o # = [In (s)]r 
1=0 

where 

(5) /,~ (~) =/n-~ (/(~)) 

is the nth  functional iterate of /(s). 

* Research supported in par t  by Contracts ONR 225(28) and NIH USFHS 10452 at 
Stanford University. 
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A finite state Markov transition matrix Pij ordinarily admits a spectral re- 
presentation of the form 

p.n.__ (6) v - -  ~ ~r n YJt (r) 0j (r) 
r 

where ~r (r = 1, 2 . . . .  ) are the eigenvalues of the matr ix  Pii,  yJi(r) denotes the 
ith component of the rth right eigenvector and 0j (r) denotes the j th component 
of the r th left eigenvector. The system {~0~(r), 0~(r)}~'__ 1 is chosen to be biortho- 
normal. 

The representation (6) is certainly valid when all eigenvalues are simple, i.e., 
no elementary divisors arise. For infinite transition probability matrices the pos- 
sibility of a spectral decomposition like (6) is rare. The existence of eigenvalues 
is not even assured and indeed, continuous spectrum is usually present. 

In  the case where P~S is the transition matrix of a one-dimensional random 
walk (see [7]) then P is a Jacobi  matrix and a generalized spectral representation 
exists. In  this case a metric can be introduced such tha t  P becomes self-adjoint 
and the classical spectral resolution of Hilbert space theory is available. The 
device of symmetrizing a Marker  transition matrix works for diffusion processes 
on the line and more generally for reversible processes (see [13], [11]). Unfortu- 
nately two or higher dimensional diffusion processes fail usually to be reversible 
and so the theory of self-adjoint operators in Hilbert space is not applicable. 

The transition matrix of a branching process is not symmetrizable. Never- 
theless, we will establish, under mild restrictions on the probability generating 
function /(s), the existence of a spectral representation of P and its iterates. 

I t  is usual in dealing with branching processes to consider three situations 
according as m = / ' ( 1 ) ,  the expected number of progeny per individual, is greater 
than, less than, or equal to 1. The probabilistic nature of the process differs 
fundamentally for these cases. 

When m > 1 there is positive probability that  the population size becomes 
infinite (Pr{X(n) -> c~ IX(0) = 1} > 0). 

When m ~ 1, extinction occurs with certainy, i.e., Pr  {X (n) = 0 for some 
nIX(0  ) = 1} ~ 1. However the expected time until extinction is finite or in- 
finite according as m < 1 or m = 1. 

When m > 1, the matrix P, although not equivalent to a self-adjoint operator, 
defines a completely continuous transformation (see Theorem 1 below). Using 
this fact we develop a spectral decomposition of the form (6) valid for sufficiently 
large n. By imposing further restrictions on /(s), which still admit  most of the 
important  examples, we can guarantee formula (6) for all n. When /(s) is analytic 
in the neighborhood of 1 and m < 1 then P again is completely continuous and 
the representation (6) holds for large n. For m = 1 the operator P is no longer 
completely continuous. Nevertheless when / ( s )  generates a Pdlya frequency se- 
quence (see below) then p n  admits a spectral representation involving continuous 
spectrum, of the explicit form 

c ~  

(7) P~} = .f e -n~ Q~ (~) dos (~) 
I) 

where 0j(~) is of bounded variation. The first term of the expansion (6) was 
recently obtained by KENDALL [12] in the case m > 1. 
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I n  this pape r  we develop the  spectral  representa t ion for the cases m > 1 
general ly  and for m < 1 when / (8)  is analyt ic  a t  1. We also t rea t  branching 
prccesses with immigrat ion.  

I n  the  companion  publ icat ion we elaborate  the theory  when m = 1 which 
leads to the  representa t ion  formula  (7). I n  a separa te  pape r  we will show how 
the methods  of this pape r  ex tend  to mul t i - type  branching processes. 

The  ut i l i ty  of  the  representa t ion  formula  in deriving improved  local l imit  
theorems,  the  s t rong rat io  theorem and other  probabil ist ic  consequences is also 
deferred to ano ther  publicat ion.  

W h e n  /(8) is a meromorph ic  funct ion of the special fo rm 
o o  

evslI (1 + c~is) 
(8) / (8)- - - -C i = l  _ ~ _ a ~ s k ,  

(1 - ths) ~=o 
i=1  

7 > 0 ,  ~ > 0 ,  / ~ > 0 ,  C > 0 ,  ~ ( ~ + f l ~ ) < ~  

i .e . , / (s)  generates  a Pdlya  f requency sequence then  we know several ref inements  
concerning the  eigcnveetors occurring in (6). The  funct ion ~o~ (r) possesses remark-  
able oscillation propert ies  which we will describe later. 

w 2. The Linear  Transformat ion  Associated with a Branching Process 

We consider a one-dimensional  branching process, as described in Section 1, 
c o  

character ized by  the generat ing funct ion ](s)  = ~ ,  a k s  ~. I n  sections 2, 3, 4, and 
k=0 

5 we assume t h a t  a0 = / ( 0 )  > 0, a~ > 0, /(1) = 1, and  1 < m ~ + oo where 

m = ]'(1) = ~ k a ~ .  
k = l  

The one-step t ransi t ion ma t r ix  [] P i , j  ][ is defined b y  

~ P~,jsJ = [/(8)]~, i = 0 ,  L2 . . . . .  18]<1. 
j = 0  

Under  the above assumptions,  the  equat ion 

/(8) ---- 8, 0 < 8 < 1  

has a unique solution, 8 = q (0 < q < 1). We have  /(8) > s for 0 ~ s < q and 
/(s) < s for q < s < 1. Since [ (s) is a power  series with non-negat ive  coefficients 
we have  11(8)1 =<1(181) and hence 

(9) I / ( 8 ) [ < l s [  if  q < l s l < l .  

This inequal i ty  implies t h a t  the mapp ing  s -+ ] (s) maps  each disc I s ] ~ r, q < r < 1 

into a s tr ict ly smaller  concentric disc of r a d i u s / ( r ) .  
The value c = f(q) of the der ivat ive  a t  the fixed point  plays an impor t an t  

role in subsequent  consi/lerations. Since ]'(s) is s tr ict ly increasing near  s = q, and 
since /(s) < s in an in terval  to the r ight  of  s = q, we have  

o < c = / ' ( q )  < 1.  
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Final ly  we r emark  t ha t  (9), together  with Roucgl~'s  theorem,  implies t h a t  /(s) 
has only the one fixed point,  s = q, in the interior of the uni t  circle. 

We  introduce the  Hi lber t  space 5/~ consisting of all sequences $ = {~}i~=0 
of complex numbers  such t h a t  

(10) H~[I 2 = ~ I~1~r < ~ .  
i = 0  

The inner p roduc t  in ~%f is defined as 

= ~  . (~,~) ~i~qr  for ~,~7�9 
i = 0  

I t  is convenient  to associate with any  ~ �9 YF a generat ing funct ion $ (s) where 
r  

(11) ~(s) =- ~ 1 8  i . 
i = 0  

Since 1[ ~ ]1 < oo for ~ �9 ~ we conclude t h a t  ~(s) is analyt ic  for Is ] < Vq" Fur-  
thermore,  with the aid of  the Schwarz inequali ty,  we derive some simple bounds.  

e o  

L e m m a  1. I / ~  �9 g f  then ~ (s) = ~ ~ s ~ obeys the inequality 
k = 0  

(~2) I~(s)l =< It~l[(1-IsiS/q) -1+2 for Is I <Vq. 
Proo/. We have  

l~(s) l= ~,~s,~ I <(2~l~l~q~)-~(2(Isl*~/q)~)-~ 
k = 0  k = 0  k = 0  

I f  ~ e W then  

1 

2 ~  

= !]~[l (1 - l s l ~ / q ) - l / 2 .  

--~r k=O 

which increases with r and -+ I] ~ I] ~ as r --> ~q. I t  follows t h a t  the funetions Fr(O) 
= ~(re I~ converge in norm in L2(--7~, ~) when r --~ ~q and the l imit  funct ion 
F ( O) satisfies 

1 S ~ l r ( o ) 1 2 d O _  - 11~112 2~ 

(See also [14], where it  is shown tha t  F (0) can be replaced by  the pointwise radial  
l imit  

lim ~ (rd ~ 
,,+1/~ - 

which exists for a lmost  all 0.) I f  the domain  of definition of ~ (s) is extended to 
include the boundary  circle Is ] = ]/q by  set t ing ~ ( / q  e t0) = F (0) then  for li ~ 11 
there  results the formula  

S I~(s) l  2 d~ 
(13) I [~1i2- 2 z i  Isl=Vq ~-" 
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Of course if ~ (s) happens to be regular inside some larger circle Is I = Vq + 
then (13) is valid with the ordinary interpretation of $(s) for I sl = ~q. 

Let  P be the linear operator defined on Off to itself by 
c o  

(14) (~P)s = ~ ~ Pfs. 
i=o 

The next lemma tells us tha t  P is well defined, continuous, and supplies a bound 
for the norm of P. 

c o  

Lemma 2. I / ~  e Off then SP  = ( ~ P i s ) ~ = o  e ~f,  moreover (~ P) (s) = ~(/(s)  ) 
i=o  

/or I si <---- Vq and 

(15) /I e l i  < (1 2) 
(9) shows there is an r such that  Vq < r <  1 and Proof. The inequality 

/(r) < ~/q. With this r 

]=o i=0 ]=0 j=0 i=0 

because the power series ~(s) has radius of convergence ~ q  > / ( r ) .  I t  follows 
that  the sequence {(~P)j) defined by (14) is in 5r ~ and the power series 

] i 

has radius of convergence ~ r > ~/q. Moreover, for [s I ~< r, 

i j i 

From (13) and the inequality (12) we have 

i[~P]12_ 1 f i ~ ( / ( s ) ) 1 2 d t  
2 ~ i  Isl =]/q s 

< I]~il2{l~ __ [f(Vqi ]2~-1 
: i V ~ ] )  ' 

and (15) follows from this. 
In the process of the proof we noted 

Corollary 1. I f  ~ e 3/f then ($ P) (s) is analytic in [ s ] < r / o r  some r > ~q. 
A routine calculation will determine the form of the adjoint operator P*.  

Thus, let ~7 e ~ 0  then 
c o  

(16) (P*~)i : 1 ~ pis~pjqS 
i=0 

With this definition we have 

( ~ , P * ~ ) : ( ~ P , ~ )  fora l l  ~ , ~ e ~ f .  

I t  is obvious comparing (14) and (16) that  P is not self-adjoint. 
From the contraction property (9) of the mapping s --> ] (s) we can deduce that  
Theorem 1. The operator P is completely continuous. 
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Proo/. I t  suffices to show tha t  for Some complete orthonormal sequence 
e(n), n = 0, 1, 2 . . . .  in 5/z, we have 

(17) ~= Ile(n) Pll < oo 
n=0  

(In other words we show tha t  P is a nuclear operator, i.e., it has a finite trace 
norm.) 
To this end, we choose the complete orthonormal sequence e(n) = {(~n,~q-n/2}, 
so tha t  e(n)(s) = (s/Vq)n. Then 

(e(') P)  (~) = ['~q)J" 

and from (13) 

II e(n)P]12 < [f-(Vd] 2~ = [ ~ - j  , 

so tha t  (17) converges because /(Vq) < Vq by (9). 

w 3. Eigenvalues and Eigenveetors for the Case m = f ' ( 1 )  > 1 

The spectral properties of a completely continuous operator are described in 
considerable detail in the classical Fredholm theory. The non-zero eigenvaines of 
P form a finite or countable sequence {~n}. The adjoint operator P *  is also com- 
pletely continuous and has the same sequence of non-zero eigenvalues. Moreover, 
for each ~n, the corresponding eigenspaees of P and P*  have the same finite 
dimension. 

We begin by presenting a recursive procedure for determining eigenvalues and 
eigenvectors of the adjoint operator P*. Each eigenvalue ,~n * 0 thus determined, 
is then known to be an eigenvalue of P, so tha t  the equation 

has a non-trivial solution ~ ~ g f .  Hence we deduce that  the functional equation 

has a non-trivial solution ~ (s) analytic in Is ] < Vq" This method of showing the 
existence of solutions of the functional equation can be easily circumvented for 
the simple type of branching process under consideration, but has the advantage 
that  it is readily generalized to certain branching processes of more complex type, 
especially branching processes with immigration, and multi-type branching pro- 
cesses. 

By setting s ---- 1 in the identity 
o o  

j=O 

we verify tha t  e0 = {1} = (1, 1, 1 . . . . .  1 . . . .  ) is an eigenveetor of P*  belonging 
to the eigenvalue ~0 = 1. By differentiating (18) with respect to s we obtain 
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and  now, by  set t ing s = 1, we verify t ha t  

el = { i}  = (0, 1, 2 . . . . .  i , . . . )  

is an  eigenvector of P *  belonging to the eigenvalne 

~1 = c = / ' ( q ) .  

This vector  is in  the t t i lbe r t  space, indeed the vectors {it}, r ~ 1, 2 . . . .  are in  
the Hflbert  space since the series 

~ [ i l 2 r q ~  
i=O 

are convergent.  

By  evaluat ing  derivat ives of (19) at  s = 1 we obta in  

oo 

(20) ~ q - ~ P ~ j q J ( j ) r = c r ( i ) r ~ - 7 ~ r _ l ( i ) ,  r =  1 ,2 ,3  . . . .  
] = 0  

where we use the no ta t ion  

(X)r : X(X - - 1 )  (x - -  2) .. .  (x - -  r -~ l) , r ~ - l , 2  . . . .  

and  where gr-1 (x) is a polynomial  in x of degree r - -  1 which vanishes at  x = 0. 
I t  will be shown tha t  for r ~ 1 there are monic polynomials  Qr (x) of exact  de- 
gree r such tha t  Q r ( O ) =  0 and  

er = {Qr(i)} : (Qr(0), Qr(1), Qr(2) . . . . .  Qr(i) . . . .  ) 

is an  eigenveetor of P *  belonging to the eigenvalue ~r = c r = []'(q)]r. We already 

have Q1 (x) = x. Assume n ~ 2 and  tha t  Qr (x) has been determined for r ~ 1, 
2 . . . . .  n - -  1. Then  

Qn (x) = (x)n + ~ ~ Qk (x) 

where the constants  r162 mus t  be chosen so t ha t  

n - - 1  n - - 1  

(21) cn[(i)n ~- ~ Q k ( i ) ]  = cn(i)n § 7~n-l(i) § ~ : r  
k = l  k = l  

is satisfied for i = 0, 1, 2 . . . . .  The known  polynomial  ~n-1 (x), since i t  vanishes 
a t  x = 0, can be expressed as 

n - - 1  

~ - l ( X )  = ~ t ~  q~ (x) 
k = l  

where the fl~ are constants .  Since Q1 (x), . . . ,  Qn-1 (x) are l inearly independen t  we 
can equate  coefficients of Qk(i) in  (21), ob ta in ing  

c n ~  = fl~ + c ~ . ~ ,  k = 1,2 . . . . .  n - -  1. 

Since 0 < c < 1, this has the un ique  solution 

~ = - ~ l ( c k  - c~) . 

Therefore Qn (x) is determined.  
Thus  we have eigenvalues ~r = c r, r = O, 1, 2 . . . .  of P* ,  with eigenvectors 
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er = {Qr(i)}i~176 where Qr(x) is a polynomial  of exact  degree r, Q o ( x ) =  1, 
Ql(X) - -  x, and  Qr (0) ~- 0 for r ~ 1. I t  is not  difficult to show tha t  po lynomia l  
vectors  are dense in the Hi lber t  space, bu t  this fact  seems i r re levant  to our problem. 

We  nex t  consider eigenvalues and eigenvectors of P.  The results are sum- 
marized in the following theorem.  

Theorem 2. (i) The only non-zero eigenvalues o/ P,  and o / P * ,  are 

(22) ~r -~- er, r = O, 1, 2 . . . . .  c ~--/'(q), 

and each eigeuspace o/ P,  and o/ P*,  is one-dimensional. 
(ii) The/unct ional  equation 

(23) A ( / ( s ) ) - ~ c A ( s ) ,  A ( q ) = O ,  A ' ( q ) ~ - l ,  

has a unique analytic solution A (s) which is regular at s z q. The solution is regular 
in Isl < 1. 

(iii) The eigenvectors o/ P*  are the polynomial eigenvectors 

(24) er : {Qr (i)}, r • 0, 1, 2 . . . .  

constructed previously. The eigenvector dr ~ {d~} o / P  belonging to the eigenvalue ~r 

has a generating/unction 
oo 

dr(s) = ~ d~s~ 
i = O  

given by 

(25) dr(s) -~ [A (s)] r, r : 0, l ,  2 . . . . .  

Proo/. We already proved in the constructions preceding the theorem t h a t  the 
constants  c r (r ~- O, 1, ...) are eigenvalues of P *  and hence also of  P.  Actual ly  
the existence of eigenvectors of P *  of the form (24) associated with c r was es- 
tablished. 

Now let ~ ~: 0 be an eigenvalue of P and let ~ ---- (t0, ~1, ...) ~ ~ denote a 
nontr ivia l  left eigenvector for ~. Thus 

(26) ~ ~ Pij  = X ~j, j = 0, 1, 2 . . . .  
i = 0  

I f  ~(s) denotes the  generat ing function of ~ then  this is analyt ic  a t  least for 
]s I < ~q since ~ ~ 5q ~. We can express (26) equivalent ly  in te rms  of generat ing 
functions as 

(27) ~(/(s))=~(s), Is I <~q. 
F r o m  (9) and  (27) we infer t ha t  ~ (s) can be analyt ical ly  continued th roughout  

the  uni t  circle Is] < 1. 
Now ~ (s) has a zero of order k ~ 0 a t  s ~ q. Of course, k is finite because b y  

hypothesis  ~ (s) is non-trivial.  I t  follows t h a t  ~ (s) has an expansion about  q of  
the fo rm 

~(s) = uk(s  - q)~ § u~+l(s - q)~+l § . . .  u ~ .  O. 

Differentiat ing (27)/c t imes and then  subst i tut ing s ---- q yields the equat ion 

~ukk!  = c~ukk! ,  (c = / ' ( q ) )  

which implies ~ = c ~. Thus all eigenvalues of P are given b y  (22). Moreover,  
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i f  ~ is an e igenvector  of  P for the  eigenvalue 4k then  the  genera t ing  funct ion ~ (s) 
has,  a t  s -~ q, a zero of  order  k exac t ly .  

W e  m u s t  ver i fy  t h a t  the  eigenspaces are one-dimensional .  To this  end we 
show there  is a t  mos t  one ana ly t i c  funct ion  T (s) regular  a t  s = q which satisfies 

(28) T ( /(s)  ) = c ~ T (s) 

and  

(29) T(q)  = T'(q) . . . . .  T(~-l)(q)  = O, T(~)(q) = k! 

Different ia t ion  of  the  funct ional  equa t ion  n t imes  yields  

T('~)(/(s) ) [1'(8)] n + Rn(s )  = c ~ T(n)(s) 

where Rn (s) is a l inear  combina t ion  of  the  lower de r iva t ives  T(m) ( / (s ) ) ,  m ~ 1, 
2 . . . . .  n - -  1 whose coefficients depend  on /(s)  and  i ts  der iva t ives  (R0 (s) - 0). 
Subs t i t u t i on  of  s ---- q yields 

(30) (ok _ cn) T(n) (q) = R ~  (q) .  

Now if  n ~ k + 1 and  i f  we assume t h a t  the  values  T(m((q), m < n have  a l r eady  
been de te rmined ,  then  Rn (q) is comple te ly  known,  and  since c ~ - -  c n > O, equa-  
t ion (30) de te rmines  T(n) (q) uniquely.  Hence  b y  induc t ion  on n, all the  der iva t ives  
of  T (s) a t  s = q are un ique ly  de te rmined ,  which is wha t  we had  to  prove.  I t  
follows t h a t  the  e igenvector  d~ of  P belonging to the  eigenvalue 4~ ~ c k is de- 
t e rmined  to  wi th in  a cons tan t  factor .  

I n  pa r t i cu l a r  (23) has  a t  mos t  one solut ion A (s) regular  a t  s = q. Bu t  P has  
an  e igenvector  dl  belonging to  the  eigenvalue 41 ~- c, and  af te r  p roper  normal i -  
za t ion  i ts  genera t ing  funct ion d l  (s) will be a solut ion of  (23). Hence  A (s) = d l  (s). 
As r e m a r k e d  below (27), d l  (s), and  so also A (s), is regula r  in the  un i t  circle. 

F o r  r = 0, l ,  2 . . . .  let  

dr (s) : [A (s)] r . 

Then  dr (s) is regular  in I s I < 1, and  hence is the  genera t ing  funct ion  of  a vec to r  dr 
~.  Since dr(s) �9 0 and  dr( / (s))  ~ crdr(s), dr is an e igenvector  of P belonging to  

the  eigenvalue 4r ~-- c r. This completes  the  p roof  of  Theorem 2. 
F o r  r -~ 0 we have  do (s) - 1. Thus  the  e igenvector  associa ted  wi th  40 = 1 is 

do----(1, O,O . . . . .  0 . . . .  ) .  

Since A (q) = O, A '  (q) --~ 1, the  mapp ing  

s - +  w = A (s)  

provides  a conformal  m a p  of some ne ighborhood  of  s --~ q onto  a ne ighborhood 
of  w ~ 0. Therefore  there  is an  inverse  funct ion  s ~ B (w) defined b y  

(31) B ( A ( s ) ) : s  near  s ~ - q .  

The funct ion  B (w) is regula r  near  w ~ 0 and  maps  a ne ighborhood  of  w ~- 0 onto 
a ne ighborhood  of  s ---- q. F r o m  (31) and  (23) we ob ta in  

(32) ] (B (w) )  = B ( c w ) ,  B(O) : q,  B'(O) ~- 1. 

The nex t  theorem is well known b u t  the  m e t h o d  of  p roof  is new. 
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Theorem 3. 

(33) lim fn (s) - q _ A (s) 
c n  

n---~o~ 

uni/ormly in every circle ]s [ ~ r < 1. 
Proo/. I tera t ion of (32) gives, near w ~ 0, 

(34) [n (B (w)) ---- B (c n w) ,  

and then by  the subst i tut ion w ~- A (s) 

(35) /n (s) = B (c n A (s)) 

which is valid at  first near s z q. Assume Is] ~ r ~ 1 where r ~ q. There is a 
value no such tha t  for all such s, n ~ no implies cnA (s) lies inside the circle of 
convergence of  the power series 

(36) B(w)  : q ~- w ~- ~ b~w ~. 
k = 2  

Then the functional equation (35) is valid for n ~ no and ]s I ~ r by  analytic 
continuation. Hence 

/n (s) z B (c n A (s)) ---- q -k c n A (s) § 0 (I cn A (s)] 2) 

and (33) follows. 
Corollary 1. A '  (s) ~ 0/or  0 ~ s < 1 and A (s) -~ -k oo when s --> 1. The inverse 

/unction B (w) is defined and regular in an open set containing the hal/ l ine A (0) ~ w 
~ o o .  

Proo/. With  the aid of  (23) and considerations of degree, we see tha t  A (s) 
cannot  be a polynomial.  F rom (33) it follows tha t  A(r} (0) ~ 0 for all r ~ 1, and so 

co 8 r _  l 

A'(s)  -~ ~ A(r)(0) (r ~ 1 ) !  
r = l  

shows tha t  A '  (s) > 0 for 0 < s < 1. Since lim A (s) ---- L satisfies L > 0, and from 

(23), L -~ eL,  we have L = -k oo. I t  follows tha t  B(w)  can be analytically 
continued f rom a neighborhood of  w = 0 along the entire half  line A (0) ~ w < oo. 

Corollary 2. I / / '  (0) > 0 then B (w) is defined and regular in an open set con- 
taining the closed hall line A (0) g w < oo. 

Proo/. From (23) 

A' (0)  1--A' = ~ ( / ( 0 ) ) / ' ( 0 )  

which is positive since A '  (/(0)) > 0 by  corollary 1. Hence the analytic continuat ion 
of  B (w) to some interval  A (0) - -  e < w < oo, where e > 0, is possible. 

I t  is t radit ional  in the theory  of  branching processes (see [3]) to derive the 
existence of  A (s) b y  proving directly the formula (33) using ad hoc methods.  I n  
contrast ,  we inferred the existence of  A (s) by  exploiting the proper ty  tha t  P is 
completely continuous coupled with the construction of  certain r ight eigenvectors. 
This lat ter  technique works in the multi-dimensional branching process ease while 
the classical method does not  seem to generalize easily. 
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w 4. Spectral Representation of P in the Case m : i f ( l )  > 1 

Prior to developing the spectral representation of P it is convenient to relate 
the eigenvcctors of P*  with the function B(w) .  In  fact, let 

o o  

(37) BJ (w) = ~ ~0j (r) w r , i = O, 1, 2 . . . .  
r = 0  

We claim that  {y~j (r)/qi}~= 0 is a right eigenvector for the eigenvalue c r, in the sense 
r  

(38) ~ P/j ~0j (r) = c r ~pr (r). 
]=0 

But  (38) is equivalent to the double generating function 
c ~  

~ P~ w (r) w" = ~ e" W (r) wr = B~ (c w). 
r j r=0  

The left hand side is absolutely convergen~ for small w and equal to 

P/ /B/(w) = /~  (B (w)). 
i=0 

In other words (38) essentially reduces to the functional relation / (B (w)) = B (c w), 
and is therefore verified. 

We introduce ~he expansion 

(39) [A (s)] r = ~ 0 i (r) # .  
i=0 

Thus, in terms of the notation of Theorem 2, we have 

dr = (Oo(r), 01(r) . . . .  ) 

We can now prepare to state the general spectral representation theorem for P. 
Refinements will be indicated in Section 5. 

Theorem 4. (i) The operator P admits the spectral representation 

(40) P~ = ~ (cr) n 0j (r) ~0i (r) c = [' (q) 
r = 0  

/or all su/ficiently large n and all i, j = O, 1 . . . . .  
The quantities 01 (r) are defined in (39) and ~fi (r) in (37) . 
(ii) I / t h e  coe/ficients {~01 ( r )}~l  in 

c o  

B (w) = q + ~ ~1 (r) w' 
~ 1  

have alternating signs, that is (--  1)r-1 ~01(r) _--> 0, r => 1 (or al ternating/rom some 
r on), then (40) is va l id /or  all n >= 1, the series being absolutely convergent. I]  we 
also have / '  (0) > 0 then (40) is val id/or  n >--_ O. 

l%emark. Examples can be given in which the coefficients of B(w)  are not 
alternating from any point on. Such examples are most easily constructed using 
the theory of continuous time branching processes. 

Proo[. (i) Consider 
A ( l ( s ) )  = c A  (s) 
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and upon i tera t ion the relat ion 

A ( / n ( 8 ) ) = c n A ( 8 )  0 ~ 8 < 1 .  

Inver t ing  by  B (w), which is permissible in view of Corollary 1 of Theorem 3 we 
obtain 

(41) /n (s) : B ( c n A  (s)) 0 ~= s < 1. 

Actual ly  (41) is val id for complex s in a neighborhood of the segment  0 ~ s ~ 1. 
We know t h a t  

[.fn (s)] i = ~ P!~) sl 
j = 0  

and so 

(42) 

Now 

coefficients 8I in B i (c n A (s)) : P~) .  

B~ (w) ~t (r) wr. 
r ~ 0  

Assume for the  m o m e n t  t h a t  cnA (0) lies in the interior of the  circle of convergence 
of B(w).  The for I sl sufficiently small, cnA (s) also lies in the interior and 

B/(on A (8)) = ~ ~ (r) cnr Ar (8), 
r ~ 0  

Expand ing  A r (s) about  the origin gives 
oo oo 

B i (c n A (8)) ~- ~_, yJi (r) C nr ~ ,  01 (r) 8] 
r=O i~O 

the double series converging absolutely for [81 small  enough. Picking out  the 
coefficient of  sl in accordance with (42) establishes (40). 

Now for n sufficiently large cnA (0), which tends to zero, falls within the radius 
of convergence of B (w). We have  proved P a r t  (i) of  the theorem.  

(ii) The a rgumen t  shows tha t  (40) is val id for all n ~ m if the radius of 
convergence of B (w) exceeds c m I A (0)]. Assume ( - -  1)r-ly)l(r) ~ 0, r : 1, 2, . . . ,  

oo 

and let 9 be the radius of convergence of B ( w ) ~  q ~ - ~  y~l (r)w r. Then  the 
r = l  

PaINGSHEI~ theorem (TITcItMAI~S~I [14], p. 214) assures t h a t  w = - -  9 is a singular 
point  of B (w). Since B (w) is regular in a neighborhood of the open half  line 
A (0) ~ w ~ r by  Corollary 1 of  Theorem 3, we conclude t h a t  - -  9 ~ A (0). 
(Note t h a t  A (0) ~ 0 since A (q) = 0 and A'  (s) :> 0 for 0 ~ 8 ~ 1.) Therefore 
c]A (0)] < Q and (40) is valid for n ~ 1. I f  ] '  (0) > 0 then  we deduce f rom Corol- 
lary 2 of  Theorem 3 t ha t  - -  ~ ~ A (0) and hence (40) is valid for n ~ 0. 

Tile proof  of  Theorem 4 is now finished. 
I l lust ra t ions and applications of pa r t  (fi) will be given in Section 7. 
The eigenvectors of P and of P *  are, of course, bior thogonal  and  if proper ly  

normalized 

(43a) ~ ~i (r) Oi (r') -~ ~r , r ' .  
i = 0  

Z .  W a h r s c h e i n l i c h k e i t s t h e o r i e  v e r w .  G e b . ,  B d .  5 2 
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We can prove (43a) by  expanding the left member  of 

Ar(B(w)) = wr 

in powers of w. 
The dual biorthogona]i ty of  the left and r ight  eigenvectors er----{yJt(r)}~~ 

and dj = {0j(r)}~__0, i.e., 
oo 

(43b) ~. ~fli (r) 0j (r) = d,j 
r = 0  

is expressed by the inverse relations 

B i (A (s)) = s t . 

The identities (43b) are formal and correspond to the ease n = 0 in (40). However,  
the convergence is absolute and indeed (43a) is rigorous when the components  of 
{~ol(r)}r_ 1 al ternate is sign. The justification for this assertion is affirmed by  
adapt ing a similar a rgument  to t ha t  of  par t  (ii) of  Theorem 4. 

R e m a r k. The spectral representat ion developed above was derived under  the 
assunption tha t  m = [ '  (1) > 1. I t  is useful to point  out  t ha t  the spectral represen- 
ta t ion (40) obtains with no requirements on the order of  magni tude  of [ '  (1) 
whenever ](1) < 1 and ](0) > 0. I n  this case there definitely exists a unique fixed 
point  q = [ (q), 0 < q < 1. As previously we introduce the  Hflbert  space of  se- 
quences ~ = (~0, ~1 . . . .  ) of finite norm 

oo 

i = 0  

The complete analysis leading to (40) carries over in toto. The conclusions of 
Theorem 4 persist which we state as follows: 

Theorem 5. Let [(s) = 2 aks~ where ao > O, at >= 0 (i >~ 1) and ](1) < 1. We 
k = 0  

define the matrix P = 11Pij 11 by the generating ]unction relation (3). Then (40) holds 
/or all su/ficiently large n. 

The right and le/t eigenveetors o / P  are characterized as in Theorem 2. 
1] [(s) generates a Pdlya /requency sequence (see (48)) then the spectral re- 

presentation (40) prevails/or all integers n >~ O. (See Theorem 7 below.) 
R e m a r k .  An  example can be constructed for which ](1) < 1 and the con- 

vergence in (40) fails for any  finite number  of  values of n (see [10]). I t  seems 
likely tha t  for special examples, the convergence in (40) m a y  fail even in the case 
tha t  ](1) =- 1. This question remains open. 

w 5. Refinements on the Spectral Representation (m > l) 

We pointed out  in Theorem 4 tha t  whenever 
oo 

(44) B (w) = q + ~ ~ol (r) w r 
r = l  

has coefficients of  al ternating signs for r ~> 1 and /' (0) > 0 then  the spectral 
representat ion (40) holds for all integers n = 0, 1, 2 . . . . .  I n  this section we in- 
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vest igate  conditions which guarantee  the p roper ty  

(45) ( - - l ) r - l ~ f l ( r )  ~ 0 r ~ 1 .  

An example  of this phenomena  is the following 

Theorem 6. Le t / ( s )  z ao + a l s  + a2s ~, ao > O,/ '(1) > 1. Then the coe/ficients 
in (44) alternate as in (45). 

Proo/. Differentiat ing / ( B  (w)) ~- B (cw) n t imes and recognizing that/(~)(s) -~ 0 
for k ~ 3 we obtain  

1" (B (w)) Qn (w) + 1' (B (w)) B(n) (w) : c n B(n) (c w) 

where Qn (w) is a linear combinat ion of B(O (w) B(n-O (w), i = O, 1 . . . . .  n, with 
posit ive coefficients. Subst i tu t ing w = 0 and recalling B (0) = q, we obtain  

t~ 0 
f (q) Qn( ) for n > 1. (46) b n =  B (n ) (O) -  c n - - c  

But  /(q) > 0, c n < c for n > 1 and bl ~- B '  (0) > 0. We can deduce induct ively 
f rom the description of Qn t h a t  

(47) (--  1)n- lbn => O n _--> 1 Q . E . D .  

R e m a r k .  The conclusion (47) fails a l ready for certain cubic polynomials  
/(6') ~- 2 s + (1 - -  3 s) s + s s3  s > 0 if s is small. We leave the task  of checking 
this fact  to the reader.  However ,  see [8]. 

A general class of  probabi l i ty  generat ing functions of vas t  impor tance  with 
remarkable  regular i ty  propert ies  are of  the form 

l~(1 + ~i8) 
(48) / (s) = K e ~s i= 1 - -  ~ as s ~ , 

1 ~ ( 1 -  ~ )  k=o 
i=1 

where the paramete rs  sat isfy the conditions 

oo 
II (] - ~) 

y = > O ,  0 r  O ~ < f i t < l ,  i ( 0 r  K = e  - : ' := l  oo 
i=1 II  (1 + cq) 

i = l  

The generat ing function (48) generates a P61ya f requency sequence {ak}k~176 
which exhibits  the p rope r ty  t ha t  all minors of  the ma t r ix  I]a~_~]l~,r are non- 
negat ive  (here a-m z 0, m > 0). The converse is also t rue  [1]. 

The class of  probabi l i ty  generat ing functions (48) includes the Poisson, the 
binomial,  the negat ive  binomial  and numerous  other  impor t an t  cases. We record 
two key  propert ies  associated with /(8) of  the s t ructure  (48). 

A. I t  is p roved  in [5] t h a t  the t ransi t ion probabi l i ty  ma t r ix  11 P~I 1] of the 
branching process induced by  /(s) of  the form (48) is to ta l ly  positive. This says 
t ha t  all minors of  lI Pi j  ]] are non-negative.  

Fu r the rmore  in the case a t  hand  Pot -- ~t0 and for any  given minor  composed 
of rows of index 1 ~= il  < i2 < ""  < ir and columns of index 1 g ] l  < ?'2 < "" " < j r  

2* 
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is s tr ict ly positive for n large enough, i.e., 
p(.~), p(n). p(n). 

p!"). p(.n), p(n). 

> 0 .  

(51) 

This is clearly a polynomial  of degree r in the variable/~, in which the coefficient 

~ ( r )  __ coefficient w r in 1 + ~- + ~l(n)  q~ 
'n= '2  

= coefficient w r in + ~1 (n) wn . 
m=l n = 2  q 

p(.n), p(.n), p(.n). 

I n  other  words there is an i terate pn  which renders a prescribed minor  as indicated 
above strict ly positive. 

B. Under  the conditions satisfied by  P above, extending some results of  KR~I~ 
and GANTMACHER [2], see also [6], we prove in [15] t ha t  if P = n P #  I1 is T. P. 
(P0i = 5i0, ~ Pi j  ~ 1, i ~ 1) possessing simple eigenvalues 1 = A0 > A1 > A2 

i 
�9 "" > An > "'" and associated right eigenvcctors 

~ 0 ( . ) ,  ~ i ( . )  . . . . .  t 0 n ( . ) ,  . . .  

then F0 (i) ---- (~0 and ipn = (Fn (0), IPn (1), tpn (2) . . . .  ), n ~ I exhibits precisely n - -  1 
sign changes,  where ~n (0) -= 0, n ~ 1. 

Fur the r  oscillation properties of  {qpn}n~__0 pertaining to interlocking properties 
of  sign changes of  the components  of successive eigenvectors and zero characte- 
ristics of the extended linear interpolat ion of  ~n are available. We do not  elaborate 
these results here since they  will not  be needed in the sequel. 

Wi th  the aid of  A. and B. we now prove the following impor tan t  theorem. 
Theorem 7. Let /(s) be a probability generating function o/ the form (48) and 

assume f '(1) = m > 1. Let B(w)  = q + ~ y~1(r) w r be the unique function analytic 

about the origin and satisfying / ( B ( w ) ) =  B(cw),  B ( O ) =  q, B ' ( O ) =  1, where 
e = f' (q). Then 

(49) (-- 1)n - lv l (n )  > 0 ,  n = 1 ,2 ,3  . . . .  

Proof. We proved in (38) t ha t  the r ight eigenvectors of  P ,  i. e., the eigenvcctors 
of P *  can be calculated as follows: Le t  

(50) B k (w) = qk + ~ Vk (r) w r ]c = 0, 1, 2 . . . .  
r = l  

The r th  eigenvector has components  

e r =  (~flo(r) "l(r~ ) V2(r) y'8(r) ) 
, q , q2  , qa  , ' "  

where v0(r) = 0, r ~ 1. We have for r ~ 1 
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of k r is 1/(r ! qr). The polynomial  Vanishes at  k = 0, as it should. Therefore 

(52) ~k(r) : q~ Qr(k)r! q r , r ~ O, 

where Qr (k) is the monie polynomial  in (24). 
Since Qr (k) vanishes at  k ---- 0 and is positive for k sufficiently large, and ex- 

hibits exactly r - -  1 sign changes (here we use proper ty  B decisively), we infer t ha t  

( - -  1) r-x Qr(1) ~ 0,  
or what  is the same 

(-- 1)r-l~fl(r) ~>0 

which was desired to be shown. 
Corollary 1. Under the conditions o/ Theorem 7, the right eigenveetor polynomial 

Qr (x), r >= 1, possesses precisely r - 1 simple zeros in (0, oo) and also vanishes at 
the origin. The zeros on (0, co) o/ Qr(x) and Qr+l (x) strictly interlace. 

The proof  of the last s ta tement  will not  be given bu t  result f rom our more 
refined knowledge concerning eigenvectors of  total ly positive matrices (see [15]). 
I t  is not  difficult to provide examples where the conclusions of  Corollary 1 fail. 

Combining Theorems 4 and 7, and noting t h a t / '  (0) > 0 if / (s) is of the form 
(48), we obtain the following. 

Theorem 8. Let / (s )  be a generating/unction o / the /orm (48) with m = / '  (1) > 1. 
Then the spectral representation 

(53) P~) --  (cr) n Oj (r) ~f~ (r) 
n ~ 0  

is valid/or all integers n ~ O. 

w 6. Spectral Representation in the Case rn = f ' ( 1 )  < 1 

We next  investigate the existence of a spectral representation when m < 1. 
We assume, as before, tha t  a0 = ] (0) ~ 0. I n  addit ion we make the essential 
simplifying assumption tha t  the analytic function / (s) is regular at  s = 1. Wi thou t  
such a restriction continuous spectrum is present and the nature  of  the spectra] 
representation appears to be quite intricate. 

Since /(s) is a power series with positive coefficients, regular for I sl < 1, and 
at  s ~-- 1, the PRI~GS~EIM theorem assures t ha t  the radius of convergence is 
actual ly  greater than  1. S ince / ' ( 1 )  < 1 we h a v e / ( s )  < s in an interval to the 
r ight of s = 1. Choose a > 1 such tha t  /(a) < a and such tha t  /(s) is regular in 
some circle Is] < a + e where e > O. 

We can proceed in two ways. One method is to consider P acting in the Hilbert  
space of sequences ~ = {~} with 

(54) I[ ~ 1[ 2 I ~ l  2 a~ < ~ ,  
i = 0  

and imitate the theory  of section 3. An alternative method is to reduce the present 
case to Theorem 5 by  considering the generating function 

(55) h (s) = ~ / ( a  s) 

for which h(1) < 1. We outline the second method.  
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The unique fixed point  of  h on (0,1) is q = l/a, and h'(q) = / ' ( 1 )  = m < 1. 
Associated with h we have a function Ah (s) defined by  

1 
hn(8) - - -  a 

(56) Ah (s) = lim 
m n 

n . ~ .  o o  

where the convergence is uniform in every circle Is[ g r < 1 (in this ease, even 

in a circle of  radius > 1). Since hn(s) = ~ / n ( a s )  we deduce tha t  

(57) A(s)  = a A h ( s )  = f~(s) - - 1  
lim 

m n 
n---> ~ 

converges uniformly in every circle Is] _--< r < a. F rom (57) follows 

(58) A ( / ( s ) ) = m A ( s ) ,  A ( 1 ) = 0 ,  A ' ( 1 ) = I ,  

and (58) has only one solution regular at  s ---- 1, by  the same argument  as before 
(cf. Section 3). 

F r o m  (58) we obtain  

(59) A'  (s) = ~ A'  (/n (s)) . 

But  /~(a)-->l as n -->c~ f f 0 ~ < s _ < l ,  and /s ~[ / ' ( s ) ]  n > 0  i f 0 < s = <  1. 
Hence the r ight  member  of  (59) is positive for large n if 0 < s ~ 1, and also for 
s = 0 i f / '  (0) > 0. Thus  the inverse funct ion B (w) of  A (s), defined so tha t  

B ( A ( s ) ) = s  near s----1 

can be continued analyt ical ly along the segment A (0) < w ~ 0, and is even regular 
in a neighborhood of  the closed segment A (0) --< w --< 0 i f / '  (0) > 0. I t  satisfies 

/ ( B ( w ) ) =  B ( m w ) ,  B ( O ) =  I ,  B ' (O)=  I .  

We define ~0~ (r), 0j (r) by  

(60) A t ( s ) =  O~(r)sJ, B~(w)=~. .y , l (r )w r 
] = 0  r = O  

and then from the functional ident i ty  

1~ (s) = B i (m n A (s)) 
we deduce that 

o o  

(61a) P~ ~-~ ~. m rn ~fi (r) Oj (r) 
r = 0  

/or all su[fieiently large n, /or  n >= 1 i/ 

(61b) (-- 1)r-l~01(r) ~ 0 for r ~ 1, 

and also/or n ~- 0 i/, in addition, /'(0) > O. I] ](s) is o/the /orm (48) then (62) 
is valid. 

From the formula 
oo 

B (w) = 1 + w + ~, Y)I (r) W r 



Spectral Theory of Branching Processes. I 23 

we can show t h a t  ~v~(r) = Qr(i) where Qr(i) is a po lynomia l  in  i o f  degree r, in 
which the  coefficient of  i r is 1/r !. Since A (s) is ana ly t ic  in a circle ] s [ < a where 
a > 1, the  coefficients 0j (r) converge geometr ica l ly  to  zero as ] --> c~, r fixed. 

w 7. Spectral  Representa t ion when f ( 0 )  ~ 0 

F i r s t  assume / (0) - -  0, [ '  (0) > 0. W e  exclude the  t r iv ia l  case / (s) = s. I t  then  
follows t h a t  

I/(s)l<lsl 0 < l s l < l ,  
Only the states i = l ,  2, 3 . . . .  are o/ interest  so we use a Hilbert  space ~ o/sequences 

�9 c ~  i ~- {$~} 1 w th the norm 

i = 1  

where 0 < a < 1. The m a t r i x  I[ P q  II de te rmined  b y  / (s) acts  in ~W via  the  formula  

=i (~ P) j  ~ P ~  
i = 1  

as a comple te ly  cont inuous  opera to r  P .  To find eigenvectors  of  P *  we different ia te  
the  i d e n t i t y  

r 

(62) ~ a - l P ~ j a J s ] = [ f ~ ( ~ - ]  i 
j = l  

and  set  s = 0. The  first  de r iva t ive  yields 

o ~  

~ a-~ P i j a J j d l , j  = c i d l ,  i 
]=1 

so t h a t  el ~ (1, 0, 0 . . . . .  0 . . . .  ) is an e igenvector  belonging to the  eigenvalue 
~1 = c = [ '  (0). Le t  

c O  
u ~  = { ~ r , d ~ = l ,  r = 1 ,  2 . . . .  

= ( 0 , 0 , . . . , 0 ,  1 ,0  . . . .  ).  

B y  eva lua t ing  higher  der iva t ives  of  (62) a t  s = 0 we find t h a t  P *  maps  r! Ur in to  
a vec tor  of the  form 

(63) e r r! Ur + l inear  combina t ion  of  Ul, u2, . . . ,  Ur-1. 

I t  follows t h a t  c r, r = 1, 2 . . . .  is an eigenvalue of P *  wi th  an  e igenvector  of  the  
form ur + l inear  combina t ion  of  u l ,  u2 . . . . .  Ur-1. 

I n  pa r t i cu la r  e is an eigenvalue of  P and we deduce t h a t  

A ( l ( s ) )  = c A  (s) 

has  a non- t r iv ia l  solut ion regular  in i sl < V~. B y  fami l ia r  a rguments  we can 
assume 

A ( 0 ) = 0 ,  A ' ( 0 ) = I  

and the  solut ion is then  unique,  and  regular  in ] s I < 1. The inverse  funct ion B (w) 
is r egu la r  near  w = 0, and  here A (0) = 0 is def ini te ly  wi th in  the  circle of  con- 
vergence of  B (w) abou t  w = 0, 
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We define ~01 (r) and 01 (r) by  

Bl (w) ---- ~ ~0~ (r) w r , 
r = l  

and  conclude tha t  

(64) 

c o  

A r (s) = ~. Oj (r) sJ 
j = l  

co 
Pi~ = ~_~ cur Wl (r) Oj (r) 

r = l  

where the series converges absolutely for all i, ] ~ 1 and n = 0, 1, 2, . . . .  Of 
course, since {%oi( )}i= 1 is a multiple of  (63), the  series in (64) are actual ly finite 
series. Moreover, in this case the matr ix  P has an inverse p -1  and the finite series 
(64) for n = - -  1, - -  2 . . . .  determines the corresponding elements of  the powers 
of  p-1 .  

I f  we assume ] (0) = ] '  (0) = 0 then l (s) is of  the form 

l ( s ) = a k s  k q - ' ' ' ,  as 4=0, I t > l ,  
and  then 

(*) I/n(8)l _-< 181 181 =< , .  

On the basis of  this inequal i ty  one shows t h a t  the operator  P has spectral radius 
zero. I n  fact,  a simple estimate using (*) and  Schwarz 's  lemma pertaining to 
analyt ic  functions in the uni t  circle vanishing at  the origin leads to the inequali ty 

II Pn II =< c [Va] k~. 

Clearly, for/c > 1, lim ]l p n  ][ 1/n = 0 and thus one cannot  expect to find a spectra] 
n --> c o  

representation. 

w 8. Examples 

I t  is difficult, inherently so, to  obtain explicit expressions for the basic functions 
A (8) and B(w), in concrete examples. The task of  determining A (s) is almost  
synonomous  with t h a t  of  finding in closed form the iterates ]n (8). We cannot  do 
this even for the simple impor tan t  eases of  [ (8) = a0 + al 8 + a2 8 2 and ] (s) = e ~(s- 1). 

We now treat  three examples for w h i c h / n  (8) can be displayed in closed form. 
E x a m p l e  1. / ( s ) = l - - y ( 1  s) B, 0 < / ~ < : 1 ,  0 < y < l .  

This probabi l i ty  generat ing funct ion for /~ = 1/2 arises in connection with fluc- 
tua t ion  theory  of  coin tossing experiments.  

I n  this example / (0 )  = 1 - -  y, 1(1) = 1, / ' (1)  = oo. The fixed point  q = ](q) 
(0 < q < 1) is 

q =  1--711(]-~)  and c = [ ' ( g ) = / ~ .  

By  a s t ra ightforward calculation 

l~(s) = 1 - -  ~ 1 + ~ + . - . + ~ , , - ~  ( 1  - s) ,e~ 

[1-81 o 
= 1 - -  yO-r176 - -  8) 8" = 1 - -  (1 - -  q) ly~-qj  . 

I t  follows t h a t  

(65) - ~ - s )  __ A ( s ) .  lim fn(s~n q - -  ( 1 - - q )  log __q 
n - - >  g ~  
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Inver t ing ,  we ob ta in  
B ( w )  = I - -  (1 - -  q) e-w[(1-q),  

I n  the  expans ion  of B (w) the  coefficients af ter  the  first  a l t e rna te  and  therefore  
the  spect ra l  r ep resen ta t ion  (40) for the  branching  process induced  b y  /(s)  = 1 - -  
y (1 - -  s)fl holds for all in te ra tes  n = 0, 1, 2 . . . .  as asser ted  in Theorem 4. Ex-  

oo panding  1 - -  ~. B n (w) u n = 1 

1 -- B (w)u  n = 0  l - - u  + (1 - -q )ue-wl ( ] -q )  

and  collecting coefficients leads to the  expression 

~o~(r)=q~Qr(n) ( l~r!k~__ok ~ (--1)~(1--q)~ 

_ 

(1 - -  q)r r! X dx 

E x a m p l e  2. /(s) = ~/(1 - - / 3 s )  (g + / 3  = 1, 1 > / 3  > 1/2). 
This is an  example  of  the  class (48). I t  is readi ly  verified t h a t  q ~ - / ( q )  = ~//3 
and  / '  (q) ~ ~//3. Apply ing  the  e l emen ta ry  theo ry  of ]inear f rac t ional  mappings  
we ge t  

8 - - q  

(66) [n(S) = 1 --  qn ,(S~l--1)-- q' - -  q -~ qn (q __ 1) (s --  1)] + O(q2n)" 

Compar ing  wi th  (34) we see t h a t  

(67) A ( s ) - - ( 1 - q ) ( s - q )  and B ( w ) - - w §  
1 - s  w +  ( l - q )  " 

I n  order  to  ident i fy  the  coefficients in the  expans ion  of B r (w), we in t roduce  
the  Meixner  Po lynomia l s  M n  (x) defined b y  the  genera t ing  funct ion ( :)x 
(68) ~ M n ( x ; b , a )  [b]nsn 1 -  

n=0 n! - -  (1 --  s) ~+x' [b]n = b(b + 1 ) . . .  (b + n - -  1). 

Here  a and  b are pa rame te r s  sub jec t  to the  res t r ic t ions  0 ~ a ~ 1, b > 0. Now 

oo ~ = w +  l - - q  
~)i (r) W r U I ~- ,-., B i (W) U ~ w(1 --  u) -~- (1 --  q) (1--qu) 

i,r=O i=O 

- - i  qu 1 +  1 - - u  w 

I n  the  expans ion  of  this  the  coefficient of  w r, r ~ 1, is 

(69) \1 --  q] (1 --  qu) r+l ' r = 1 ,2  . . . .  

I n  (68) we replace s b y  qu,  mul t ip ly  b y  u, and  ob ta in  the  i den t i t y  

(70) ( --1 )r-1 M i ( r - -  l ' b , a ) / ! - .  [b]~ 
\] - -  q ]  

i=O 

\ a /  
( - - 1  / r - 1  ( ( 1 - -  ~ U y - l U  

U - q] (~ ~qu?+r--~ 
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When  a = q and b = 2 the f ight member  of  (70) is the same as (69). Hence we 
conclude tha t  for r ~ 1, 2 . . . .  

{ ( - - 1  ~r-1 
~fi (r) = \1 -- q] i M~- I  (r - -  1 ; 2, q) q~-l, i = 1, 2 . . . .  

0 , i = 0 .  

For  r = 0, (69) mus t  be replaced by  1/(1 - -  qu).  I t  follows tha t  

~0~ (0) = q~, i = 0, 1, 2 . . . .  

The coefficients 0j-(r) can be found by  a similar calculation using the explicit 
formula for A (s). We have 

oo 

(71) ~ Oj (r) sJ u r - -  
r , ] = 0  

1 -- uA(s) 

f rom which follows 

co 

(72) ~. 0j (r) u r = 
r = 0  

We conclude tha t  

and for 1" = 1, 2 . . . .  

0j (r) = 

1 

~ + u q ( 1 -  q) 1 

1 - - s  
1 + u(1 - q) 

1 § uq(1 -- q)8 

1 
l + u q ( 1 - -  q) ' ] = 0 ,  

[1 + u(1 -- q)]J-lu 
(1 - -  q)2 [ i  + u q ( i  ~ - - q ~  ' ] = 1, 2 , . . .  

Oo(r ) = ( _  1)r qr(] __ q)r 

0 r = 0  
(--  1 F - l q r - l ( 1  - - q ) r + l r M r _ l ( ] -  1 ;2 ,  q) r ~ 1. 

E x a m p l e  3. Let  g(s) = ~/(1 - -  fls), h(s) = se0 (k0 a fixed positive integer) 
and /(s) = h -1 (g (h (s))). I t  is trivial to verify tha t  /(s) is a probabi l i ty  generating 
function. The iterates of  / can be simply expressed in terms of  the iterates of g, viz. 

/~ (s) = h - l (g~  (h (8))). 

The iterates of  gn were displayed in explicit terms in (66). I n  accordance with 
Theorem 3, let A (s) denote the unique analyt ic  function satisfying 

(73) A(g(s ) )  -= c A ( a ) ,  A (q )  = O, A ' (q )  -~ 1 

where 
c = g ' ( q ) ,  g ( q ) = q  0 < q < l .  

We know A (s) in the case at  hand. I t  is formula (67). 
Let  A*  (s) be the corresponding function associated with [(s), i. e., A*  (s) is 

analytic in Is] < 1 and satisfies 

dA* (q*) 
(74) A * ( / ( s ) )  = c* A * ( s ) ,  A * ( q * )  = O, ds - -  1 

where 
q* =/ (q*)  0 < q* < 1 c* =/ ' (q*) .  
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A direct check shows t h a t  q* = h-Z(q) and c* = c. I t  is easy to relate A * ( s )  and 
A (s). I n  fact,  we claim t h a t  

(75) A * ( s ) -  A(h(s))  
h'(q*) 

This is p roved  by  verifying t h a t  the r ight  side in (75) satisfies (74). Indeed,  
referring to (73) combined with the fact  t h a t  c = c*, we get 

A(h( f (s ) ) )  A(g(h(s)))  cA(h(s))  _ c* A(h(s))  
h'(q*) - -  h'(q*) - -  h'(q*) h'(q*) 

The proof  is finished. Now for h (s) = s k~ 
oo o o  

A *r (8) = A r (h (8)) dr = ~,  On (r) dr s k~ = ~ O* (r) s n (dr = (/Co q(kO-1)/ko)-r) 
n = 0 n = O  

where On (r) are known explicit ly f rom (72). We can read off the r ight  eigenvectors 
of  the branching process induced by  ] (s). Thus 

0*(r)----{ 0 if n @ k 0 m ;  m - - - - l , 2  . . . .  
( - -  1 ) r - l c r M r _ l ( m  - 1;2,  q) n = k o m .  

where cr = dr q r-1 ( 1 -  q)r+lr.  Inver t ing  the  bior thogonal i ty  relations we get, 
apa r t  f rom a cons tant  factor  Jr 

~p* (r) ---- ( - - 1 ) r  /r m M r _ l  (m - - 1 ;  2, q) q m n = k 0 m ,  m = 1 , 2  . . . . .  

Since (q,)k0 = q and ~p* (r)/q n is a polynomial  of  degree r, the values of  yJ*(r) 
for n , k o m  (m = 1, 2 . . . .  ) are determined by  interpolation.  

R e m a r k .  The methods  of Example  2 can be adap ted  to t r ea t  the example  
/(s) : [y(71 @ ills)]/(1 - -  fls) where ~ -~ fi ---- ~71 -~ ~ i  = 1, 0 < y < 1, 0 g ~ '1  ~.  1. 

E x a m p l e  4. A simple example  of the spectral  representat ion for m < 1 has 
/ (s)  : ~ ~ f ls  (0 < ~ < 1, ~ ~- fl = 1). In  a tr ivial  manner  we find A (s) ~-- s - -  1, 
B (w) --~ w -~ 1. Then 

nr r pn..=,, ~ f l n r O i ( r )  y~l(r ) : Z f l  ( j ) ( _  1 ) / ( ~ ) ( - -  1) r.  
r = 0  r ~ 0  

w 9. Branching Processes with Immigra t ion  

Le t  /(s) be a probabi l i ty  generat ing funct ion corresponding to the progeny 
o o  

distr ibut ion per  individual  per  generation. Le t  h(s) = ~ b ~ s  ~, b~ ~ O, h(1) ~ 1 
k = O  

be another  probabi l i ty  generat ing funct ion whose coefficients are the probabil i t ies 
of  the n u m b e r  of new individuals immigra t ing  into the system. Newly arriving 
individua]s undergo growth following the laws of the branching process induced 
by  the generat ing funct ion ] (s). 

Then  ff there are i individuals present  in one generation, the probabi l i ty  Qiy 
t h a t  there  will be j individuals in the nex t  generat ion is de termined b y  the gene- 
rat ing funct ion 

co  

(76) ~. Q~js~ : [ / (s)]~h(s) .  
]=o 
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The Markov chain with one step transit ion matr ix  Q/j is referred to as a 
branching process with immigration. The obvious interpretat ion are a t t r ibu ted  to 
the factors /(s) and h (s). 

Our objective in this section is to develop a spectral representat ion for the 
operator  Q = ]l Q~JlI. Note  tha t  the n th  power of Q has a generating function 
considerably more complicated than  before. Specifically 

(77) ~ O('~)-~J = [/n (s)]~ h (/n-1 (s)) h (/n-2 (s)) . . .  h (s) 
j = 0  

We desire to evaluate the coefficient of sJ in an appropriate  form. 
Case I .  m = / ' ( 1 )  > 1. We assume /(0) > 0, /(1) = 1. Let  q be the unique 

root  of  q = / (q) in 0 < q < 1. As earlier we introduce the I t i lbert  space 5q ~ com- 
posed of  all sequences ~ ----- (~0, ~1 . . . .  ) of  finite norm [] ~][ where 

II ~ II ~ I ~ 12 r  
i = o  

I n  ~ a linear operator  Q is determined by the formula 
o o  

i = 0  

We can prove as in Theorem 1 t h a t  Q is a completely continuous transformation.  
Eigenvalues and eigenvectors o] Q* and Q. 
By evaluating derivatives of the ident i ty  

o o  

j = 0  

at  s : q, we find tha t  Ar = cry, r = 0, 1, 2 . . . .  are eigenvalues of  the adjoint  
operator,  Q* where 

c=/'(q), y=h(q)>O. 

The eigenvector er corresponding to ).r is, as before, related to a polynomial Tr (x) 
of exact  degree r, so tha t  

(78) er = (Tr(i)~ir o" 

These polynomials  can be constructed recursively. 
We infer t ha t  each number  cry, r = 0, 1 . . . .  is an eigenvalue of  Q so tha t  the 

equat ion 

(79) 7~r Q = c r ~ ~ r  

has a non-trivial  solution 7~r ~ ~ -  I f  )~ is an eigenvalue of  Q with eigenvector 
then the generating funct ion ~ (s) is regular in I s ] < Vq and satisfies 

(80) ~(/(s)) h(s) = ~ ( s ) .  

At s----q, ~(s) has a zero of  some finite order k ~ 0 ,  7e(s) = uk(s --  q)~ @ "'" 
where uk # 0. By  differentiating (80) k times with respect to s and setting s = q 
we get 

k ! u ~ c ~ y  = ~ k ! u ~  
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so 2 = c~y.  Fur ther  differentiation of  (80) shows (compare with the a rgument  
following (29)) t ha t  a solution of (80) which is regular at  s = q is unique to within 
a multiplicative constant .  Thus the eigenvalues of Q are 2~r = cry, r = 0, 1, 2, . . . ,  
each eigenspaee is one-dimensional, and the generating function 3;r (s) of an eigen- 
vector  associated with ~r has at  s = q a zero of  order r exactly. 

I n  particular, it follows tha t  

(81) ~o( / ( s ) )  h(s)  = y3;o(S),  3;o(q) = 1 

has a unique solution 7~0 (s) regular in Is ] < ~ .  By  analytic continuat ion using 
(81) we see tha t  3;0(8) is regular in [s I < 1. F rom (81) we deduce 

3;o(S) : -  h(s) h(f(s)) h(fn-l(s))3;o(/n(S))  " 
Y Y Y 

Since ]n (s) --> q, uniformly for [ s ] ~ r ( 1, and 3;0 (q) ---- 1, we have 

i n--1 
(82) x0(s) = lira r~- l ~  h( /k(8))  

n - - >  c o  k = 0 

where the convergence is uniform in every circle Is] ~ r < 1. 
The solution of 

t 
(83) 3;r ([ (s)) h (s) = c r y 7~r (~), 7or (q) = ~r (q) . . . . .  3;~r- 1) (q) = 0,  

3;(r r) (q) ---- r ! 

is unique. We can easily verify tha t  if A (s) is the solution of (23) then [A (s)]r z0 (s) 
is a solution of  (83). Therefore 

(84) 3;r (8) = [A (s)] r 3;0 (8), r = 0, 1, 2 , . . .  

We again employ the inverse function B (w) of A (s), and recall tha t  

(85) [n (8) = B ( c n A  (s)). 

From (81) we obtain 

(86) 3;o(]n(s)) h ( / n - l ( 8 ) ) h ( / n - 2 ( s ) ) . . ,  h(s) : ynT~o(8). 

By use of  (85) and (86) it is possible to express the generating function (77) in 
terms of  the functions A (s), B (w) and 7~0 (s). Since 3;o (q) --  1 there is a neigh- 
borhood of  8 = q in which 3;o does not  vanish and 1/3;o(/n (s)) is regular at  8 ---- q. 
Hence 

c o  

(87) ~. Q ,(.~-) 8J = B ~ ( c n A  (8)) ~ o ( 8 )  
j=0 z~ A (s) ) ) 

where the r ight  side is regular near s = q. 
Since B(0) : q and 1/3;0(8) is regular at  8 : q, the function Bl(w)/Teo(B(w))  

is regular at  w = 0 and has an expansion 

B~(w) __ i u i ( r )  wr 
(88) ~o(B(w)) ~=o 

with a positive radius of  convergence ~o. Hence 

(891 ~.o(. ~) ~-~J = ~ (or),)~ u~ (r) [A (s/F 3;o (8) 
j=O r=O 
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where the  series on the  r ight  converges absolutely in a neighborhood of s = q. 
I f  c n I A (0) I ~ Q, which is cer ta inly the case for all sufficiently large n, we conclude 
t h a t  (89) converges absolute ly  in a neighborhood of the  segment  A (0) ~ s ~ q. 
In  this event  we can replace Ar (s) no (s) = zr (s) b y  its series expansion abou t  s = 0, 

c o  

(90) A r (s) no (s) : ~r (s) : ~ vj (r) 81 
j=o 

and then  inver t  the order of  summat ion .  This  leads to  the formula  

(91) ~jO(- n) = ~ (cry) n u~(r) vj(r) 
r~O 

where the series is absolutely  convergent  for all i, ] and all n such t h a t  c~lA(O)l ~ Q. 
The coefficients ui (r) can be related to the  polynomials  Tr(i) in (78). There  

is a series expansion 
1 

- -  ~ Up w ~ . (92) ~o (B (w)) 
p = 0  

By subst i tu t ing (92) and  (37) in (88) and then  appeal ing to (52) we obta in  

-I ~ Ur-z 
(93) u~(r) : Ul~= ~ l! q~ Ql(i) 

where Qz (i) is a monic polynomial  in the  var iable  i of  degree 1. I t  follows t h a t  to 
within a mul t ip l icat ive  cons tant  we have  

/ = 0  " 

and, since U0 = 1, the  coefficient of  i r in (94) is 1/(r! qr). We summar ize  the above 
results as two theorems.  

Theorem 9. (i) I / m  = /' (1) ~ 1 and/ (0 )  ~ 0 the linear operator Q is completely 
continuous and its eigenvalues are 

,~r = cry ,  r = O, 1, 2 . . . .  

where c : ]' (q), y = h (q). Each eigenspace o / Q  is one-dimensional. 
(ii) The/unct ional  equation 

reo(/(s))h(s) : y~0 ( s ) ,  xc0(q) = 1 

has a unique solution 7~o (s) regular at s = q. The solution is regular/or Is[ < 1, 
and is given by (82) , ,explicit ly".  

(fii) The eigenvector er o/ Q* belonging to the eigenvalue ~r is a polynomial o/ 
degree r, that is 

e, = {T~(i)} ~% 0 

where Tr is given by (94). The corresponding eigenvector ~r o] Q has a generating 
/unction 7er (s) given by (84) in which A (s) is the solution o/ (23). 

Theorem 10. I /  m : / ' ( 1 )  > 1 and ] ( 0 ) >  0 then the transition probability 
matrix Q~) has the spectral representation 

(95) .~O(.n.) : yn ~ cnr ut (r) v i (r) 
r ~ 0  
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where ui (r), vj (r) are defined by (88) and (93). The series converge absolutely/or all 
i, j and all sufficiently large n. 

We next consider conditions which will ensure that  (95) converges for all n ~ 0. 
This will be the case if ]A (0) [ < ~ where ~ is the radius of convergence of the 
series (88). The following theorem will be proved. 

Theorem 11. I / w e  assume, in addition to the conditions of Theorem 10, that/(s) 
and h(s) are /unctions of the /orm (48), then the representation (95) holds /or all 
n _>- O, the series being absolutely convergent. 

I t  is sufficient to show tha t  the radius of convergence of the series (88) exceeds 
- -A  (0). We first prove a lcmma which does not depend on the special hypothesis 
tha t  / and h are of the form (48). 

Lemma 1. The /unctions [~0(B(w))] -1 and [h(B(w))] -1 have the same radius 
of convergence about w ---- O. 

Proo/. From (81) and / (B  (w)) = B (cw) we obtain the functional equation 

[~ 7g 0 (B (w))]-i : [h (B (w))]-i [~0 (B (e w)) ] - i  

I f  ~ is the radius of convergence of the left member then the second factor on the 
right has radius of convergence 9/c > ~, and the result follows. 

The next lemma does not depend on the special hypothesis about h. 

Lemma 2. I / / ( x )  is o/the form (48) then 

(96) IB(w)--q]----<q for ] w ] _ < - - A ( 0 ) .  

Proof. Since / (s) is the form (48), B (w) has radius of convergence greater than 
- -  A (0) and 

B ( w ) - - q =  ~ y)l(r)w r 

where (--  1) r-1 ~01(r) ~ 0 by Theorem 7. Hence in the circle Iwl ~ - -A(0) ,  the 
function B (w) - -  q has its maximum modulus at w ---- A (0), and since B (A (0)) ~ 0 
the result follows. 

Proo/ o/ Theorem 11. When/(s)  is of the form (48), the radius of convergence of 
B~ (w) exceeds - -  A (0) by the results of Section 5. Hence, by Lemma 1 it is sufficient 
to show that  the radius of convergence of [h (B (w))] -1 exceeds - - A  (0). Now since 
h(s) is of the form (48), 1/h(s) is mcromorphic, regular at  the origin, and all its 
poles lie on the negative axis. By (96) the range of B (w) in the circle I w l ~ A (0) 
lies within a disc entirely contained in the domain of regularity of 1/h (s). Hence 
the radius of convergence of [h (B (w))] -1 must  exceed - -  A (0). 

Using the same lemmas we can prove the following result. 

Theorem 12. I / i n  addition to the hypotheses of Theorem 10 we assume /(6") is 
o/the form (48) and h(s) : smhl(S) where m >= 1 is an integer and hi(s) is o/the 
form (48) then the representation (95) holds/or all n >--_ 1, the series being absolutely 
convergent. (Note n ~ 1 rather than n >= 0.) 

Case I I .  We assume m ~ / ' ( 1 )  < 1, f(0) > 0, a n d / ( s )  and h(s) analytic in 
the neighborhood of 1. 

We merely record the results since the techniques paraphrase the previous case. 
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(97) 

Furthermore 

Theorem 13. Under the condition o/Case I I  the eigenvalues o /Q are 1, m, m 2 . . . .  
The corresponding left eigenvectors /or m r has a generating/unction gr (s) = ~ro (s) 
[A (s)]r which satisfies 

~r( /(s))h(s)~--mr~r(S)  r = O, 1 , 2 , . . . ;  :~o(1) ---- 1 �9 

The generating /unction 7~o(s) o/ the stationary distribution o/ the process can be 
explicitly calculated/rom 

k 

J r o ( s ) = l i m  1~  h(Ii(s))" 
k - ~ r  i = 0 

Q!~) # = Jr0 (s) 
j=o 

The spectral representation 

(98) 

B i (tunA (s)) 
~ro ( B (tunA (s) ) ) 

Q~) = ~ m nr U~ (r) V~ (r) 
n = O  

is valid/or n large where 

7rr (8) = ~ Ui (r) s~ and 
B3 (w) s o  

~=0 ~0(B(~)) --~=0 ~ Vj(r) wr. 

I /  /(s) and h (s) generate P6lya /requency sequences, i.e., they are o/ the /orm (48) 
then (98) h o l d / o r  all integer n >= O. 

We close this section exhibiting a few simple examples in which 3r0 (s) is cal- 
culated. 

E x a m p l e  1. L e t / ( s )  =- (1 + s)/2, g(s) -= s then 

so(  (l-s))  
~0(8)=s~I 1 2~ " 

This is an elliptic function. As pointed out  before (cf. Example  4 of  Section 8), 
A(s ) - - - - - s - -1  and B ( w ) = w + l .  

E x a m p l e  2. Let  /(s) ---- (1 + s)/2, g(s) ---- e s-1. Then evaluat ing (82) gives 

7 ~ 0 ( 8 )  : e s - 1  . 

E x a m p l e  3. Le t / ( s )  = ~/(1 - -  fis), c~ + fl -= 1, (1 > fi > 1/2) and g(8) : e s-1. 
Then 

~0(s) = e x p  n= n(S) - -  1 = exp - -  (1 --q)~n=l 1 --qn(s--q)/(q--1) 

where q = ~/fi. This fnneLion can be expressed as a contour in tegra l .  
I n  general it is inherently difficult to express ~o (8) in terms of e lementary 

functions. 
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