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Summary. We investigate the Gaussian self-similar fields and their Gauss- 
ian domain of attraction. Both discrete and generalized fields are consid- 
ered. 

1. Introduction 

In recent time several papers investigated the construction of self-similar fields 
and their domain of attraction. In the general case this problem is very hard, 
but if we restrict ourselves to the Gaussian case it becomes much simpler. The 
reason for this simplicity is that the distribution of a Gaussian field (with zero 
expectation) is completely determined by its correlation function, or in the case 
of a stationary field by its spectral measure. The problems about self-similarity 
property and domain of attraction can be formulated in terms of spectral 
measures in a natural way. Nevertheless these problems, which we are going to 
investigate in this paper lead to some not completely trivial analytical prob- 
lems. 

First we consider generalized fields. We recall some definitions. 
The set of random variables X(q~), ~0~5 p, where 2,0 denotes the Schwartz 

space of infinitely many times differentiable rapidly decreasing functions on the 
v-dimensional Euclidean space R", is a v-dimensional generalized field if 

a) X(cl~ol+C2qO2)=clX(cpl)+c2X(q)2) for all real numbers cl ,  c z and all 

q~l, (P2 ~ 
b) X(cp,)-~ X(cp) stochastically if (p,--~ ~o in the topology of 5~. 

A 
The field X is called stationary if X(cp)=X(Tt~p ) for all ( p a y  and t e R  ~, 

A 
where T~cp(x)=q)(x+t), and = denotes equality in distribution. The field X is 
Gaussian if X(~0) is Gaussian for all (p ~ It is self-similar with self-similarity 

parameter c~ if t-~X(~ot)=X(q)) for all ~oe5~ and t > 0  with c&(x)=tp . We 

say that the generalized field X has a large scale (short scale) limit with 
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normalizing factor A t if for all q)E 

A;- IX(~o t )~Xo(~O)  as t ~  ( t~0 ) ,  

where ~ ~ denotes convergence in distribution. 
It has been proved (see [2]) that the large scale (short scale) limit of a 

stationary generalized field is always a stationary generalized field. If the 
limiting field has self-similarity parameter c~ then the norming constant A t must 
be chosen as At=eL( t ) ,  where L( . )  is a slowly varying function at infinity (at 
zero). Obviously the large scale (short scale) limit of a Gaussian field is again 
Gaussian. 

We shall assume throughout this paper that the generalized fields we are 
considering have zero expectation, i.e. EX(~o)=0 for all ~ 0 ~ .  Then their 
distribution is determined by their correlation function R(qo, O)=EX(qo)X(O); 
q0, 0 ~ .  If X is a stationary field then by the Bochner-Schwartz theorem (see 
e.g. [4]), there is a unique o--finite measure G on R * such that 

R(~o, 0) = ~ (o(x) ~(x) G(dx), (1.1) 
~ 

where denotes Fourier transform. The measure G, which is called the spectral 
measure of the field X, has the properties G(A)= G ( - A )  and 

S (1 + Ixl)-r G(dx) < oo (1.2) 
with some r > 0. 

The Gaussian stationary generalized self-similar fields are completely de- 
scribed in [1] by means of their spectral measure. A Gaussian stationary 
generalized field is self-similar with a self-similarity parameter c~, a < v if and 
only if its spectral measure G satisfies the relation G(tA)=t2(~-~)G(A) for all 
t > 0 and A ~ ~ .  In case c~ = v this means that G is concentrated in the origin. If 
~>v  then the only Gaussian self-similar field is the trivial one, i.e. X(q))=0 
for all cp ~ Y. 

Now we are interested in the following question: Which stationary Gauss- 
ian g'eneralized fields have a large scale (short scale) limit? This question will 
be answered in the following Theorem 1. First we recall that a sequence of 
locally finite measures #~ on R ~ tends vaguely to a locally finite measure #0 (in 
notation #, ~ # o )  if and only if ~f(x)#,(dx)-- ,~f(x)go(dx)  for all continuous 
functions f with a bounded support. 

Theorem 1. Let X be a Gaussian stationary generalized field with spectral 
measure G. It  has a large scale (short scale) limit with the normalizing factor A, 
= eL(t), where L(" ) is a slowly varying function at infinity (in zero), if and only 
if the measures G t 

Gt(A)=tm-~)L-2( t )G( t -~A) ,  A e ~  ~ (1.3) 

tend vaguely to a measure G o as t--~ co, (t-+O). I f  the limit G o exists then it has 
the homogeneity property 

Go(A)=t2(~-~)Go(t-lA ) for all A ~  ~ and t>0 ,  (1.4) 

and it is the spectral measure of the limiting field. 
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If  a sequence of measures G~ defined by (1.3) tends vaguely to a measure G O 
which satisfies (1.4) as t -*  oo then 

G ( a A ) - L - 2  ( ! )  G1/~(A)~L-2 (!)  
Go(eA) Go(A) as ~-+0 

for a set A with zero G O boundary, and if G t ~ ~ G O as t - - 0  then 

- -  ~ ,  L -  2 ( ~ )  as ~--~ O. 

Hence, roughly speaking, Theorem 1 states that a Gaussian stationary genera- 
lized random field with a spectral measure G has a large scale (short scale) 
limit field with a spectral measure G o if and only if the spectral measure G 
behaves similarly to the spectral measure G o in a neighbourhood of zero 
(infinity). 

Now we turn to the investigation of discrete fields. Let Xn, n ~ ' ,  be a 
stationary Gaussian field, where X ~ denotes the lattice of points with integer 
coordinates in RL We assume throughout this paper that E X  n=O. Introduce 
the notation 

N-- {j E ~.~v ; /qff  N = l , 2 , . . . ,  B n - Nnk<jk<N(nk+l ) ,  k = l ,  ...,v}, ~ ,  

where the subscript k denotes the k-th coordinate of a vector. Given a sta- 
t ionary field X, ,  n ~ ~ ,  we define the fields 

1 
Z,  u = -  ~ Xp, n E ~  (1.5) 

A N pEB~n - 

for all N = 1,2,. . . ,  where the norming constants A N are appropriately chosen. 
We say that the field X n has a large scale limit Z*, n ~ e v ,  if the finite 
dimensional distributions of the fields Z,  u defined in (1.5) tend to those of the 
field Z*. A stationary field X, ,  n ~ ~ev, is called self-similar with self-similarity 
parameter  c~ if 

A 
N ~ Z N ( z , , ,  ... ,~) =~.(x,~, . . . ,  x , )  

with A N = N ~ for all N = 1, 2, . . . ,  k = 1, 2, . . . ,  nj ~ ~v, j = 1 . . . .  , k. It can be seen 
that, just like in the case of generalized fields, under some slight regularity 
conditions the large scale limit of a random field must be self-similar. If  the 
limiting field has self-similarity parameter  c~ then the norming constant A N in 
the definition of Z~ must be of the form AN=N~L(N), where L( . )  is a slowly 
varying function. We remark without proof, that if the random field X n 
satisfies a certain continuity property to be defined below then it has the above 
mentioned properties. 
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Definition. Let X,, n ~  ~, be a discrete stationary random field such that E X ,  
O~ 2 E X ,  < oo. Set 

D~v = E [-( ~ Xv)2], N = 1, 2, .... 
peB~ 

The field X,  satisfies the continuity property if for all 1 < k < v and ~ > 0 there 
exists a 6 = b ( e ) > 0  and an N0=No(e ) such that for all rectangles P c Y  '~ of the 
form P = [ L I , M I ] x . . . x [ L ~ , M ~ ]  with the properties O<_Mj-L j<=N,  j 
= 1 . . . .  , v, M k - L k < 3N, N > N o, the relation 

E [( 2 Xp )2] < eDdY 
peP 

holds true. 
The heuristic content of the above continuity property is the following. If 

the set B~ in the sum ~ Xv is slightly perturbated then the sum ~ X p  
peBn N 

changes relatively little. 
We are interested in the description of the stationary Gaussian self-similar 

fields and their Gaussian domain of attraction. We restrict ourselves mainly to 
the fields satisfying the continuity property. 

The correlation function r ( n ) = E X o X  ~ of a discrete stationary random field 
can be written in the form 

r(n)=~ei(",X)G(dx), n e ~ ?  ~, 

where G is a finite even measure on the torus [--~,  ~)~'. The measure G is called 
the spectral measure of the field X,,  n ~ ~ .  

Let G be a a-finite even measure on R v with the following two properties: 

G(tA)=t2(v-~)G(A)  for all A ~ N  v and t > 0  (1.6) 
and 

f i  1 - cos2 xj G(dx) < Go. (1.7) 
j= 1 Xj 

Then, as it is proved in [1] or [5], the measure G defined on the torus 
[ -  ~z, ~z) ~ by the formula 

2 I leI 2 ( 1 - c o s x )  
q~r- E j= 1 (xj+27rq) z G(dx+2zcq) ,  E =  [-Tz, ~)v (1.8) 

is the spectral measure of a Gaussian self-similar field with self-similarity 
parameter e. We shall prove the following 

Theorem 2. A v-dimensional discrete Gaussian stationary random field is self- 
similar with self-similarity parameter ~ and it satifies the continuity property i f  
and only if  its spectral measure can be written in the form (1.8), where G is an 
even measure on R ~ satisfying (1.6) and (1.7). The random field determines the 
measure G and G uniquely. 

We shall prove Theorem 2 by the help of the following Theorem 3 which 
describes when a stationary Gaussian random field satisfying the continuity 
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property has a large scale limit. The formula g N ~ g o  will indicate weak 
convergence. 

Let X,,  n ~  * be a stationary Gaussian random field with a spectral 
measure G. Define the measures G N and PN, N = 1, 2 .. . .  by the formulas 

GN(A)=N2~-2~L 2(N)G ( A ) ,  A ~  ~ (1.9) 

 N(A)=S 1:I 1-cosxj GN(dx), (1.1o) 
A J=1 N2 [ i - - c o s ~ ]  

where L( . )  is an appropriately chosen slowly varying function. We formulate 
the following 

Theorem 3. a) The following two statements are equivalent." 

(i) The field X ,  satisfies the continuity property and it has a large scale limit 
with A N = N~L(N). 

(ii) There exists a measure go such that #N w ~ go. 
The limiting Gaussian field Z*, n~ ~ is self-similar with self-similarity pa- 

rameter ~, and its correlation function is defined by the formula 

E Z * Z j * ,  =S exp [i(n, x)] #o(dx). (1.11) 

b) The relation # N ~  go implies that there exists a locally finite measure G o 
such that G N ~ ~ G o. The measure G o has the homogeneity property 

Go(A)=t2(v-~)Go(t-lA) for all t > 0  and A e ~  ~. (1.12) 

Moreover 

and 

f i l  - cos xj  S .zg ao(dx) < oQ (1.13) 
j= 1 xj 

fi Go(dx), A e ~  v. (1.14) 
1 - c o s x j  

g0(A)=S 2 .2 
A j = l  Xj 

c) In the case v = l  a n d e > O t h e r e l a t i o n G  N ~ )G oimplies thatgN W)go, 
where go is defined in (1.14). In case v> 2 it may happen that G N ~ ) Go, but the 
relation PN w ) #o does not hold even if e >0. 

By comparing the correlation function of the limiting fields in Theorem 3 
defined by formulas (lAD, (1.12) and (1.14) with the self-similar fields appear- 
ing in Theorem 2 one can see that the large scale limit of a field which satisfies 
the continuity property is a self-similar field also satisfying the continuity 
property. This fact may indicate the importance of self-similar fields with 
continuity property. 

Let us compare Theorems 1 and 3. In both cases the relation G N ~ G O is a 
necessary condition for the existence of a large scale limit. In the case of a 
generalized field this relation is also sufficient. In the case of discrete fields 
with v > 2 however the somewhat stronger condition # N ~  go is needed. 
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In this paper we do not intend to give a complete description of discrete 
Gaussian stationary self-similar fields. We only show through an example that 
there exist discrete Gaussian fields which do not satisfy the continuity proper- 
ty. 

Let ... ~ - ~ , ~ o , ~ , . . .  be a sequence of independent standard Gaussian 
random variables. Then X , = ~ , + ~ - ~ , ,  n = . . . - 1 , 0 , 1 , . . ,  is a self-similar se- 
quence with self-similarity parameter zero, and it does not satisfy the con- 
tinuity property. In higher dimensions such fields can be constructed also with 
positive self-similarity parameter. Indeed, let ~,, n = . . . -  1,0, 1,..., be a self- 
similar Gaussian sequence with self-similarity parameter c~, c~>0. Let ~,,k, k 
- . . .  1,0, 1,... be independent copies of this sequence, and define the two- 
dimensional field X,, k = ~,,k+ 1 - ~,,k, k, n = . . .  - 1, 0, 1 . . . .  This field is self-simi- 
lar with self-similarity parameter ~, and it does not satisfy the continuity property. 

This paper consists of three sections. Section 2 contains the proof of the 
theorems with the help of a lemma. This lemma is proved in Sect. 3. 

The author would like to thank to professor R i .  Dobrushin for several 
useful discussions about this subject. 

2. Proof  of  the Theorems 

Proof of  Theorem I. First we show that if the field X has a large scale (short 
scale) limit then the measures G t tend vaguely to a measure G o as t-+ ov ( t~0) .  

Choose a function (p e ~ and define the measures g~, e, 

/~t,~(A) = S I(p(x)12Gt(dx), A~r  ~ 
A 

for all t > 0. Observe that 

lim ~ e i(s' x)/1,, ~ (dx) = lim A t- 2 EX(qo,) X(T~ qot) (2.1) 

=R~o(s ) as t---~oo (t-+0), 

where R~o(s)=EXo(qo)Xo(T~cp) and X o is the limit field. Moreover, since R~o(s ) 
is a continuous function in s, relation (2.1) implies that / 4 , ~ # ~  with an 
appropriate measure/~e as t-+ oo (t-+ 0). This relation holds for all q ) ~  hence 
G t ~ G o . 

Now we show that if G t ~ G  o as t -~c~ (t-+0) then G o satisfies the 
homogeneity property (1.4). Let f be an arbitrary continuous function with a 
compact support. We claim that 

~f(x) Go(dx ) = c 2~- 2~ ~f(cx) Go(dx ) 
Indeed, 

and 

for all c>0.  (2.2) 

lim ~f(x) G t (dx) = ~f(x) G O (dx) 

lim Sf(x) Gt(dx ) = lim c 2v- 2c~ { L(t) ]2 \L(c t) ] Sf(c x) Get (dx) 

= c2~- 2~ ~f(cx) Go(dx ) 
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as t--~ 0o ( t~0 ) .  The last two relations imply (2.2), and since the continuous 
function f with a compact support can arbitrarily be chosen, (2.2) implies 
relation (1.4). 

Finally we are going to show that if G t v , Go then 

limA~-ZEX((p,)2=lim~lO(x)lZG~(dx)=~t(o(x)12Go(dx). (2.3) 

This relation completes the proof of Theorem 1. 
~ 

Since (p ~ 5 P (the Fourier transform of a function (p ~ 50 also belongs to Y) 
and G O is a homogeneous measure, we have 

I x l > K  

for K > K ( 0 .  On the other hand 

j" IO(x)l ~ 6~(dx)-, ~ IO(x)l ~ 6o(&) 
Ixl <_ K [xl <- K 

for arbitrary K > 0 .  Hence to prove formula (2.3) it is enough to show that 

](P(x)lZ Gt(dx) <~ 
]xl>K 

if K is sufficiently large for all t > 2  ( t< 1). Since [0(x)[ < C~lxl -~ for all l > 0  and 
x ~ R ~ it is enough to prove that 

[x]-ZG~(dx)<~ for all t > 2  ( t< l ) ,  
I x l > K  

where I is chosen sufficiently large (independently of t and 0- Let us remark 
that G~ ~ ,Go implies that 

Gs(lxl<l)<B for all s > 2  ( s< l )  (2.4) 

with an appropriate B>0.  Let us first consider the case when the large scale 
limit exists. 

Set L = log K. We can write 

I ( t )=  ~ ]xl-IGt(dx)<= ~ 2-'ilGt(U<lx[<2 j+l) 
[ x l > g  j > g  

j>-L j>L  
2 J + t ~ t  2 J + l > t  

Because of relation (2.4) 

X~<__ ~, 2-2zt2~-2~L-2(t)(t.2-J-1) 2~ 2~L2(t.2-J-~)Gt2 j ~([x[_-<l) 
j>L  

t . 2  J - l = > l  

< B 2  2~-2~ ~2 2-J~l*2~-2~)L2(t2-J-1)< ~- 
- j>=c L2(t) = 2  

t ' 2  J-l~>_l 
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if first l and then L (i.e. K) are chosen sufficiently large. (The choice of 1 is 
independent of e.) In the last step of this estimation we have exploited that 

LZ(t" 2 - j -  1) < Ca 2 aj 

L2( t )  = 

for all t>2 ,  t . 2 - J - l _ > l  and c5>0, which, in turn easily follows from 
Karamata's theorem. 

To estimate z~ 2 observe that because of (1.2) for all sufficiently large p > 0  
there exists a Cp > 0 such that 

G([xl<t-12J+l)<Cpt-P2JP if t . 2 - a - 1  <1. 
Therefore 

Z2~Cp 2 2-Jtt2v-Z~L-2(t) 2jpt-p" 
j>L 

Let us choose p so large that t2~-2~-pL-2(t)<l for all t>2 ,  and let l>2p. 
Then . z 

S 2 < C v  ~ 2 - ' 2 <  ~- 
j>_L - 2  

if L is chosen sufficiently large. In the case when the short scale limit exists the 
proof is simpler. In this case we may write 

2 -jl Gt(U < Ixl < U + 1) = 2-jl t2(v ~)L- 2 (t)(t �9 2-J) 2(~- ~) 

-Jl  
L2(t.2-J)Gt.2 , ( 1 < 1 x [ < 2 ) < C - 2  2 

if t < 1, j > 1 and L is chosen sufficiently large. Summing up these inequalities 
for j > L  we get that l ( t )<e if L (i.e. K) is chosen sufficiently large. Theorem 1 
is proved. 

Now we turn to the proof of Thorem 3. First we formulate two lemmas 
which will be needed during the proof. We introduce the following notation: 
Given an x ~ R  ~ its integer part Ix] is the vector n ~  ev satisfying the in- 
equalities xj - 1 < nj < x j, j = 1, ..., v. 

Lemma 1. Let #1,#2, ... be a sequence of finite measures on R ~ such that #N(R v 

". [ - C N ~ ,  CN~]*)=O with some sequence CN-+ ~ .  Define the functions 

I f  for all t s R  ~ the sequence ~oN(t ) tends to a function (po(t) continuous at the 
origin then the sequence #N weakly tends to a finite measure #o. The function (Po 
is the Fourier transform of #o. 

Lemma 2. For all v__>l there exists a B=B(v)>O and an No=No(V ) such that 
for all N > N o and x e [ - N rt, Nrc) ~ 

1 
1 - -  C O S - - X j  

1 ~ ~ _ ~ _ _ _ N x , > B I  ~ 1 
i= I-N] j=  1 N z 
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Lemma 1 coincides with Lemma 2 in [3]. We prove Lemma 2 in Sect. 3. 

Proof of Theorem 3. a) Let X,,  n E ~e~, satisfy the continuity property, and let it 
have a large scale limit Z* with normalization As=N~L(N). We show that 
there exists a measure #o such that # N ~ - ~ g o  . Set 

(p~-(t) = ~ exp [i (rN,] 
k 

Since the measure #N is concentrated in [-Nrc,  Nn) ~ it is enough to prove, 
because of Lemma 1, that the limit ~o0(t)= lim ~oN(t ) exists for all t e R  ~, and it 

N ~ o ~  

is continuous at zero. Observe that 

where 

q0N(t)=~ex p [i [[Nt] \ l  1 I N-1 p t ~ - , x ) ]  1Z[ V5-~2 ~ exp ) 
j =  1 N p = O  ( i ~ x j  

=N-2~L-2(N)E[( E Xt)( E Xp)], 
l~B f f  p ~ B N  +[Nt] 

GN(dx) 
(2.6) 

B + m = { x ;  x = y + m ,  yeB}.  

1 
Let us choose a sufficiently small 7/>0 of the form t / = ~ ,  where M is an 
integer. Define the set A(t, tl), t~R  ~ 

Set 

and 

tl 
A(t, tl)={n; n ~  ~, t j + x < n f i < t j +  l - a t l  for a l l j = l , . . . , v } .  

Z 

c(N, t,,1)= U B[ 
n ~ A(t, tl) 

D(N, t, ~/) = (B# + IN t]) \ C(N, t, ~). 

(Our aim with the definition of the set C(N, t, 11) was the following. We wanted 
to fill the cube BNo + [Nt] almost completely with the union of non-overlapping 
cubes B~ N'~ in such a way that the set of the subscripts n of the cubes B~ N'l 
which are contained in this union does not depend on N.) 

Observe that for N > 2 t/- 1 C(N, t, tl) a B~ + [N t]. We define the functions 

1 
CoN(t)=N2~L2(N)E[ ( ~, Xj)( ~ X~)]. 

j e C ( N ,  O, tl) l~C(N, t ,  rl) 

Then there exists a function (P0 such that 

lira ON(t)= lim ~/2~E( ~ 7[NnlT[Nnh=t/2~ ~t ~p J ~ EZ~Z?=COo(t). (2.7) 
N ~  oo N-~ oo I ~ A (0, t/) I ~ A (0, r/) 

p~A( t ,  rl) p~A( t ,  rl) 

On the other hand 

1 
q~N(t)--=N2~L2(N)E([ ~ X~+ y, Xj][ ~ X, 4- y, X,]) 

jEC(N,  O, rl) j ~ D ( N ,  O, rl) l~C(N, t ,  rl) l~D(N , t ,  tl) 
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if N>2~/-~. Hence 

limsup IqSu(0- (pN(t)l = limsup N2~Z(N)~ (E ~ Xj Xl 
jeD(N, O, rt) l~BNo + [Nt] 

+E g x -E E Y 
jsD(N,t,  rl) teB~" j~D(N, O,rl) leD(N,t,tl) 

(2.8) 

The sets D(N,t, rl) and D(N,O, rl) can be represented as the union of at most 2v 
rectangles in such a way that the length of the edges of these rectangles is less 
than or equal to N, and the length of one of these edges is less than t/N. 
Hence the continuity property of the field X n implies that 

N - 2 ~  2 Xj)  2 < g  (2.9) 
j~D(N, O, rl) 

N-2~L-2(N)E( ~ Xj)2 <a (2.9)' 
j~D(N,t,~I) 

if ~I<~7(z) and N>No(z  ). Relations (2.8), (2.9), (2.9)' and the Schwarz inequality 
imply that 

limsup IqSN(t ) - qgu(t)l < ~ (2.10) 

for ~/<~7(e), where ~/does not depend on t. Relations (2.7) and (2.10) imply that 

the limit ~Oo(t)=lim~pN(t ) exists. Moreover, since ~o(t) is constant for Itl< -~ 
2 

hence the function ~Po is continuous at zero. Then Lemma 1 implies that 
w 

#N ) #o- 
Let us now assume that #N ~ #0' Then there exists a Gaussian stationary 

field Z*, n a ~  ~ whose correlation function is defined by (1.11). Moreover 

lim N N EZ o Z, = lim ~ e ~(~" ~) #N(dx) = ~ e i('' ~)#o (dx) = E Z~ Z*, 
N ~ oo N ~ cx) 

therefore Z*, n e ~ ,  is the large scale limit of the field X,. We shall prove with 
the help of Lemma 2 that the field X,  satisfies the continuity property. 

Let P=[L1 ,M1]x . . .  x[L , ,M~] ,  Pc~q(" be a rectangle such that 0 < M  1 
-L~  <aN, O < M j - L j < N ,  j = 2 ,  . . . ,N. We have to show that 

1 
N2~LZ(N) E( ~, Xp) 2 <~ 

pep  

if 6<6(e). We can write 

1 - cos/Mj- Lj 
1 t xq 

< C f ~I min 1, 2 GN(dX) 
j = l  

. 82 
l:I G(d )=2vc[ S + J ] 

j=2 l - } - X j  IxJI<K IxIL>K 
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Because of Lemma 2 and the compactness of the sequence of measures #N the 
following estimates hold true: 

{ l x l i  > K} {ixll>K}j= 1 I@Xj 

1 1-cos~xj 
1 N 

1 ( --BNt=[~] ~I~I>K}j= N 2 1 - c o s ~  

N2~ 2~ L2(N) 1 - c o s x j  
_ 1 ~ ,2~-2~ L2(l) ~ f l  Gl(dx) 

BNI=[~] {1~1 >~-~} J= 1/2 ( 1 -  c o s / )  

=Nl= ] 

if K > K (e). 
1 

Observe that if lxl < K and 8 < ~  then 

3 2 3 
< - -  

1+c52x 2 = l + x  2' 

By using this estimate together with Lemma 2 the following estimate can be 
obtained: 

j' <8~ H GN(dx)<~ N N2~-Z~L2(N) 
(Ix~l <K~ j=1 =BN 12v-2~L2(1) #z(RV) < e' 

z= ] 

if 3 >0  is sufficiently small. Part a) of Theorem 3 is proved. 
b) Let #N ~ # o .  Choose a non-negative continuous function h with a 

support in - [_2' 2] ' Then 

v 2 

]'h(x) GN(dx ) �9 2(1-cosxj )  #~ 

as N--* oo with 

hN(x)=h(x) f l  
j= ~ 1 - cos xj 

v 2 

since hN(x)-*h(x)s~_ 1.= 2(1 -XJcos xj) uniformly as N--* ~ .  Let us define the mea- 

sures Gt, G t ( A ) = ~ - G  , A~N v for all t>0.  It is easy to see that 

v 2 

h(x)s~=l xj #o(dx) (2.11) lim ~h(x)Gt(dx)=~ 2(1-cosxj )  
t ~  00 "=  
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since 
Gt(A) Gt(A ) 

lim sup Gm (A) < 1, lim inf < 1, 
Gm+ 1 ( A )  = 

and relation (2.11) is already proved for the case when t takes only integer 
values. 

Let us now consider a non-negative continuous function h with a compact 
support. Let this support be contained in a rectangle [ - B , B ] L  Let us choose a 
number b > B. Then 

lim ~ h(x) Gt(dx ) = lira b 2~-2~ l~(bt) t~ .  t~ .  L2(t ) ~ h(bx) Gtb(dx ) 
(2.12) 

=b2~-2~  h(bx) ~l-I -x2 po(dx) �9 
j= 1 2(1 - cos x j) 

Relation (2.12) means in particular that lim ~h(x)G~(dx) exists for all continuous 
t~OO 

functions h with a compact support, and this implies that there exists a measure 
G o such that G t v ,Go. Applying relation (2.12) to the function h(sx), s>0,  
with the constant s-1 b instead of b we get that 

lira ~ h(x) G~(dx) = lim s 2"- 2~ ~ h(sx) G~(dx). 
t~oO t~oO 

Taking limit in the last relation we get that 

h(x) Vo(dx ) = s2(~-~) ~ h(sx) Go(dx ). 

This relation implies the homogeneity property (1.12) since it holds for all s >0  
and all continuous function h with compact support. 

Let f be a continuous function with compact support. The relation 
#N ~ Po implies that 

lim ~f(x) #N(dX) = ~f(x) #o(dx). (2.13) 
N ~  oo 

On the other hand since G N ~ G  o, and 

i~i 1--COSXj + I~I 21--COSXJ2 

J= 1 N 2 1 - c o s  

uniformly in all bounded regions 

lira ~f(x)pN(dx)= lira Sf(x) ( I  1 - c o s x j  
N~o~ u~oo j= 1 N2 ( l _ c o s ~ )  

11 1 - cos xj 
=~f(x)  2 .7  Go(dx) " 

j =  1 Xj 

Gu(dx) 

(2.14) 

Relations (2.13) and (2.14) imply (1.14). Since the measure #o is finite, relation 
(1.13) also holds. Part b) of Theorem 3 is proved. 
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c) If  G N ~ G  o then # N ~ # O ,  where #N is defined in (1.10) and /ao in 
(1.14). To  prove  that  in case v = l ,  ~ > 0  even the relat ion # N ~ # 0  holds we 
have to show that  the sequence of measures  #N is uniformly tight, i.e. 
/aN(Ixl > K) </3 for all N = 1, 2, . . .  if K > K(0 .  We can write 

1 - c o s x  
/aN(Ixl > K) = [. GN(dX ) 

N ~ x > g  N2 ( 1 - C O S N )  

1 Elog NI 1 . .+ 
< C  3 x2GN(dx) < ).2 5~3GN(2'<IxI(2J t), 

Nr~>x>K j = L  ~ 

where L = [log K].  On  the other  hand  

GN(2 j < Ixt < 2 i+ 1) < GN(Ixl < 2i+ t) 

U 2~-~ L~([N.2 J ]+ l )  
< L2(N) ( [ N 2 - J ]  + 1)2-2~ G([N2 q +  1)([  - -  1, I]) 

= < C,2J[(2 - 2c0+ 61, 

where 8 > 0  can be chosen arb i t ra ry  small, if C' is sufficiently large, since the 
sequence G M ( [ - 1 , 1 ] )  , M = l , 2 , . . .  is bounded.  Let 6 < 2 ~ .  Then  the above  
es t imat ions  imply that  

o o  

/aN(Ix] > K) <-_ C' ~ 2 j(a- 2cj </3. 
j = L  

for all N = 1, 2, . . .  if K and therefore L is sufficiently large. 
In  the case v > 2  we show an example  where G N ~ G  o but  the relat ion 

/aN ~ #o does not  hold. 
Let  us consider a spectral  measure  G satisfying relat ions (1.6), (1.7) and (1.8) 

with some 0 < c ~ < v - 1 .  Such a G exists. (See e.g. [1].) Let  us fix a poin t  
b=(bl,0, . . . ,O)eR ~, 0 < b i < r c ,  and let the measure  p be concent ra ted  in 
the points  b and -b ,  p (b)=p(-b)=l .  Set G'=G+p. Then  G N ~ G  o and 
G ' N ~ G  o with A N = N  2(v-~) .  On the other  hand  if #N is defined by formula  
(1.10) with the measure  G~, then 

l imsup #N (Rv) > t imsup N 2v - 2~ - 2 p (b) = oc, 

and therefore the relation/aN ~ #0 does not hold. 
N o w  we turn to the 

Proof of Theorem 2. Let Z*, n e ~ ,  be a Gauss ian  self-similar field with self- 
similari ty pa rame te r  ~ which satisfies the continuity property .  Then, as its 
distr ibution coincides with that  of  its large scale limit with AN=N ~ T h e o r e m  3 
implies that  its correlat ion funct ion is defined by formulas  (1.11), (1.12), (1.13) 
and (1.14). Hence  its spectral  measure  satisfies relat ions (1.6) (1.7) and (1.8) as it 
was claimed. Conversely  we have  to show that  if the spectral  measure  of  the 
Gauss ian  r a n d o m  field Z* satisfies formulas  (1.6), (1.7) and (1.8) then this field 
is self-similar with self-similarity pa rame te r  c~, and it satisfies the cont inui ty  
property .  The  following calculat ion proves  the self-similarity property .  
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eiN(n, x) v 
LE[( 2xZ~)( 2 Z~)] : ~ - j _ ~ I  1 l-cosNxj G(dx) 

N 2~ JeBo p~B N 1 - -  COS Xj 

el(n, Nx) 
- S N2~-2~ lzI 2(1-cosNxp C(dx)=Sei(~ 

Rv j= 1 (Nx~)  2 

Let us define the measures GN, #N, N= 1, 2, ..., and g0 by formulas (1.9), (1.10) 
and (1.14) with L ( N ) - I ,  where G is the spectral measure of the field Z*, and 
G o coincides with the measure d appearing in (1.6). By part a) of Theorem 3 to 
prove that the field Z* satisfies the continuity property it is enough to show 
that #N ~ #o. Let A c [ - N 7% N 7z)L Then 

#N(A)__N2~_2~ ~ l~i 1-cosNxj 
A j= 1 N : ( 1 - c o s  xj) G(dx) 
N v 

: Y, ~ N ~ - ~  I ]  2 1 - c o s N ~  ,~zvA_ j=1 N ~ ~  2 (~(dx+27r0 

N 
6 1 - c o s x j  (~(dx + 27cN0 : 2 Y .  2 (xj + 27zNtj) 2 t e ~ V  A j= I 

= ~ #o(A+2ntN)=po(A) + ~, #o(A+2ntN). 
t e ~ "  t e ~ ' \ { 0 }  

The second term in the last expression can be bounded by #o(R~\  
[-Nrc, Nrc) ~ which tends to zero as N---~ oo by condition (1.7). Hence #N ~ ~#o 
as we claimed. Finally observe that the field Z* determines uniquely its 

and since GN ~ , G  with GN(A)=N2V-2~G( A] also the spectral measure G, 
measure G. Theorem 2 is proved. \ . t V l  

Remark. We considered self-similar fields whose spectral measures were given 
by formulas (1.6), (1.7) and (1.8). Relation (1.7) can be replaced by 

v 1 

I ]  l~x..2 G(dx) < c~. (2.15) 
j = l  ~ j 

It is clear that relation (2.15) implies (1.7). We show with the help of Lemma 2 
that relations (1.6) and (1.7) imply (2.15). Let us choose a sufficiently large N, 

~ -[N[<I<N Let us define the cube and let ~ ~ _ _ . B(N)={x~R~; 

j = 1 .. . . .  v}. Then 1 
1 - cos  ~ -  xj  • 

f i  ~ji]  1 1 - c o s x j  S 8(dx)< C ~ d(d~) 
~,,)j= ~ N~ (l_cos~) .= x~ 

forall[2]<l<N, wheretheconstantCdoesnotdependonN. Summingu p 

these inequalities, and applying Lemma 2 we get that 

i~i 1 ^ c v 1 - c o s x j  1 + ~  G(dx) --< ]'[I _~ G(dx). 
B(N) j=  1 - -  j j=  1 X j  

Since this inequality holds for arbitrary large N, relation (1.6) implies (2.15). 
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3. The Proof  of Lemma 2 

We shall deduce Lemma 2 from a result formulated below. This result is 
actually equivalent to Lemma2. For all positive integers n we define the 
transformation T,: [-rc,~)~[--Tc,~) by the formula T,x=nxmod(2~),  xe  
[--)z, ~z). We formulate the following 

Lemma 3. For all positive integers k there exists a threshold No=No(k ) and 
some numbers p=p(k)>O, c~=6(k)>0 such that for all N > N  o and Xl,. . . ,xk, 

1 
~ < ] x ; h < r c ,  j =  1, . . . ,k  we have 

Card A(N) >pN, 
where 

f N } A(N)=A(N,x  1 .... ,xk)= n; ~ < n < N ,  and lT, xjl>a for all j=  l, . . . ,k . 

Proof of Lemma 2 via Lemma 3. Let us introduce the notation 

1 
1 - cos ~ xj _L 

J(l)=J(1, xl, ...,xv)= II    (1_cosr 
for ~- <_l<Nandlx ; l<N~, j=l , . . . , v .  

xl > I ~ N  2N' ~ 1 ~ 1 ~ 1__ Let ..., > ~  and < 2 N ' " "  < ~ - .  We are going 

to show that 

J(l)>C FI 1 
;=1 1+ x2 (3.1) 

( x l  xk) 
for all l e a  N , ~ , . . . , ~  with some C=C(v)>0.  Since J(l)>=O for all 
V]~T1 

[ 2 [  < / < N  relation (3.1)and Lemma 3 together imply Lemma 2. We can write 

l 
1 - cos ~ xj 1 - cos ~5 1 - cos c5 1 

N 2 ( l _ c o s ~ x ; ) -  5x ) - 5 l+xy 

for l < j<k  and l e A  (N, XN, . . . .  ,~xk ), and 

l 
1 cos  xs 1 l 2 1 1 1 

> _ _  > _ _ > _ _ . _ _  
( 1 ) = 1 0 N 2 = 4 0 = 4 0  l + x  ) 

N 2 1 - cos ~ x; 
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for k <j<v and [N] <-I<-N. These inequalities imply (3.1) and therefore also 
Lemma 2. 

Now we turn to the proof of Lemma3.  The idea of the proof is the 
following: It is well-known that the distribution of the sequence T,x, n 
= I , . . . , N  tends to the uniform distribution as N~oo, if x/re is irrational. 
Therefore it is natural to expect that if x/re is relatively far from all rational 
numbers with small denominator then I roxl >~ for a very large proportion of 

N 
the numbers ~ - < n < N .  We shall prove this by adapting some ideas from the 

theory of concentration functions. Then we can reduce Lemma 3 t o  the special 

case when all x~, j = l , . . . , k ,  are near to a rational number with a small 
re 

denominator, and this latter case is relatively simple. 

Proof of Lemma 3. In the proof we do not give sharp estimates. We shall 
deduce Lemma 3 from the following three statements: For all e > 0 there exists 
an A=A(e) and No=No(A,e ) such that if A>A(e), N>N o (A,~) then the 
following estimates hold: 

(i) For  all x s D 1 (N) 

Card{n;O<n<N, lTnxl<~--~}<r 

where 
A 2 

Dl(N)=[-re, re)\ U Do(l), 
/ = 1  

and 

Do(l)=Do(1, N)= x; x - 2 r e  = ] ~ f o r s o m e j = 0 ,  _+1 . . . .  , +  +1 . 

(ii) For  all x eD2(N ) 

Card{n;O<n<=N, [Znxl<A-5}<~N 
where 

A 2 

D2(N)= U D2(l, N), 
/ = 1  

and 

2 ~  < l / ~  f~ s~ J=0 ,  -+1 , ([~]  

(iii) If x i ~ D 3 (N), ..., xj ~ D 3 (N), j < fi, with 

then 

Card n ; ~ < n < N ,  lTnxm[> for a l l m = l  .... ,j >pN 

with p=p(]')=�89 __I~ 1 1 -  , where p~ denotes the/ - th  prime number. 
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We remark that statements (i) and (ii) are very similar to each other. We 
separated these two statements because their proofs are different. The estimates 
(i), (ii) and (iii) imply Lemma3. Indeed if xt~D3(N ) for l<l<__j, 
xleDI(N)wD2(N), j<l<k, and e is chosen in such a way that p=p(k)-ke>O 

N 
then there are at least pN indices - - <  n < N such that lnx~l > c~ for all l=  1, ..., k 

_ . / 1  1 1 \ 1 2 
with 0 = m l n  [ ~ ,  ~ - ,  ~ A ~ ) -  ~ . 

Proof of (i). Let us choose a sufficiently large A > 0  (independently of N), 
and define the function 

Fix a number x, and set 

1 

{lo-Alu[ f~ lul<-- fA(u ) = A 
otherwise 

FN(u)= N Card {j;j<N, Tjx<u}. 

We express the function fA(U) by its Fourier series: 

fA(U)=I + ~ A (1--COS A)(e~'~"+e-~m")" 
ra=  1 2m27c 

The following estimate holds: 

Card 

On the other hand 

{n; n<N, IT, xl<lA}<2N ~ fA(u)FN(du). 

S fA(u)FN(du)=~+ 
m = l  

1 A2 
+ Y , +  

Arc ; ' n = l  

Clearly 

 (1_cosr 
2m2rc S (e""+e-"~")fN(clu) 
k 1 

- -  ~- z~ l  q - Z 2  ' 
r e = A 2 + 1  ATe 

[2221 < ~, 2A 1 
m=A2+~ m2rc <A" 

If x e DI(N) and 1 <=m<A 2, then 

= dN"x--1 I < N ( 1 _ 4  8 < -  
IRe S eimUFN(du)[ Re N(eimX_ 1) cos rex) = A  2' 

since [mx-2k=L >~NN for all integers k=0,  + 1, _+2, .... Therefore 

1 1 ~ 2 A  8 10 
+1~11__< + Y~ - . _ _ < _  Arc A~ m=, m2rc a2 = A" 

(3.2) 
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These estimates imply that for x ~ Dz (N) 

S fA(x) FN(clx) <=~. 
22 

The last relation together with (3.2) imply that (i) holds if A > - - .  
e 

Proof of (ii). Let x ~ Dz(I, N), 1 __< l<A 2. Then there exists an integer j such 

that 2NA~<Iy[< for y = x - 2 r c  . Define Tlny=ny m o d - -  for n 

=0, 1, .... Obviously ]Z, x l<A -s can hold only if IZ~,yl <A -s. Hence to prove 
(ii) it is enough to show that 

Card {n; 0 < n < N ,  IZ~yl <A - s} < e g  (3.3) 

if 2@2N<Y < - A  
= 1 ~ "  

Set M =  ( [ / ~ - + 1 ) .  For arbitrary integer j the sequence TJ+ly .. . .  ,TJ+~y 

contains at most ~ A ~ + 2 <  elements such that ITJ+pYl<A -5. (Here we 

have exploited that in the sum ~A5+2 the first term dominates since _1_>I~N 
y - A '  

and we may choose N very large.) Since l < A  2 the inequality 
3 < 3  4 ( [ N ] )  

< - - M  holds. Put N = M  ~ +1 The sequence T~y, T~y ASy=A31y=A3 . . . .  , 
contains at most 

4 M) < 4 (2A;+  1) 

elements such that IT~yl<A -5. Since ?~>N this relation implies that for 
sufficiently large A relation (3.3) and hence (ii) hold. 

Proof of (iii). If xl, xj E D3(N ) then there exist some rational numbers rz " ' ' 7  - - 7  

�9 s l s I Sl 
l=  1 .... ,j, such that 1 <s z < A e, -~<r~ <2'  r~ ~= O, r~ and s~ are relatively primes, 

_ ~ =2A2N ' <  1 ~ n x , -  sz ~.~,'~2 and x z 2~sz l=l , . . . , j .  This implies that 27;nr~_-< if 

1 1 1 
n<_N, and I r .xz l>_--~>~ if nr~=t=0 (mods~). Hence to prove (iii) it is 

- - s ~  2A - 2 A  N 

enough to show that the proportion of n, ~-_< n_< N satisfying the relations 

rl  n 4 : 0  ( m o d  $1) , . . . ,  rjn 4:0 (mod s j) (3.4) 

simultaneously is greater than 2p(j). We may assume that Sl, ..., s~ are (distinct) 
prime numbers. Otherwise the proportion of the numbers satisfying (3.4) can 
be decreased by substituting s~ with one of its prime divisors. For large N the 
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N 
p r o p o r t i o n  o f  the  n u m b e r s  n, ~-_< n_< N sa t i s fy ing  (3.4) is a s y m p t o t i c a l l y  

21 1 
( 1 - ~ ) > l l ~ l  1 1 

S t a t e m e n t  (iii) a n d  h e n c e  a lso  L e m m a  3 is p roved .  
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