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Summary. A general theory of stochastic integral in the abstract topological 
measurable space is established. The martingale measure is defined as a 
random set function having some martingale property. All square integra- 
ble martingale measures constitute a Hilbert space M 2. For each #EM a, a 
real valued measure (/~) on the predictable a-algebra 2~ is constructed. The 
stochastic integral of a random function 1)sL2((/~)) with respect to # is 
defined and investigated by means of Riesz's theorem and the theory of 
projections. The stochastic integral operator I ,  is an isometry from L2(@)) 
to a stable subspace of M 2, its inverse is defined as a random Radon- 
Nikodym derivative. Some basic formulas in stochastic calculus are ob- 
tained. The results are extended to the cases of local martingale and semi- 
martingale measures as well. 

The theory of stochastic integrals plays a central role in the field of random 
analysis. Up to now many kinds of stochastic integrals have been defined. The 
earliest one, defined by Wiener [157, was only based on the orthogonality of 
increments of Brownian motions. It could be extended to the case of orthogo- 
nal random measure, but the integrands must be restricted to deterministic 
ones. The pioneering work of K. It6 [9] defined stochastic integrals of random 
integrands with respect to Brownian motions of which the martingale property 
had been used. By virtue of Doob-Meyer decomposition theorem for super- 
martingales, Kunita and Watanabe [11] extended the It6 integral to the case 
of square integrable martingales. In the last decade, Meyer and Dol6ans-Dade 
as well as other authors made a full development in the theory of stochastic 
integrals with respect to local martingales and semimartingales (cf. [3, 10] and 
[18]). It was shown (cf. [2]) that semimartingales would be the most suitable 
integrators of stochastic integrals satisfying the requirements of linearity, con- 
tinuity and including the usual Stieltjes integrals as special cases. 

On the other hand, Skorohod [14] investigated stochastic integrals with 
respect to Poisson processes, or more generally, to random measures or point 
processes (also cf. [8]). 
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Recently, M6tivier and Pellaumail [12, 13J considered the case in which 
both integrands and integrators can take values in Hilbert or Banach spaces. 
Wong and Zakai [16, 17], Cairoli and Walsh [1] paid attention to those 
processes with multi-dimensional parameter sets especially stochastic integrals 
in the plane. In the latter cases, since lack of linearly ordered parameter sets, 
one must consider martingales with partially ordered parameters. In a recent 
paper [7J, we defined martingale measures and stochastic integrals on separ- 
able complete metric spaces. Instead of the Doob-Meyer  decomposition theo- 
rem, we constructed what we called Dol6ans measures on the predictable a- 
algebra and defined stochastic integrals as linear operators on some Hilbert 
spaces. The advantages of this approach are that (1) it permits partially 
ordered parameter sets and, therefore, a greater flexibility and generality than 
the usual one, and (2) it enables us to reveal the essential feature of a stochastic 
integral and to simplify the proofs enormously. 

In this paper, we try to establish a unified theory of stochastic integrals on 
an abstract topological measurable space. It will include the usual stochastic 
integrals with one-dimensional or multi-dimensional parameter sets (with re- 
spect to strong martingales) and those with respect to random measures or 
point processes. The Lebesgue integral and Wiener integral will also be its 
special cases. 

I. Assumptions and Examples 

Let (O, ~ ,  IP) be a complete probability space, U be a topological space with 
its Borel a-algebra ~,  ~r be a sublattice of ~ such that UECg and N =G(cg). The 
class 5 ~ of all sets of the form A - B ,  where A, BeCd and B c A ,  is a semi- 
algebra; and the class d which consists of all finite disjoint unions of sets in 5 D 
is an algebra. Clearly, ~ = a(5 0 = o-(~r 

Assume that (K): for every A e d ,  there exists a sequence of sets {A,} in d 
and a sequence of compact sets {K,} such that A, c K,  c A for every n and that 
A,~A. 

Also assume that for every A ~ d  a set t(A)ECd has been assigned such that 

(i) t(A)c~A=O; 
(ii) C~Cd, Cc~A~O~t(A)cC;  

(iii) A, Bad,  A~B~t (B)c t (A) .  

Let {Yc, C~Cd} be a family of sub-a-algebras of f f  satisfying following 
conditions: 

(F.1) ~9 contains all IP-null sets; 
(F.2) C I c C : ,  C 1, C2~C6~Yc1~c2; 
(F.3) C,~ C, {C,}ccg, C~Cg~@c,J.~c . 

Definition. A square integrable martingale measure is a random set function 
=r co) defined on d x f2 with the following properties: 

(M.1) Aezur C~Cg, A ~ C ~ y(A, .) is ~-c-measurable; 

(M.2) A~r  CECg, A~C=O~IE(#(A)[.~c)=O a.s.; 
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(M.3) ~ A, B e d ,  Ac~B=O~ #(A + B)=p(A)+ #(B) a.s.; 

(M.4) IE/z2(U)< Go; 

(M.5) { A , } c d ,  A,LAed~lii_;m.~(A,)=t~(A) (that is, convergence in 
L 2 (Q, ~ ,  IP)). 

The  totali ty of all square integrable mart ingale measures 2 will be denoted 
by M 2. To  illustrate its intuitive meaning,  we consider some examples. 

Example I (Square integrable mart ingale in usual sense). Let  U =  [0, c~), 
={0,  U, [0, t]" 0 < t < o o } ,  and {Xt, ~ ,  t > 0 }  be a square integrable mart ingale 
with right cont inuous paths. If we take 

- J ~  for t > 0  [O,t]-- t 
and 

kt((s, t ] ) = X t - X  ~ for t>_s>O, 

then the random set funct ion/~ can be extended to ~r preserving additivity. By 
virtue of the right cont inuous proper ty  and the domina ted  convergence theo- 
rem, we can verify (M.5). Therefore,  t t~M 2. 

Example 2 (Square integrable mart ingale in the plane). Let  U = [0, oo)x [-0, vo), 
cg0 = {0, [0, s ] x  [0, t] : 0 =< s, t_< co} and cg consists of all finite unions of those 
sets in cgo. Let  (X~,t, J~,t, s, t > 0 )  be a square integrable strong mart ingale in 
the sense of Wong and Zakai  (cf. [17]). Take  

. ~ o , ~ o , , ~ = ~ , t  for 0 < s ,  t < o o ,  

and if C = ~ ) C i  where {Ci}cCgo, we take ~c  = ~/ Wc,. For  the set 
i=1 i=1 

(s 1, s2-lx (t 1, t2] in ~ take 

#(($1, $2] X (tl, t2])-~-Xs2, t2-Xs2,tl-Xsl,t2-~-Xsl,tl. 
Consequently,  we can extend this r andom set function to the algebra ~4 in an 
obvious way and prove that  i t eM 2. 

lI. The Hilbert Space M 2 and Projections 

In this section we will investigate some major  propert ies  of square integrable 
mart ingale measures. 

Theorem 1. The linear space M 2 with the inner product defined by 

(~,v)M2=~E~(U)~(U) ~ ,veM 2 (1) 

is a Hilbert space. 

1 If the family {~c, CE~} satisfies the condition that ~-~c~ and .7c2 are conditionally independent 
given Yclc2 and that .~-c,~c2=o~c v ~c~ for all C~, C2~,  then the property (M.3) can be proved 
directly. 
2 If almost every sample function of # coincides with that of v, then # and v are said to be 
indistinguishable. More precisely, M 2 is the totality of all equivalence classes of indistinguishable 
square integrable martingale measures. 
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Proof Since the proof is similar to that in [7], we only give a sketch here. The 
map 

~o: M2 ~ L2(Y2, ffv, IP), 

defined by (o(#)=#(U) for every # s M  2, is a linear injection preserving inner 
product. Suppose that {#,} c M 2 and 1.i.m. #~(U)= 4. If we take 

n ~ o o  

#(C)=IE(~.[~-c) for every C ~  

and extend it to • in an obvious way, then we obtain a martingale measure 
# e M  2 such that (p(#)=#(U)= ~. It follows that ~ belongs to the range of (p and 
this range Rg(cp) is closed in the Hilbert space L2(f2, ~'v, IP). Since the linear 
space M 2 is isometrically isomorphic to a closed subspace of a Hilbert space, 
the theorem follows. 

Denote by N all sets of the form A xA where A e d  and As~(A). It is 
easily checked that ~ is a semialgebra. The algebra generated by N will be 
denoted by N and the a-algebra generated by N will be said to be predictable 
o--algebra and denoted by ~. 

We may now prove the following 

Theorem 2. I f  #, v E M  2, A, B ~ 4  and Ac~B=O, then IEI~(A)v(B)=0. 

Proof Since both A and B are finite disjoint unions of those sets in ~ without 
any loss of generality, we may assume that A, B e ~  Suppose that A = A  1 - A  2 
and B = B 1 - B  z where A 1, A 2, B 1, B2~c~ and A 2 c A  l, B 2 c B  1. Since AB=O 
and A = A B I + ( A - B 1 ) ,  it follows that A B 1 c B  2. Using (M.1) and (M.2), we 
have 

]E#(AB1) v(B)= IE [IE(#(AB1) v(B) I fiB=)] 

= IE[p(ABI) IE(v (B) [ ffB~)] =0. (2) 

Noting that B c B  a and ( A - B 1 ) ~ B  1 =qJ, we also have 

IE #(A - B 0 v(B)= IF. [IE(#(A - B ,) v(B) [ FB~)] 

= IE Iv (B) IE(#(A - BI) I ~,~)] = 0. (3) 

Combining (2) and (3) implies the desired result. 

Corollary 1. I f  #, vmM 2 and A, Be .J ,  then 

]E #(A) v(B)= IE #(AB) v(AB). (4) 

Proof The case that AB=O is exactly the case in Theorem 2, while in the 
general case we can simply use the additivity of # and v. 

Corollary 2. I f  # 6 M  2, then the set function q~ defined by 

go (A)--- IE#2(A) for A ~ r  (5) 

can be uniquely extended to a finite measure on ~ .  
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Proof. It is clear from the orthogonality proved in Theorem 2 that ~o is finitely 
additive on ,~r By (M.5) we know that (p(A,,)$cp(A) whenever A,$A in ag. So 
the desired extension is followed by the well-known extension theorem of 
measures. 

Corollary 3. I f  # e M  2, then the random set function # can be uniquely extended 
to the a-algebra ~ such that 

1Ey(A)#(B)=(o(AB) for A, B ~ .  (6) 

Proof For  every AEN, there exists a sequence {A,} in sJ such that cp(A, 
zxA) --* 0 as n --+ oc. It follows that 

1E I#(A,) - # (Am)l 2 = ~o (A,AA,~) -+ 0 

as m , n ~ o o .  This shows that {#(A,)} is a Cauchy sequence in L 2. By the 
completeness of L 2, there exists a limit which only depends on A and does not 
depend on what sequence {A,,} we have chosen. By passage to limit, we can 
deduce (6) from (4). 

Theorem 2 and its corollaries show that a square integrable martingale 
measure is also an orthogonal random measure. 

For  every set A • A in ~,  we define an operator H A • A on M 2 as follows: 

I IAxA#=~A# A, # e M  2 (7) 

where ]1A stands for the indicator of A and #A is the trace of # in A, that is, 

#A(B)=y(AB) for every B e d .  

Thus we may state and prove the following 

Theorem 3. {llA• A, A x A~Y/} is a family of projections on the Hilbert space 
M 2. It can be uniquely extended to a Boolean algebra of projections, {H s, SEN}, 
which is isomorphic to the Boolean algebra ~. 

Proof. Firstly we show that if A x A~r and f leM 2 then [1A• 2. Actually, 
if y e M  2 and BEsJ, then we have 11 A • IIA#(AB ) by definition. Suppose 
that B c  CeCg. Clearly, #(AB) is ~c-measurable and ]1A is J~(a)-measurable. If 
AB=O, then #(AB)=0 a.s. If ABe=O, then AC4:0 and thus ~(A)c~C.  In both 
case, HA xA#(B ) is Yc-measurable. This implies (M.1). Moreover, suppose that 
BC=O, where Bexd and CeCg. It follows that 

]E( /~A x A # ( B ) [  ~-@-c)= ]E(]IA IE(#(AB) I~cut(A))I ~-c)= 0 a.s. (8) 

since AB and Cut (A)  are disjoint. This implies (M.2). The properties 
(M.3),-~(M.5) are obviously true. So that H A • A # eM2 as desired. By the defini- 
tion and applying Corollary i to H A • A # and v, we have 

H A  x A H A  • A = ff/A x A (9) 
and 

(HA• v)~t~=lE~a#A(U)v(U)=IEaa#(A)v(A) 

--:-- ]E~ A vA(u )  # ( U ) = ( # ,  I-I Ax A V)M2. (10) 
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It follows that HA• A is a projection o n  M 2 whenever A x AEN. The subspace 
which corresponds to the projection HA• A will be denoted by M2 ( Ax A) .  
According to Theorem 2, subspaces M2(A1 x A~) and M2(A2 x A2) are orthog- 
onal whenever the sets A~ x A~ and A 2 x A 2 are disjoint. In that case, the sum 
of these two projections is still a projection and, moreover, we have 

HA1 xA1 + M A2 x A2=- H(A1 x A 1 ) u ( A x  x A2) (11) 

provided ( A l x A 1 ) u ( A 2 x A 2 ) E N .  Consequently, the family of projections 
{HA• A x AEN} can be extended to the larger one {Hs, SeN} in an obvious 
way. Moreover, since these projections are commutative, it follows that the 
product 

Flsl Hs2 = Hs2 Ilsl =//s l  ~s2 (12) 

is also a projection for any $1, SEEN. Hence, we can define 

J~/S1 V /--/82 = / / S l t  JS 2 (13) 
and 

IIsl /x //s2 = Ilsl~s~ (14) 

for $1, S2EN. It is easy to verify that the distributive law also holds and for 
any SeN we have 

I -  Hs= flsc. (15) 

Clearly, / / 0 = 0  and / / v •  Therefore, {//s, SeN} forms a Boolean algebra 
of operators which is isomorphic to the Boolean algebra .~ and the proof is 
complete. 

We will now extend the family of operators to a Boolean o--algebra. To do 
this, we need the following 

Theorem 4. For every gEM 2, there exists a finite measure (~t) on ~ such that 

]E l[ A #(A) #(B) = (l~) (AB x A) (16) 

holds for every A x A E ~  and every B e d .  
For each pair #, v in M 2, there exists a finite signed measure @, v) on 

such that 
]E ]I A tI(A ) v(B) = (#, v) (AB • A) (17) 

holds for every A • A E ~  and every BE~4. 

Proof. 3 Since HA• 2, applying Corollary 1 to IIA• and v, we have 

IE ]1A I~(A) v (B) = ]E a A #(AB) v (AB). (18) 

In the case tha t /~=v  and A=B,  it reduces to IE~AI~2(A). Noting that 

~E]IA ~2(A)  = [IJJA x A ~/]122, 

3 This proof was inspired by an analogous theorem due to C. Do16ans-Dade (cf. also [12, 13]). 
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we m a y  define 
(19) 

for A x A e ~ .  Since disjoint sets in N cor respond  to o r thogona l  subspaces  of 
M 2, it follows that  the set function ( # )  is addit ive on N and can be extended 
to ~f preserving additivity. 

Suppose  that  {S,,} o N ,  S,$0 and 

mn 
s, = Z (Ai")• A(~")) 

k = i  

where A(k ") x A(k')~N (n = 1, 2, .  �9 k = 1, 2 . . . .  , m,). Using condi t ion (K) and prop-  
erty (M.5), for any e > 0  and for every n and k, we can choose a compac t  set 
C(k ") and a set B(k ") in d such that  n~,)= ('(,) ~k ~k c A(k ") and 

IE"Z~A(")-~(')~<g/2'~m,,t~ ~ k ~k J ( n =  1, 2, ...,' k =  1, 2,.. . . ,  m,). (20) 

Take  

and 

V/= ~ (B(k ") x A(k')), E" = Ilk' (n = 1, 2, . . . )  
k = l  k = l  

rtl~ 

V, = 2 (C(k ")• A(')~k ,, E, = ~ V k (n = 1, 2...). 
k = l  k = l  

Clearly, we have V/, E',eN and E ' , c E c  V, c S ,  for every n. In view of (20), we 
have 

mn 

( # )  (S n -- V / ) ~  2 IF, ]lA(kn ) #2(A(k')--B(k'))< ~ 
k = l  2 '  

hence 

( # )  ( S , -  E;)<__ ~ ( # ) ( S k - - V k ' ) < e  (n = l, 2, .. .). (21) 
k = l  

Since for every n >  1 and coeQ, the section (E,)~, of E, at co is a compac t  set in 
U and since E,$0, it follows tha t  for each co~f2 there exists a posit ive integer n 0 

E' =no(co ) such that  (E,)o = r  and, therefore, ( ~)o,=0 holds for n > n  o Let  G, be 
the project ion of E', in f2, i.e. 

E'  G,={co~: (  ,)~+0} (n=1,2,...). 

Since G,,LO, it follows that  

(#) (E',)__< ~E ~Go #2(U) ~0  

as n--* or. Therefore,  in view of (21), we have 

l im ( # )  (S , )=0 .  (22) 
n ~ o o  

By the extension theo rem of measures,  we can uniquely extend the set funct ion 
( # )  to a finite measure  on ~ .  
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Moreover,  for #, v s M  2 and A x A~N, if we take 

(#, v) (A x A)=]E ~ A #(A) v(A), (23) 

then we have 

(#, v) =�88 [ ( # +  v) - ( y -  v)]  (24) 

on N. Since ( # + v )  and ( y - v )  can be extended to finite measures on 
respectively, it follows that (#, v) can be uniquely extended to a finite signed 
measure on # .  The remaining part  of this theorem is obvious. 

If #, v e M  z and (#, v ) = 0 ,  then # and v are said to be strongly orthogonal 
and denoted by # ~ v .  For  any # e M  2, we can complete the a-algebra ~ with 
respect to measure ( # )  and denote its completion by ~ , .  The Hilbert space 
LZ(u x (2, ~u' ([2)) will be denoted by H 2 as in [7]. 

Remark 1. In the case of Example 1, if the martingale measure # is constructed 
from a square integrable martingale with continuous paths, then the a-algebra 
~ ,  will contain so-called optional a-algebra; if the corresponding measure ( # )  
is absolutely continuous with respect to 2 ~ x IP (where 21 stands for Lebesgue 
measure), then ~ ,  will contain so-called progressive a-algebra (cf. [12]). 

Remark2. For  an orthogonal  random measure #, we can only construct a 
measure ( # )  on the a-algebra N x Y0' It follows that H 2 only consists of 
deterministic functions provided ~0 is the trivial a-algebra. This explains the 
reason why one should restrict himself to the deterministic integrands when an 
orthogonal random measure is used to be an integrator. Thus, the Wiener 
integral, as we have indicated in the introduction part, is a special case of ours. 

The most  important  result in this paper is the following 

Theorem 5. The family of projections on M 2, {Ms, SE~}, can be extended to a 
Boolean a-algebra, {IIs, S ~ } ,  which is isomorphic to ~.  It  is also a spectral 
measure 4 in U x f2. Moreover, for #, v s M  2 and S e ~ ,  we have 

Ilrls #1122 = ( # )  (s) (25) 

and 

(n  s #, v)M2 = @, v) (s). (26) 

Proof. For  any fixed set S ~ ,  the functional defined by 

qo(it, V)= (#, V) (S) It, v~M 2 (27) 

b e i n g  a bounded, symmetric and bilinear functional on M a, uniquely de- 
termines a selfconjugate operator  H s on M 2 such that 

(ns #, v)M2 = (#, v) (s). (28) 

* A projection-valued set function //(B) defined on a a-algebra N of a measurable space (E, .~) 
is said to be a spectral measure in E if (i) FI(E)=I and (ii) for every sequence of disjoint sets {B,} 
in N,/7(U B~)= ~, H(B,,) holds in the sense of strong convergence of operators (cf. [6], w 36 or [4]). 

n n 
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For  Serf,  the operator H s coincides with the projection defined in Theorem 3. 
The family {Hs, SeN} thus defined is a family of projections. In fact, suppose 
that {S,,} ~ 7 ,  S e T  and S,+S, if {IIs. } are projections, then 

II//s. ~ - / ~  ~ I(~r~ = (~ )  (S,,-- S )~0  

as n ~  o0 for every ~teM 2. This means that {Hs,} strongly converges to the 
operator H s. It follows that H s is also a projection. The proof for increasing 
sequences is similar. Hence, the totality of all sets S in ~,  of which the 
corresponding operators H s are projections on M 2, is a monotone class. Since 
this monotone class contains the algebra N, so it also contains the a-algebra ~.  

If we regard {H s, S e T }  as a projection-valued set function, then we have 
H v • ~=I .  And if {S,} is a sequence of disjoint sets in ~ ,  of which the union is 
S, then 

= @ )  S -  k S~ --,0 
k = l  - -1  

as n ~ zo for every # in M 2. Accordingly, {1I s, S e ~ }  is a spectral measure in U 
• 

By virtue of correspondance between projections on M 2 and sets in 7 ,  it 
can be shown easily that {i7 s, S e ~ }  is a Boolean a-algebra of operators and 
isomorphic to 7 .  This completes the proof. 

Remark 3. This kind of projections is an extension of the concept of stopped 
processes. Actually, for the case of Example 1, if z is a stopping time, then the 
random set S=[-[0, z]] (cf. [10]) is a predictable set and f l s #  is exactly the 
martingale stopped at r. It is remarkable that, by means of extensions of 
projections, we have easily proved the stopped martingale theorem for square 
integrable martingales. 

Corollary 4. I f  p, v e M  2 and SET, then 

( U  s ~t, v) = (/7 s #, /7 s v) = (~t, Hs v). (29) 

Proof. In view of (26), taking account of the subspace M2(S) which corresponds 
to the projection lIs, we see that equations (29) are nothing but elementary 
properties of projections. 

III. Stochastic Integrals and Random Radon-Nikodym Derivatives 

Now we proceed to define the stochastic integral. To do this, we need the 
following 

Theorem6. For every t~eM 2 and every D~H~, there exists a unique element 
2~M 2 such that 

(L v)M2= S bd (~, v) (30) 
U x f 2  

holds for every v e M  2. 
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Proof. The proof is just the same as in [7], where the Kunita-Watanabe 
inequality 

f IDg[[d</~,v>[~( I [)2d</~>)i/2( I g2d<v>) 1/2 (31) 
uxo ux~? uxY2 

and the Riesz representation theorem had been used. 

Definition. The unique element 2 in M 2 mentioned in Theorem 6 is called the 
stochastic integral of [? with respect to/~ and denoted by 

2=~ I) dt~= I~ l~= Iu [L (32) 

Remark 4. For every/~eM 2, I~ is a bounded linear operator from H 2 into M 2. 
In the case of [? being a bounded ~-measurable function, we can define the 
spectral integral of D with respect to spectral measure H(S): I ~=~ D H(dS) (cf. 
[4] or [6]). But by our definition, the class of integrands is larger than the 
class of bounded ~-measurable functions. 

Suppose that # e M  2 and Se~.  It will cause no confusion to denote the 
projection on Hilbert space H~ by the same symbol IIs: 

(33) 

Thus we have 

Theorem7. The projections FIs(SE~ ) and the stochastic integral operators 
Iu(#eM z) or I~([?eH 2) commute, i.e. 

H s I ,  =I~ H s (34) 

o r  

H s I ~ = I ~ H s (35) 

holds. 

Proof. By the definition of stochastic integral, for every vEM 2, we have 

(IuFIs[),v)M~= I HsDd<la, V>=~l)d<#,v> 
U x D  S 

and 

Uxt2 S 

Combining these two equations, we assert that 

I~ H s D = Hs Iu l) 

holds for every D~H~. This implies (34). 
Similarly, for every v~M 2, we have 

(I~Hs#,V)M= = ~ Dd<Hs~,V>=~Dd<l-t,v>=(Hsl~#,v)M> 
U x ~  S 
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Consequently, (35) follows and the proof is complete. 
A closed subspace Q of M 2 is said to be stable if it is invariant under all 

projections [Is(SeN), i.e. 

#eQ, S e N  ~ [is #eQ. 

Two simple necessary and sufficient conditions for stability are in the following 

Theorem 8. Let Q be a closed subspace of M e. The following conditions are 
equivalent: 

1 ~ Q is a stable subspace of M2; 
2 ~ v e M  2, vA_Q ~ v ~ Q ;  
3 ~ #eQ, be l l  2 ~ I u b e Q .  

Proof. 1 ~  2~ Suppose that Q is stable and vLQ, that is, (#, v)~t2=0 holds for 
every #eQ. But by the definition of stability, for every SeN, we have [is #eQ 
provided #eQ. Therefore 

(#, v> (s) = (us ~, %2  =0. 

In other words, #J_v for every #eQ. 
2 ~ ~ 1~ Suppose that condition 2 ~ is satisfied and #eQ, SeN. Let 

M 2 = Q Q Q  l 

be an orthogonal decomposition of M 2. If veQ • then condition 2 ~ implies that 

([is ~, v)M~ = (#, v) ( s )=0 .  

Hence, [is # •  and [I s #eQ. 
3 ~  1~ Simply taking b=l ls  for every Se~ ,  we see that 1 ~ is a special case 

of 3 ~ . 
1 ~ 1 7 6  Suppose that Q is stable. In other words, 3 ~ is satisfied for I) 

= l s (S E N  ). Since the class of all linear combinations in family {~s, SeN} is 
dense in H ,  2, by virtue of linearity and continuity of operator Iu, we conclude 
that 3 ~ is also satisfied for every DeH~. 

Concerning the inverse of the stochastic integral operator Iu, we have the 
following 

Theorem 9. For every # e M  2, the operator I~ is an isometry from H 2 to a closed 
subspace (denoted by R g(lu)) of M e. Moreover, if 2eRg(I~), then 

d ( # )  a.e. (#) ,  (36) 

that is, the Radon-Nidokym derivative of (#, 2)  with respect to (# ) .  

Proof. Let # e M  2, b e l l ,  2 and 2 = I ,  t). By definition we have 

U x Q  
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for every vEM 2. If we take v = H s #  for every Se~,  then we obtain 

(2 ,#)(S)=(2,  Hsla)u2= j D d ( # , H s # ) = j b d ( #  ) ( S ~ ) .  
Uxf2 S 

Therefore, 

d (#, ,~5 
t3- a.e. (#5. 

d(#) 

It follows from the uniqueness of Radon-Nikodym derivative that the inverse 
I~ -1 of I.  is well-defined on the range of I. .  Rg(I.), and equation (36) holds. 

Moreover. if g~H 2, then I .  geR g(I.) and 

(I.D,I.g)M2= j g d ( # , I u t ) ) =  ~ g~)d(#)=(b,g)na (37) 
Ux~2 U x D  

which means that the operator I .  preserves inner product and is, therefore, an 
isometry between/_/2 and R g(I.). The theorem is established. 

Corollary 5. For any # s M  2, the subspace R g(I.) is stable. 

Pro@ Suppose that geM 2, bel l  2, 2 = I .  beRg(1.) and Se~. By Theorem 7 we 
have 

[is 2 = H s Iu w = I .  H s D 6 R g (I u) 

which implies the stability of R g(I.). 

Corollary6. I f  #ffM 2 and be l l  2, then ( I . b )  is absolutely continuous with 
respect to (# )  and 

[.)2 __d ( I .  I)) a.e. (#5. (38) 
d (#)  

Pro@ Taking g---I? in (37). we obtain 

III.[?[l~t2 = J DZdQ-z)=II~)II2g �9 
U• 

Replacing b by [I s b for every SeN, we can obtain 

(I. ~> (Sl=J b 2 d (u) 
S 

which implies (38). 

Theorem 10. I f  # e M  2, then for every 2eM z there exists a unique element t)~H~ 
and a unique element v s M  2, such that v , , # and 

2=jI?d#+v.  (39) 

Proof. Since R g(I.) is closed in M 2, by the orthogonal decomposition of M2: 

M 2 = R g (I.) �9 R g (I.) a, 

we know there exists b6H 2 and veRg(I . )"  such that (39) holds. Since Rg(I.) is 
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also stable and v_l_Rg(I,), it follows from Theorem8 that v~Rg(Ig). The 
uniqueness follows from that of orthogonal decomposition. 

Definition. Suppose that 2, g e M  =, 2 is said to be absolutely continuous with 
respect to # and denoted by 2 ~ #  if 2eRg(Iu). In that case, the ~-measurab le  
function 

- - -  ( 4 0 )  
d~ d (#) 

is said to be the random Radon-Nikodym derivative of 2 with respect to #. 
Now we can prove some basic formulas in stochastic calculus. 

Theorem 11. Suppose that 2, #, v~M 2. I f  2 4 #  and # ~v, then 2 ~v  and 

d2 d2 d# 
a.e. (v) .  (41) 

dv d# dv 

Proof. Since #eRg(Iv) and Rg(Iv) is stable, it follows from Theorem8 that 
d2 d# 

2eRg(I~). If we denote ~ by b and d~ ~ by g, then 

(;., % , 2  = 
UxY/  U x ~  

Replacing v by H s v for every Se~ ,  we obtain 

S 

Consequently 

l ) d ( # , v ) =  j" Dgd(v) .  

d2 d(v,  2) d2 d# 
- - D g  . . . .  a . e .  ( v )  

dv d (v) d# dv 
as desired. 

Corollary 7. I f  24  v and #4  v, then (2, #) ~ (v)  and 

d2 d#_  d(2, #) 
a.e. (v) .  (42) 

dv dv d (v) 

In the case 2 = #, it reduces to Corollary 6. 

Corollary 8. I f  2 ~#, then for every veM= we have (2, v ) ~ ( # ,  v) and 

d2 d(2 ,  v) 
- - -  a.e. (#) .  (43) 

d# d (#, v) 

In the case v=# ,  it reduces to (36). In view of above formulas, we can 
formally replace d (2, #)  by d2. d# in the calculation whenever both sides make 
sense. 

Corollary 9. I f  [ and g are bounded ~-measurable functions, then 

I ~ I g = I ~ I ~ = I ~. (44) 
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That is, the Banach algebra (denoted by ~ )  consists of all bounded ~ -  
measurable functions is isomorphic to the Banach algebra {1 ~, b~24 ~} of com- 
mutative self-conjugate operators on M 2 (cf. [-4]). 

Theorem 12. I f  l l ~ M  2 and for almost all co6f2#(., co) is a finite signed measure on 
J3, and if D is a bounded ~-measurable function, then the stochastic integral 

b dl 1 coincides with the sample Lebesgue integral. 

Proof. For  t)=]IA• where A • AE~, the two kinds of integrals are equal to 
HA• A. By virtue of linearity and continuity of the two kinds of 
integrals, we can show that the class of ~-measurable functions of which the 
two kinds of integrals coincide with each other contains all bounded ~ -  
measurable functions. This completes the proof. 

IV. Extensions 

In the above paragraphs, we have concentrated our attention on square inte- 
grable martingale measures. But it is not difficult to extend to the case of local 
martingales or semi-martingales. Now we give an outline of such extensions. 

For  any sequence ~ = {S,} of sets in ~ increasing to U x f2, define 

hI#H,=IiHs,~IIM2=(@)(S,)) 1/2, / ~ M  2, n> l. 

Clearly, {[I'Ll,, n>  1} is a family of seminorms and 

1 Ilull. 
I[#11~=.=1~ 2" l+ll~L' / ~ M  2 

defines a quasi-norm ]['][2 which is weaker than [l'[IM2 If we take the standard 
completion of M 2 with respect to [1"[]2 and identify every Cauchy sequence 
with its limit, then we obtain a FrSchet space M 2. Extending the operators 
{Hs. } to M~ by continuity, we see that Hs. #~M 2 for any #6M~ and S~o~. 

Definition. Define 
M,~o = ~ M~ 

where the union is taken over all the sequences -~'s described above. Any 
element in M2oo is said to be a locally square integrable martingale measure. If 
# e M  2 for some sequence ,~, then the sequence ~ is called a localized sequence 
of #. 

It is easy to see that for every #~M12oc, there exists a unique a-finite 
measure (~t) on ~ such that 

IEI la~(A)kt (B)=(I~)(ABxA) ,  for A x A ~ ,  B e d .  

2 Let/~SM2oo and o)= {S,} be a localized sequence of/1. Denote by Hu,~o c the 
totality of all random functions b defined on U x f2 such that 

l) l ls~H2 for every n > l ,  
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where 
//n =//s,, # ~M2" 

Clearly, H~,lo c is a Fr6chet space with quasi-norm 

where 

[Ib[[u= ~=, 2" 1 +llbll~ 

[ID[/.~I[D~s~]IH_~ -=(~ [')2d<#n))l/2, tl>=1. 
Sn 

Denote f) l s .  by t).. The stochastic integrals 

2.--~D.d#.  n > l  

are well defined since # , e M  2 and t),,eH~, for every n > l .  It is easy to verify 
that 

/ /s  2,+1=). ,  for n > l .  

Hence, there exists a unique element 2eM~o c such that 

I l s  ~ = 2  % for n > l .  

The unique element 2 denoted by ~bd# is also said to be the stochastic 
integral of b with respect to #. Since the properties of such kind of stochastic 
integrals can be easily deduced from above obtained results and the properties 
of projections, we will not give details here. 

Definition. A random set function v = v (A, co) defined on sr • f2 is said to be an 
adaptive random signed measure if for almost all coef~, v(-, co) can be extended 
to a a-finite signed measure on ~ and v(A, .) is ~c-measureable whenever A 
c C, A e d  and C~Cg. The totality of all adaptive random signed measures will 
be denoted by M ~. A random function D=D(x, co) defined on U x ~2 is said to 
be a locally bounded predictable random function if there exists a sequence of 
sets {S,} in ~ such that S , T U x f 2  and for every n > l ,  I l ls ,  is a bounded .~- 
measurable function. The totality of such functions will be denoted by H}o ~. A 
random set function 2=2(A, co) defined on d x f2 is said to be a semi-mar- 
tingale measure if there exists #eM~o ~ and v e M "  such that 2 = # + v .  The 
totality of all semi-martingale measures will be denoted by M s . 

For ).eM ~ and DeHbo~, we can define the stochastic integral as follows: 

where )~=/l+v, /l~M~o~ and v~M ~. The first integral on the right side is a 
stochastic integral, while the second one is a sample Lebesgue integral. It 
follows from Theorem [2 that this definition doesn't depend on the decom- 
positions of 2 and the integral ~ D d2 itself is also a semi-martingale measure. 
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