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Renewal Sets and Random Cutouts 

Benoit B. Mandelbrot 

1. Introduction, Definitions, Summary, and Applications 

The zeros of Brownian motion and the zeros of other recurrent processes with 
independent stable increments are well known to constitute stochastic generaliza- 
tions of Cantor's triadic set. These and other "random Cantor-like sets" have 
found applications in mathematics ([6, 7]) and in physics (theories of turbulence 
and of noise [9-11]), but in both instances the original definitions appear 
excessively indirect and cumbersome. Alternative definitions closer to Cantor's 
classical construction are desirable. For an important class of sets that includes the 
preceding examples, the present paper will provide such a construction. With no 
additional effort, Cantor-like constructions will be provided for all "cutout 
renewal sets", which are generalized renewal sets satisfying a certain "cutout 
condition". A generalized renewal set is defined as the closure of values of a 
process having stationary, nonnegative, independent and infinitely divisible incre- 
ments 1. Conversely, if a generalized renewal set is a cutout renewal set, it is 
obtainable by a Cantor-like construction. 

As is well known, Cantor had proceeded by successive steps, where each step 
consisted in cutting off the open middle third of each of a finite number of closed 
intervals. The initial in te rva l -one  with which the first step s ta r t s - i s  [0, 1], so 
the second step starts with the two intervals [0, �89 and [~, 1], etc. Partly stochastic 
variants of this construction have been considered by Salem [8] and Dvoretzky [3], 
but the construction studied in the present paper is different; I think it is simpler 
and more natural for application to both mathematics and physics, and in addition 
it will help improve the solutions of Dvoretzky's problem (see [12]). Cantor's 
initial interval [0, 1] is replaced by the whole real line R; the cutouts remain 
almost surely denumerable but are made entirely random, mutually independent 
and stationary according to the following definition. 

Definition 1.1. A cutout of starting point t and duration z will be an open 
interval ] t, t + z[ with - oo < t < Go and z > 0. To obtain random cutouts, one maps 
each cutout into the point of the open upper half plane H of coordinates t and z, 
and one selects the points (t, z) at random. (The "chance variable" co will be omitted 
when possible.) 

In this paper, the following rules will be used. The number of points (t, z) in a 
rectangle interior to H will be almost surely (a.s.)finite, so the total number of 

This last definition should perhaps be motivated: A classical renewal set (see, e.g., [2]) is a discrete 
ordered set T(0), h) such that the renewal times T(0), h) - 7"(0), h - 1)= U h are nonnegative, independent 
and identically distributed variables. Hence a classical renewal set can be considered the set of values 
of the nondecreasing random sequences with increments U h. The generalization used consists in 
replacing this sequence by the more general process postulated. 

t0* 
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cutouts will be a.s. denumerable. Different cutouts will be statistically independent, 
meaning that, given any finite collection of non-overlapping rectangles of H whose 
sides are parallel to the axes, the numbers of points (t, z) in the rectangles are 
independent. The distribution of cutouts will be stationary, meaning that the 
distribution of the number of points (t, z) in a rectangle of H is unchanged when 
this rectangle is shifted along the t-axis. 

Proposition 1.2. I f  the cutouts are a.s. denumerable, statistically independent and 
stationary, the number of  points (t, z) within an interior rectangle It', t"[ x [z', z"[ of 
H is a Poisson random variable of expectation ( t " - t ' ) IF(z") -F(z ' ) ] ,  where F(z) is 
a finite, non-decreasing and left continuous function of  z defined.for 0 < z <  c~. 

Proof. Count the points (t, z) in the rectangle ]0, t[ x [z0, z[. Considered as a 
random function of t - w i t h  z o and z f ixed- th is  number has independent and 
stationary increments and its jumps are all equal to 1, so it must be a Poisson 
process of expectation proportional to t. N e x t - z  o and t being fixed-consider 
this number of points as a function of z; it is integer-valued and its increments are 
indepepdent but no longer necessarily stationary, so it must be a Poisson process 
of expectation proportionM to F(z)-F(zo),  with F as characterized in Proposi- 
tion 1.2. 

Obviously, the function F(z)+ d (d real) is equivalent to F(z). 
Values of co such that the points (t, z) are non-denumerable have zero prob- 

ability and will be discarded, so the cutouts can be arbitrarily ordered by an 
index n and designated by [t~(c9), t~(co) + zn(co)]. 

Definition 1.3. The uncovered set of R will be the random set 

S(co) = R - @ ]t~(co), t~(co) + z~(co)[. 

Definition 1.4. The centered uncovered set St(co ) will be defined as the uncovered 
set S(co) conditioned to contain t: 

s , ( c o )  = {s(co) lt~s(co)}. 

Comment. The set S0(co) can be obtained by conditioning the point (t, z) to lie 
outside of the domain defined by the inequalities t + z > 0 and t < O. Conversely, 
the set S(co) can be obtained from the collection of St(co ) by attributing to t a 
uniform (Lebesgue) measure over R. 

Digression. This last construction characterizes S(co) as an element of a measure 
space which is shift invariant and whose total measure is infinite. The quotient of 
this space by the class of equivalence of S(co) may happen to have either a finite 
or an infinite measure. In the former case, S(co) is an ordinary random set; in the 
latter case; it is a "sporadic set" according to the definitions in Mandelbrot [91. 
Contitioning sets of the form fl(t', t")--{co: S(co)~[t', t"] =~} have finite meas- 
ures, and conditioned sets of the form {S(co)]co~fl(t', t")} are ordinary (finite 
measure) random sets invariant under some but not all shifts [9, p. 159]. 

Definition 1.5. The maximal open intervals of R -  S(co), which are non-over- 
lapping, will be called intermissions of S(co). They are denumerable and will be 
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ordered arbitrarily, their end points being designated by T,~(co) and T,~'(co) and 
their durations by Urn(co). Each intermission is a union of cutouts. When S(co) 
includes closed intervals, these will be called acts and the duration of the act 
preceding intermission number m will be designated by ym(co). 

Problem 1.6. The principal problem raised and solved in this paper is to describe 
the structure of the random set So(cO ) (Sections 2 and 3). Subsidiary problems: to 
determine under which conditions R is a.s. covered by cutouts (Section 4), and to 
solve Dvoretzky's problem better [12]. The solution of the principal problem is 
not quite definitive. It is summarized by the following definition and theorem. 

Definition 1.7. Cutouts are said to satisfy the renewal condition if the function 
F(z) satisfies the following conditions: 

a) F(c~)< oo; if so, we shall write F(oo)=0. 
1 

b) H<~ where H= ~o eXp [ -  iF(z)dz] 

c) K exists and K < o% where 

[! ] K =  limexp zdF(z) [If(m)[ -1] {1 -exp[-m[F(m)[]}. 
m~0 

Comment. For c) to hold, sufficient conditions are either c') or c"): 
1 

c') limo [~ZdF(z)-loglF(m)l]= -oo. 

1 

c") ,,~01im[~zdF(z)+l~ 

Condition c) leaves me uncomfortable; I suspect it could be simplified, but I 
don't know how. In any event, the present form of Theorem 1.8 is adequate for the 
applications in view 2. 

Theorem 1.8. If  the renewal condition holds, then So(cO ) is identical in distribution 
to the closure of the values of the process 

1 

T(cO, x)=xexp[-~zdF(z)]+J(cO, z), 
0 

with the process J defined as follows: J(cO, 0)=0, increments of J(cO, x) are independ- 
ent and nonnegative, and the logarithmic generating function (1.g.f.) of J(cO, x ) -  
J(cO, O) is oo 

- l o g  S e-b" d Pr {J( co, x ) -  J(co, 0)<u} 
0 

X 

exp[F(1)]o~exp - b s -  IF(z)dz ds+K 
s 

2 N o t e  Added  in P r o o f  A full solution of the subsidiary problem above has since been obtained by 
L.A. Shepp, in a paper titled "Covering the line with random intervals", to be submitted to this 
Journal. As I had suspected, condition c) above is not  needed. I suspect that it is not needed either 
for the principal problem, implying that every reference to K below will disappear from a more suc- 
cessful s tudy of the problem. 
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I f  either F(oo)= oo, or H =  o% or K =  o% So(cO ) is a.s. degenerate, in the sense 
that for all t>0 ,  So(cO)c~]0, tl is a.s. empty. 

Definition 1.9. If a process T(cO, x) is such that its 1.g.f. can be written in the 
form in Theorem 1.8 with F a finite non-decreasing function satisfying H <  oo, 
K <  ~ and F(oo)< 0% T(co, x) will be said to satisfy the cutout condition. 

Converse Theorem 1.10. I f  a process satisfies the cutout condition, the closure of  
its values can be constructed as the set left uncovered by a process of  random cutouts. 

Application to Statistically Self  Similar Cutouts, with F(z)= - Q / z  

Definition 1.11. Random cutouts will be called statistically self similar if the 
distribution of the points (t, z) is left unchanged by any similarity whose apex is an 
arbitrary point of the t axis and whose ratio r is positive. 

Proposition 1.12. Random cutouts are self similar iff F(z )= - Q / z  + F o with Q > 0 
and F o finite. 

Proof  As a preliminary, we prove that F(oo)< oo. Let r > 1, and consider in H 
the two rectangles It, t + dt[ x [z, r z[ and ]r t, r t + r dt[  x [r z, r 2 z [ .  They are 
similar with apex 0 and ratio r, so by hypothesis the numbers of points (t, z) they 
contain have identical distributions a n d - i n  par t i cu la r -equa l  expectations 

[F(r z ) -  F(z)] dt = [F(r 2 z ) -  F(r z)] r dr. 

By iteration, for every integer k, one has F(rk+l z ) - -F ( rk z )=r -k [F( r z ) - -F ( z ) ]  
and - by summation - 

F(rk+ 1 z) -- F(z) = (1 + r -  1 + . . .  + r -  k) [F(r z) -- F(z)]. 

As k -~ o% F ( o o ) - F ( z ) = r ( r -  1) -1 [ F ( r z ) - F ( z ) ]  < o% so F(oo) < oo as announced. 

To prove that F ( z ) = - Q / z ,  normalize F(z) so that F (oo)=0  and consider 
the two strips ] t, t + dt [ x [z, oo [ and ]r t, r t + r d t[  x [r z, oo [. By the same argu- 
ment as above, F ( z ) = r F ( r  z) for all r u n d  z. The only monotone solution of this 
question is known to be F ( z ) = - Q / z .  

Applying Theorem 1.7 to the self similar case, we obtain 

Proposition 1.13. For self similar cutouts with Q> 1, one has H = K =  ~ ,  so 
that S0(co)c~ ]0, t] is a.s. empty. For self similar cutouts with 0 < Q <  1, the renewal 
condition holds. In fact, T(co, x)=J(co, x), with J(co, x) the process of  random in- 
dependent increments such that for x > 0  

E exp { - b [J  (co, x) - J(co, 0)]} = exp [ - x b 1 -Q e e / r ( 1  - Q)] .  

This process J(co, x) is called stable subordinator or stable non-decreasing 
process of L6vy exponent equal to ~ = 1 - Q. The set of its values is called Ldvy 
self similar perfect set. In the special case Q = 0.5, it is identical in distribution to 
the set of zeros of Brownian motion starting from t = 0 ;  in the special cases 
0.5 < Q < 1, to the set of zeros of a symmetric stable process of exponent 1/Q. 
The self similarity of S follows from the self similarity of the cutouts, but it is also 
easy to verify directly that the set S O and all sets rS o obtained by similarity of 
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apex 0 and of arbitrary ratio r are identical in distribution. The Hausdorff dimen- 
sion [1], Fourier dimension [6,7], "capacitary" dimension, and "similarity" 
dimension of S(co) are a.s. equal to 1 - Q .  

Self similar perfect s e t s - a s  has been s a i d - h a v e  begun to play important 
roles in the study of noises and other turbulence-like fluctuations, and in the 
theory of trigonometric series. In both contexts, the original definition was 
awkward because it was based upon  the values of T(co, x), that is, upon inter- 
missions that are non-overlapping so they cannot be chosen independently. The 
Cantor-like construction proposed in the present paper appears more "natural".  

Corollary 1.14. Multidimensional Brownian motion is nonrecurrent a.s. 

Proof This fact is well known, but it may be of interest to show it can be 
rederived as Corollary of Proposition 1.13. The N dimensional Brownian motion 
B(t) is a random vector whose N coordinates Bk(t ) are independent, identically 
distributed one dimensional Brownian motions. A zero of B(t) is a zero common 
to the N functions Bk(t ). Since the set of zeros of Bk(t ) is identical in distribution 
to the uncovered set corresponding to random cutouts with F(z)= - ( 2 z )  -1, the 
set of zeros of B (t) is identical in distribution to the uncovered set with F(z) = - Q/z 
and Q =N/2.  For  all N > 2, Q > 1, so the set of zeros reduces a.s. to O and it is 
a.s. that the multidimensional Brownian motion never returns to the origin. 

2. Structure of the Random Set S o when Cutout Lengths 
Are Bounded away from Zero and Infinity 

Throughout  this section, it will be assumed that z is bounded by a positive 
minimum m, also called internal or inner scale, and a finite maximum M, also 
called external or outer scale. Then acts and intermissions alternate and the number 
of acts and intermissions intersecting [-0, 1] is finite, so it is possible to order 
intermissions chronologically and designate their end points by T h and Th'. In this 
section, every random variable will have parameters m and M, for example 
S(m, M). Save for possibly ambiguous cases, m and/or M and/or ~o can be omitted. 

Notation 2.1. We shall write 

A = F ( M ) - F ( m ) ;  B = e x p  - zdF(z  ; C = e x p -  zdF(z  . 

Proposition 2.2. The instants t, constitute a Poisson process of mean recurrence 
time equal to 1/A. Hence 

Pr {min {t, It,>O} >_y} =Pr { Y >: y} =exp{ - y [ F ( M ) -  F(m)]} : exp { -  yA}. 

In particular, E [ Y (m, M)J = 1/A. 

Proposition 2.3. 7he probability that an instant t belongs to S is equal to 

P r { t e S } = P r { O e S } = B .  
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Proof The event {0eS(m, M)} is the intersection of the mutually independent 
events {0~S(z, z+dz)} with m < z < z + d z < M .  Thus, 

M 

log Pr {0eS(m, M)} = ~ log Pr {0eS(z, z + dz)} 
m 

M 

= ~ log Pr {there is no point (t, z) in the strip ] - z ,  0[  x [z, z+dz[} 
??/ 

M M 

= ~ l o g { e x p [ - z  dF(z)]} dz= - ~ zd f ( z )= log  B. 
m m 

Proposition 2.4. The probability that an instant t > 0  belongs to S o is equal to 

E! l Pr{tsSo}=Pr{t~SlO~S}=exp - min(z,t) dF(z) . 

Proof The joint event {t~S(m, M) and OeS(m, M)} is the intersection of the 
mutually independent joint events {t e S (z, z + dz) and 0 ~ S (z + z + dz)}, carried 
over z and dz satisfying m < z < z + d z < M .  Hence 

M 

log Pr {t6S(m, M) and O~S(m, M)} = S log Pr {t~S(z, z + dz) and OeS(z, z +dz)} 
m 

M 

= S log Pr {there is no point (t, z) in either of the strips 
m 

] - z ,  0[ x [z, z+dz[  and I t - z ,  t[ x [z, z+dz[} 

M 

= ~ log Pr {there is no point (t, z) in the strip 
m 

]0, min(t + z, 2z)[- x [z, z+dz[} 
M 

= - ~ min(t + z, 2z) dF(z). 
tn 

Finally, 
M M 

log Pr{teS(m, M)lOeS(m, M)} = - ~ min(t +z,  2z) dF(z)+ ~ zdF(z) 
m m 

M 

= - S min(t, z) dF(z), 
m 

as announced. 

Proposition 2.5. 7he event that the last point of an act of S o lies between t > 0 
and t +dt has the probability density 

Aexp{ z dF z } 
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Notation 2.6. The g. f.' s of the variables U and Y, and of the density of Proposi- 
tion 2.5 will be designated by 

oo 

U*(b[m,M)= ~ e-b"dP{U(m,M)<u}, 
0 

F(M)-F(m) A 
Y*(blm, M)= oS e-b" dPr{r( m, M)<u} = b+ F(M)-F(m) - b+A ' 

co M 

m min s 

1 1 
Theorem 2.7. U* (blm, M) = 

Y*(blm, M) W*(blm, M)" 

Proof. T~, defined as the first point T/ to the right of 0, is identical to 

min {t, Lt,>0} 

and its g.f. is Y* (b Ira, M). The position of T h' is obtained by adding to the position 
of T~ the sum of the following h independent intermissions and h independent acts. 
Therefore, the g.f. of T~ is 

Y*(b[m, M) [Y*(blm, M) U*(blm, M)] h. 

Further, the g.f. of the event {t< Th'<t+dt for some h} is equal to 
/ 

Y* (bern, M) y ,  + y ,2  U* + y ,3  U,2 + . . . .  
1 - U*(blm, M) Y*(blm, M) " 

By a known result of renewal theory [3, 4] this is also equal to the g.f. of the 
density evaluated in Proposition 2.5, namely W* (b Ira, M). Solving for U*(blm, M), 
we obtain the result claimed. 

The following definition introduces a process X (co, t I m, M) such that S (co lm , M) 
is the closure of the values of X. The reason for this definition is that it makes 
the limit behavior of So(cO ) for m ~ 0  and M---,~ reducible to classical theorems 
of probabi l i ty-which do not concern sets but processes 

Definition2.8. X(co, tim, M) will be defined as equal to 1/C times the total 
length of the intervals in S(co]rn, M) c~ [0, t]. The function T(co, x lm, M) will be 
defined as max [t ] X (co, t] m, M) < x], that is, as the inverse function of X (co, t] m, M), 
"filled-in" so as to be defined for all x and to be left continuous. 

Proposition 2.9. 

EX(cO, tim, M ) =  C -1 E[S(m, M) c~ [0, t]i=tC -~ Pr{O~S(m, M)} =tB/C. 

The derivative X' (cO, tim, M) of X(cO, tim, M) exists for all instants t in the interior 
of S or of R -  S, and satisfies 

X,(cO, ttm, M)={~/C if t is in the interior of S, 
if t i s  in the interior of R -  S. 

Clearly, each intermission of S(coIm, M) corresponds to a jump of T, and each 
act corresponds to a zone in which the derivative of T(co, x[ m, M) is C. The jumps 
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and the linear contributions can be considered separately by writing 

r(co, xlm, M) = J(co, xlm, M)+ xC. 

Theorem 2.10. J (co, x lm, M) is a process with independent increments for which 
the LOvy measure function of the interval (u, oo) is 

L(u] m, M)=AC Pr{U>u}.  

Proof As a first consequence of its definition, J is a process of independent 
increments whose L6vy measure is proportional to Pr { U > u}, say 6 Pr  { U >  u}. 
To determine the value of this constant 6, note that the interval of x between 
successive jumps is an exponential random variable of expectation 1/6. During 
such an interval, the linear function x C increases by an exponential variable of 
expectation 6 -1 C. Since that variable must be identical to Y in distribution, 
6-1 C = 1/A, and 

6 Pr {U>u}= AC Pr { U>_>_u} 
as asserted. 

Theorem 2.11. 7he g . f  of T(co, x]m, M) is equal to 

T* (b, x Ira, M) = exp [ -  x CA~W* (blm, m)] .  

Proof. As is well known, the g.f. of J (co, x L m, M) is 

oo 

and therefore the g.f. of T is 

T*(b, x[m, M ) = J *  (b, x[m, M) e x p ( -  b x C). 

By Theorems 2.7 and 2.10, 

oo 

- S(e-b"-l)  dL(ulm, M)=AC[U*(b]m,M)-- l]  
o = A C ( -  1 + 1/Y*)+AC/W*. 

In addition (Notation 2.6), - 1 + 1/Y* =b/A, so A C ( -  1 + 1/Y*)=bC. Plugging 
into T*, we obtain the result claimed. 

Proposition 2.12. One can write 

W * / C A = W 1 27 W 2 -~- W 3 

with the following definitions 

W 1 (b [ m, M) = exp z dF (z) [b + F (M) - F (m)] - 1 

. { 1 - e x p [ - m b - m F ( M ) + m f ( m ) ] }  

M L ] Wz(b[m,M)= ~exp [ - b s -  f F(z)dz+F(1)-sF(M) ds 
m 

M 

W3(b[m,M)=b-lexp [ , b M -  ~ z dF(z)]. 
1 
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Proof. By definition, 

~ [ M ~ )1 W*/AC= ~ exp - b s -  ~ min(s ,z)dF(z)+ ~ zdF(z ds. 
0 m m 

Divide the interval of integration into the spans (0, m), (m, M) and (M, ~),  and 
designate the corresponding partial integrals by Wa (b [ m, M), W 2 (b [ m, M), and 
W3 (blm, M). We have 

W l(b]m,M)=~exp -bs-s~dF(z)+ zdF(z) ds 
0 m m 

=exp[~mzdF(z)][b+F(M)-F(m)]-a 

�9 { 1 - e x p [ - m b - m F ( M ) + m F ( m ) ] } ,  

W2(b[m, Ml= ~exp - b s -  SzdV(z)-SsdF(z)+ zdF(z ds 
m t t l  S 

= ~ e x p  -bs+ ~ zdF(z)-s[F(M)-F(s)] ds 
m s 

M 1 

= ~exp [ - b s - ~  F(z)dz+F(1)-sF(M)] ds, 
m s 

W3(blm, M)= ~ exp - b s -  ~ zdF(z)+ zdr(z) ds 
m rn 

= ~ e x p  - b s - ~ z d f ( z  ds 
m 1 

=b - l exp  - b M -  y zdF(z) . 
1 

The proof is complete. 

3. Structure of the Random Set S o 
when Cutout Length Is not Bounded away from Zero and[or Infinity 

In this section we consider a general finite nondeereasing and left continuous 
function F(z) defined for 0 < z<  ~ .  If F(z) is truncated to ]m, M], that is, made 
constant for 0 < z =< m and for M < z < ~ ,  the results of Section 2 are applicable. 
One can treat the general case by first truncating z to ]m, M] and then letting 
m-~0 and M ~ .  

Passage to the Limit M ~  ~ .  From Proposition 2.5, it follows that i f F ( ~ ) =  ~ ,  
then there is a. s. no point of So in ] 0, t] (0 < t < ~).  Therefore, a necessary condition 
of non degeneracy of So is that F ( ~ ) <  Go. There is no loss of generality in writing 
F(~)=O. This is condition a) of Theorem 1.8. 
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When M ~ o o ,  the term W3(b[m, M) of Proposition 2.12 tends to zero for all b 
(O<b_< ~) .  

Passage to the Limit m ~ O. Observe that a sufficient condition for the conver- 
gence of S O (co) to a nondegenerate limit random set is that 

A T= T(co, xlm, M)-  T(co, 0l m, M) 

converge to a nondegenerate limit r.f., while the a.s. convergence of A T to 0 is 
sufficient for So(co ) c~ ]0, t] to be a.s. empty. We shall be content to explore these 
sufficient conditions. (I wonder wheter one could obtain a generalization by 
studying the limits for m ~ 0  of all r. f'.s A T(co, (p (x, m) m, M) where (p (x) is monotone 
increasing; I have ascertained that with q~(x,m)=O(m)x one gains nothing, 
but I have not gone beyond. This is one question I shall leave open.) 

The limit behavior of A T depends on the limit behavior of T* and thus on 
the limit behavior of W~ + W 2. The limit behavior of W 2 depends on the value of 

H(F)= S exp [j ,F(z), dzl 

to be denoted by H where there is no ambiguity. Either H < oo or H = oo. When 
H < o% then W converges monotonically to a continuous function of b (0 < b < oo) 
that tends to zero as b-+ oo and is finite for 0 < b < oo. On the contrary, when 
H = o% then for 0 < b < o% lim W 2 = oo. 

m ~ 0  

Next, the limit behavior of W 1 depends on the behavior of 

1 

again denoted by K(m) when there is no ambiguity. K(m) may either have a 
limit K or oscillate without bound. According to its behavior and to the value 
of H, the function F can be classified as follows. 

When H = oo and/or K = o% then for every x > 0, 

Pr {l!m~ A T (x ]m, M) = 0} = b~oolim m~01im T* (b, x [m, M) = 1. 

Therefore, for every t>0 ,  Pr{So(co)c~]O, t] =~} = 1, which proves the asser- 
tions concerning H and K in the second part  of Theorem 1.8. Example: F(z)=  

- Q/z, with Q > 1. 

When H <  oo and K <  o% then the first part  of Theorem 1.8 is proved. Also, 

Pr{l!~AT(xlm,~ M ) = 0 }  = b~lim m~01im T*(b, xlm, M)=exp(-x/K)< 1. 

In particular, when K = 0, then lim A T >  0 a.s. 
m ~ 0  

Example: K = 0  when F(z)=  -Q/z with Q <  1. No example when H <  oo and 
K > 0 is known to me. The possibility of such example is a second question I shall 
leave open. This finishes the proof  of Theorem 1.8. 

The case when H < oo and K(m) has no limit will be left open. 
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4. Almost Sure Covering of R by Cutouts 
Definition 4.1. When Pr{S c~ It', t"] =~} = 1 for all finite t', t", the cutouts are 

said to a.s. cover R. When the cutouts a.s. cover R but cease to a.s. cover R when 
F(z) is replaced by F(1) for all z <  1, one has a high frequency a.s. cover. When the 
cutouts a.s. cover R but cease to a.s. cover R when F(z) is replaced by F(1) for all 
z >  1, one has a low frequency a.s. cover. 

Proposition 4.2. R is a.s. covered iff it is low frequency and~or high frequency a.s. 
covered. 

Proof High frequency and low frequency cutouts are independent. 

Proposition 4.3. A necessary and sufficient condition for low frequency a.s. 
covering is lim B(m, M)=0.  

M ~  oo 

Proof Necessity: By Proposition2.3, Pr{t'6S(m,M)=B(m,M). When the 
condition in this proposition fails, t' itself is not a.s. covered, and afort ior i  [t', t"] 
is not a.s. low frequency covered. Sufficiency: The probability of the event that 
[0, t] is not covered by any single cutout is readily seen to be 

e x p { - f ( z - t )  dF(z)}. 

When the condition in this proposition holds, this probability vanishes for all t. 
Hence, every It', t"] is a.s. low frequency covered. 

Remark 4.4. A.s. low frequency covering is equivalent to a.s. covering by a 
single cutout. 

Lemma 4.5. 
oo 

Pr  {[0, t] c R  -S(m, M)]O$S(m, M)} = S Pr{U(m, M)>u} du/E[U(m, M)] 
t 

oo 

S Pr[U(m, M)>_u] du 
t 

oo 

I Pr[U(m, M)>u] du 
o 

Proof This probability is unchanged if the scale of time is collapsed in such 
a way that the acts are reduced to single points while the intermissions remain 
unchanged. By such a transformation, S (m, M) is made into an ordinary renewal 
process, for which the result is classical (see [2]). 

Lemma 4.6. There exists some e(m, M) between 0 and 1 such that 
t 

Pr { [0, t ] 4: R - S(m, M)} = A (m, M) B(m, M) ~ Pr { U (m, M) > u} d u + B(m, M) e (m, M) 
0 

M 

0 

Proof The denominator in the last expression of Lemma 4.5 is known to be 
equal to EU(m, M). Further, 

EU(m, M) EY(m, M) 
Pr { Or S (m, M) ) - Pr { O~ S (m, M) ) " 
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By P r o p o s i t i o n  2.2, E Y =  1/A, and  therefore  

EU (m, M ) =  [ 1 - B ( m ,  M)]/A (m, M) B(m, M). 

On the o ther  hand,  

P r  {[0, t] dFR-S(m,  M)} = P r  {[0, t] dgR - S ( m ,  M)IOr M)} Pr{O(!S(m, M)} 

+ Pr  {[0, t] C R - S ( m ,  M)IO~S(m , m)} Pr{O~S(m, M)}. 

The first a d d e n d  is eva lua ted  by L e m m a  4.5, after insert ing the above  ob ta ined  
express ion for EU. Then this addend  is eva lua ted  by Theorem2.10 .  The second 
a d d e n d  lies between 0 and  1. 

T h e o r e m  4.7. A sufficient condition for a.s. high frequency covering is that the 
limit for m -~ 0 of T(co, xlm, M) is degenerate, more specially that H = ~ and~or 
K = ~ .  A sufficient condition for high frequency covering to have a probability less 
than 1 is that the limit for m-~ 0 of T(~o, xlm, M) is non degenerate, namely that 
H<oo  and K < ~ .  

Proof. W h e n  T(m, xlm, M) is a sympto t i ca l ly  degenerate ,  l im B(m, M ) = 0 ,  and 
r n ~  0 

t 

~L(ulm, M)du=O, so Pr{[O,t]ecR-S(m,M)}-~O. 
0 

W h e n  T(c~, x lm, M) is a sympto t i ca l ly  non  degenerate ,  

t 

l im ~L(ulm, M ) d u > O  so P r { [ O , t ] r  
m ~ O  0 

remains  b o u n d e d  away  from 0 for all t. The same appl ies  to any o ther  in terval  
[t', t"], which proves  the theorem.  

Corol lary  4.8. When F(z) = - Q/z, R is a.s. high frequency covered when Q > 1, 
and is high frequency covered with probability less than 1 when Q < 1. 
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