The General Random Ergodic Theorem. II

Eijun Kin

§1. Introduction

The present paper continues the investigations of "The general random ergodic theorem I", and the following problem is considered:

Suppose (Ω, \mathcal{B}, m) and (X, Σ, μ) are two σ -finite measure spaces, and $\{f(t, \omega)(x)\}$ and $\{g(t, \omega)(x)\}$ are two (t, ω, x) -measurable families of functions defined on X. Then we can ask under what conditions there exists a function $F^*(\omega, x)$ in $L_1(\Omega \otimes X)$ such that

converges (as $T \to \infty$) to the function $F^*(\omega, x)$ almost everywhere on $\Omega \otimes X$.

The problem analogous to a continuous case arises for discrete families of measurable functions.

In §2 we state the general random ergodic theorems for a continuous parameter case in connection with this question, of which proofs appear in § 3. In §4 we shall indicate similar results in a discrete parameter case.

The idea of the proofs, which appeal to the representation into an infinite product space, is due to the author [1] being a slight modification of the method given by Doob [2].

§ 2. The Continuous Case

Let (Ω, \mathcal{B}, m) and (X, Σ, μ) be two σ -finite measure spaces and $\{S_t: t \ge 0\}$ a measurable non-singular semi-flow on (Ω, \mathcal{B}, m) . We recall that, by virtue of the non-singularity and the group property of $\{S_t\}$, there exists a family $\{\beta(t, \omega)\}$ of positive integrable functions such that, by the Radon-Nikodym theorem,

$$m(S_t A) = \int_A \beta(t, \omega) \, dm$$

for any $A \in \mathcal{B}$, and

$$\beta(t+s,\omega) = \beta(t,\omega) \beta(s, S_t \omega)$$

for almost all $\omega \in \Omega$, and that if we take $\{S_t\}$ to be measure preserving, the density function $\beta(t, \omega)$ is identically equal to one. Throughout this paper, we shall restrict ourselves to real valued functions, and further, unless otherwise stated, p will be an arbitrary positive integer and each E_k (k=1, 2, ...) will be a 1-dimensional Borel set.

The following theorem, a continuous analogue of the generalization of Hopf's theorem [3] proved by Halmos [4] and Dowker [5], plays an essential role in our present paper.

Theorem 1. Let $f(\omega)$ be an integrable function on Ω and $g(\omega)$ a non-negative measurable function on Ω satisfying

$$\int_{0}^{\infty} g(S_t \, \omega) \, \beta(t, \omega) \, dt = \infty$$

almost everywhere on Ω . Then the limit

$$\lim_{T \to \infty} \frac{\int_{0}^{T} f(S_t \, \omega) \, \beta(t, \omega) \, dt}{\int_{0}^{T} g(S_t \, \omega) \, \beta(t, \omega) \, dt}$$

exists and is finite almost everywhere on Ω .

Now suppose $f = \{f(t, \omega)(x): t \ge 0\}$ and $g = \{g(t, \omega)(x): t \ge 0\}$ are two (t, ω, x) measurable families of functions defined on X. We consider the mapping $H_{(f,g)}$ from $\Omega \otimes X$ to $(\overset{+}{\otimes} R_t) \otimes (\overset{+}{\otimes} R_t)^1$ defined by

$$H_{(f,g)}(\omega, x) = (\theta, \sigma)$$

$$\xi_t(\theta) = f(t, \omega)(x), \quad \eta_t(\sigma) = g(t, \omega)(x)$$

where $\xi_t(\theta)$ and $\eta_t(\sigma)$ are the *t*-coordinate functions of θ and σ respectively, and consider the shift transformation semi-group $\{Q_t: t \ge 0\}$ on $(\stackrel{+}{\otimes} R_t)^2$ defined by

$$Q_t((\theta_u, \sigma_u): u \ge 0) = ((\theta_{u+t}, \sigma_{u+t}): u \ge 0).$$

By $\mathscr{L}_{(f,g)}$ we stand for the σ -field generated by all finite unions of sets of the form: for every sequence (t_1, \ldots, t_n) with $0 \le t_1 < \cdots < t_n < \infty$,

$$\{(\theta, \sigma): \xi_{t_1}(\theta) \in E_1, \dots, \xi_{t_p}(\theta) \in E_p, \eta_{t_1}(\sigma) \in E_{p+1}, \dots, \eta_{t_p}(\sigma) \in E_{2p}\},\$$

and put, for any $A \in \mathscr{L}_{(f,g)}$,

$$\lambda_{(f,g)}(\Lambda) = m \otimes \mu(H^{-1}_{(f,g)}\Lambda).$$

Obviously $\{Q_t\}$ is $\mathscr{L}_{(f,g)}$ -measurable. Moreover, for a function $h(\omega)$ fixed in $L_1(\Omega)$, we consider the mapping Π_h from Ω to $(\overset{+}{\otimes} R_t)$ given by $\Pi_h \omega = \theta$, where $\xi_t(\theta) = h(t, \omega)$, $h(t, \omega) = h(S_t \omega)$ and denote by \mathscr{A}_h the σ -field generated by all finite unions of sets of the form: for any sequence (t_1, \ldots, t_n) of non-negative real numbers with $t_1 < \cdots < t_n$,

$$\{\theta: \xi_{t_1}(\theta) \in E_1, \ldots, \xi_{t_n}(\theta) \in E_p\}$$

and define $\pi_h(B) = m(\Pi_h^{-1}B)$ for any $B \in \mathscr{A}_h$.

¹ $\overset{+}{\otimes} R_t = \underset{t \ge 0}{\otimes} R_t, R_t = (-\infty, \infty).$

We say that the pair (f, g) of two families has the property A if for any $A \in \mathscr{L}_{(f,g)}$, there exists a positive constant K such that $\lambda_{(f,g)}(Q_t^{-1}A) \leq K \cdot \lambda_{(f,g)}(A)$ for any twith $t \geq 0$, and that the pair (f,g) has the property B if for any $A \in \mathscr{L}_{(f,g)}$ with $\lambda_{(f,g)}(A) > 0$, 1

$$\liminf_{T\to\infty}\frac{1}{T}\int_0^1\lambda_{(f,g)}(Q_t^{-1}\Lambda)\,dt>0.$$

Then our main result reads as follows:

Theorem 2. Let $f = \{f(t, \omega)(x) : t \ge 0\}$ and $g = \{g(t, \omega)(x) : t \ge 0\}$ be two (t, ω, x) -measurable families of functions defined on X satisfying that

(i) $f(0, \omega)(x)$ belongs to $L_1(\Omega \otimes X)$,

(ii) for almost all $(\omega, x) \in \Omega \otimes X$, $g(t, \omega)(x)$ is positive for any $t \ge 0$ and $\int_{0}^{\infty} g(t, \omega)(x) dt = \infty$,

(iii) the pair (f, g) has the properties A and B.

Then there exists a null set N in Ω such that, for any $\omega \in \Omega - N$, the limit

$$\lim_{T \to \infty} \frac{\int_{0}^{T} f(t, \omega)(x) dt}{\int_{0}^{T} g(t, \omega)(x) dt}$$

exists and is finite for almost all $x \in X$.

In case the measures *m* and μ are finite, take $\{S_t: -\infty < t < \infty\}$ to be a measurable non-singular flow and consider the product set $(\otimes R_t) \otimes (\otimes R_t)$, where $\otimes R_t = \bigotimes_{-\infty < t < \infty} R_t, R_t = (-\infty, \infty)$. Then we have the following

Theorem 3. Suppose $\{f(t, \omega)(x): -\infty < t < \infty\}$ and $\{g(t, \omega)(x): -\infty < t < \infty\}$ are two (t, ω, x) -measurable families of functions defined on X satisfying that

(i) $f(0, \omega)(x)$ belongs to $L_1(\Omega \otimes X)$,

- (ii) $g(t, \omega)(x)$ is positive for almost all $(\omega, x) \in \Omega \otimes X$ and for any t, and
- (iii) there exists a positive constant K such that

$$\begin{split} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \mu \left\{ x: f(t_1 + t, \omega)(x) \in E_1, \dots, f(t_p + t, \omega)(x) \in E_p, \\ g(t_1 + t, \omega)(x) \in E_{p+1}, \dots, g(t_p + t, \omega)(x) \in E_{2p} \right\} \beta(-t, \omega) dt \\ \leq & K \cdot \mu \left\{ x: f(t_1, \omega)(x) \in E_1, \dots, f(t_p, \omega)(x) \in E_p, \\ g(t_1, \omega)(x) \in E_{p+1}, \dots, g(t_p, \omega)(x) \in E_{2p} \right\} \end{split}$$

holds almost everywhere on Ω , where (t_1, \ldots, t_p) is an arbitrary sequence of real numbers with $t_1 < \cdots < t_p$. Then, except for a set of $m \otimes \mu$ -measure zero, the limit

$$\lim_{T \to \infty} \frac{\int_{0}^{T} f(t, \omega)(x) dt}{\int_{0}^{T} g(t, \omega)(x) dt}$$

exists and is finite.

Remark. Note that Theorem 2 extends Theorem 4 obtained by the author in [1] which generalizes Doob's ergodic theorem [2] and that Theorem 3 extends Theorem 1 obtained by the author in the same paper.

The following corollary together with Theorem 1 generalizes Anzai's theorem [6] and Hopf's ergodic theorem [3] which extends Birkhoff-Khintchine's theorem [7].

Corollary 1. Let $\{T(t, \omega) : t \ge 0\}$ be a (t, ω, x) -measurable quasi semi-group of endomorphisms of X with respect to $\{S_t: t \ge 0\}$. If m is finite, then for any $f \in L_1(X)$

and a positive measurable function g defined on X with $\int_{0}^{\infty} g(T(t, \omega) x) dt = \infty$ $m \otimes \mu$ -almost everywhere, the average

$$\int_{0}^{T} f(T(t,\omega) x) dt$$

$$\int_{0}^{T} g(T(t,\omega) x) dt$$

converges (as $T \rightarrow \infty$) to a finite function almost everywhere on $\Omega \otimes X$.

§ 3. Proofs of Theorems

The proof of Theorem 1 depends essentially on the following lemmas which are the continuous analogues of those given by Dowker [5].

Lemma 1. Let u(t) be a real valued measurable function defined on $[0, \infty)$ and T any fixed positive real number. Suppose

$$\sup_{0 < r \leq T} \int_{0}^{r} u(t+s) dt \geq 0$$

for any non-negative real number s. Then

$$\int_{0}^{v} u(t) dt + \int_{v}^{v+T} (u(t))^{+} dt \ge 0$$

for any positive real number v, where $(u(t))^+ = \max(u(t), 0)$.

Lemma 2. Let $f(\omega)$ be a measurable function defined on Ω such that either the positive part or the negative part is integrable. If we put

$$E(\alpha) = \left\{ \omega : \sup_{0 < v \leq \alpha} \int_{0}^{v} f(S_t \omega) \beta(t, \omega) dt \ge 0 \right\}$$

for an arbitrary positive rational number α , then

$$\int_{E(\alpha)} f(\omega) \, dm \ge 0.$$

In this time, the proof of Theorem 1 can be easily proved by the same manner as used by Halmos [4].

Proof of Theorem 2. We shall establish the proof by returning to Theorem 1 in which $\{S_t: t \ge 0\}$ is considered a measurable semi-flow.

E. Kin:

Let (f, g) be the pair given in the theorem and $h(\omega)$ belong to $L_1(\Omega)$. We define the mapping φ of $\Omega \otimes X$ into $(\stackrel{+}{\otimes} R_t) \otimes (\stackrel{+}{\otimes} R_t) \otimes (\stackrel{+}{\otimes} R_t)$ (simply, $(\stackrel{+}{\otimes} R_t)^3$) as follows: $\varphi(\omega, x) = (\tau, \theta, \sigma)$, where $\zeta_t(\tau) = h(S_t \omega)$, $\zeta_t(\theta) = f(t, \omega)(x)$ and $\eta_t(\sigma) = g(t, \omega)(x)$, and consider the shift transformation semi-group $\{Z_t: t \ge 0\}$ on $(\stackrel{+}{\otimes} R_t)^3$ given by

$$Z_t((\tau_u, \theta_u, \sigma_u): u \ge 0) = ((\tau_{u+t}, \theta_{u+t}, \sigma_{u+t}): u \ge 0).$$

Furthermore, we denote by \mathscr{L} the σ -field generated by all finite unions of sets of the form

$$\{ (\tau, \theta, \sigma) \colon \zeta_{t_1}(\tau) \in E_1, \dots, \zeta_{t_p}(\tau) \in E_p, \, \xi_{t_1}(\theta) \in E_{p+1}, \dots, \, \xi_{t_p}(\theta) \in E_{2p}, \\ \eta_{t_1}(\sigma) \in E_{2p+1}, \dots, \, \eta_{t_p}(\sigma) \in E_{3p} \},$$

and put $\lambda(\Lambda) = m \otimes \mu(\varphi^{-1}\Lambda)$ for any $\Lambda \in \mathscr{L}$. Clearly $\{Z_t\}$ is \mathscr{L} -measurable and λ is a σ -finite measure which is not necessarily invariant under $\{Z_t\}$. The following three lemmas contribute essentially to the proof of the theorem.

Lemma 3. 1°. $\{Z_t\}$ is non-singular with respect to λ . 2°. There exists such a positive constant K as for any $\Lambda \in \mathscr{L}$ with $\lambda(\Lambda) > 0$,

$$0 < \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \lambda(Z_{t}^{-1} \Lambda) dt \leq K \cdot \lambda(\Lambda).$$

Proof. Cf. [1], Lemma 4.

From Lemma 3 we have

Lemma 4. There exists a σ -finite measure v on \mathscr{L} satisfying

- (i) $v(\Lambda) \leq K^2 \lambda(\Lambda)$ for $\Lambda \in \mathcal{L}$,
- (ii) v is equivalent to λ , and
- (iii) v is invariant under $\{Z_t\}$.

Proof. Cf. [1], Lemma 5.

Lemma 5. If Φ is an arbitrary 3 p-dimensional Borel function, then

$$\int_{(\otimes R_t)^3} \Phi(\zeta_{t_1}(\tau), \dots, \zeta_{t_p}(\tau), \xi_{t_1}(\theta), \dots, \xi_{t_p}(\theta), \eta_{t_1}(\sigma), \dots, \eta_{t_p}(\sigma)) d\lambda(\tau, \theta, \sigma)$$

=
$$\int_{\Omega \otimes X} \Phi(h(t_1, \omega), \dots, h(t_p, \omega), f(t_1, \omega)(x), \dots, f(t_p, \omega)(x), g(t, \omega)(x)) dm \otimes \mu(\omega, x)$$

where $h(t_i, \omega) = \zeta_{t_i}(\tau), f(t_i, \omega)(x) = \zeta_{t_i}(\theta) \text{ and } g(t_i, \omega)(x) = \eta_{t_i}(\sigma) \ (1 \le i \le p).$

Proof. Cf. [1], Lemma 2.

Let us continue the proof of the theorem.

Notice that Lemma 4 implies that $\{Z_t\}$ is a measurable semi-flow on $((\overset{+}{\otimes} R_t)^3, \mathcal{L}, \nu)$. In order to apply Theorem 1 to $\{Z_t\}$, we consider the functions $\psi_0^{(1)}$ and $\psi_0^{(2)}$ given by

$$\psi_0^{(1)}(\tau,\theta,\sigma) = \xi_0(\theta) \text{ and } \psi_0^{(2)}(\tau,\theta,\sigma) = \eta_0(\sigma).$$

Then, for any $t \ge 0$,

$$\psi_0^{(1)}(Z_t(\tau,\theta,\sigma)) = \psi_t^{(1)}(\tau,\theta,\sigma)$$

and

$$\psi_0^{(2)}(Z_t(\tau,\theta,\sigma)) = \psi_t^{(2)}(\tau,\theta,\sigma).$$

In view of Lemma 4, Lemma 5 and the conditions (i), (ii) in the theorem, we see that $\psi_0^{(1)}$ is v-integrable, $\psi_0^{(2)}$ is positive and

$$\int_{0}^{\infty} \psi_{0}^{(2)} (Z_{t}(\tau, \theta, \sigma)) dt = \infty \quad \text{for almost all } (\tau, \theta, \sigma) \in (\overset{+}{\otimes} R_{t})^{3}.$$

Thus, from Theorem 1, it follows that the limit

$$\lim_{T \to \infty} \frac{\int\limits_{0}^{1} \psi_{0}^{(1)} (Z_{t}(\tau, \theta, \sigma)) dt}{\int\limits_{0}^{T} \psi_{0}^{(2)} (Z_{t}(\tau, \theta, \sigma)) dt}$$

exists and is finite v-almost everywhere on $(\stackrel{+}{\otimes} R_t)^3$. Again, by Lemma 4 and Lemma 5, we come to the desired conclusion.

Proof of Theorem 3. In the sequel, we make use of the mapping and the \mathscr{L} -measurable shift transformation group $\{Z_t: -\infty < t < \infty\}$ as in the proof of the preceding theorem.

The following lemmas stand by the proof of the theorem.

Lemma 6. For the constant K given in the theorem, it follows that

$$\begin{split} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} m \otimes \mu \left\{ (\omega, x) \colon h(t_1 + t, \omega) \in E_1, \ldots, h(t_p + t, \omega) \in E_p, \\ f(t_1 + t, \omega)(x) \in E_{p+1}, \ldots, f(t_p + t, \omega)(x) \in E_{2p}, \\ g(t_1 + t, \omega)(x) \in E_{2p+1}, \ldots, g(t_p + t, \omega)(x) \in E_{3p} \right\} dt \\ & \leq K \cdot m \otimes \mu \left\{ (\omega, x) \colon h(t_1, \omega) \in E_1, \ldots, h(t_p, \omega) \in E_p, f(t_1, \omega)(x) \in E_{p+1}, \ldots, f(t_p, \omega)(x) \in E_{2p}, g(t_1, \omega)(x) \in E_{2p+1}, \ldots, g(t_p, \omega)(x) \in E_{3p} \right\}, \end{split}$$

where (t_1, \ldots, t_p) is an arbitrary finite sequence of real numbers with $t_1 < \cdots < t_p$.

Proof. Cf. [1], Lemma 1.

This lemma yields the next

Lemma 7. 1°. For the constant K in Lemma 6, and for any $A \in \mathcal{L}$,

$$\limsup_{T\to\infty}\frac{1}{T}\int_0^T\lambda(Z_t^{-1}\Lambda)\,dt \leq K\,\lambda(\Lambda).$$

2°. There exists a finite measure v on \mathcal{L} such that

- (i) $v(\Lambda) \leq K \lambda(\Lambda)$ for $\Lambda \in \mathcal{L}$,
- (ii) v is invariant under $\{Z_t\}$, and
- (iii) $v(\Lambda) = \lambda(\Lambda)$

for any $\{Z_t\}$ -invariant set $A \in \mathcal{L}$.

Proof. Cf. [1], Lemma 3.

To establish the proof of the theorem, consider the functions $\psi_0^{(1)}$ and $\psi_0^{(2)}$ given by

$$\psi_0^{(1)}(\tau,\theta,\sigma) = \xi_0(\theta) \text{ and } \psi_0^{(2)}(\tau,\theta,\sigma) = \eta_0(\sigma).$$

Then we have, for any t,

and

$$\psi_0^{(1)}(Z_t(\tau,\theta,\sigma)) = \psi_t^{(1)}(\tau,\theta,\sigma)$$

$$\psi_0^{(2)}(Z_t(\tau,\theta,\sigma)) = \psi_t^{(2)}(\tau,\theta,\sigma).$$

Since Lemma 7 implies that $\{Z_t\}$ is a measurable flow, according to Lemma 5, Lemma 7 and the conditions (i), (ii) in the theorem, one can easily verify that $\psi_0^{(1)}$ is v-integrable, $\psi_0^{(2)}$ is positive and

$$\int_{0}^{\infty} \psi_{0}^{(2)} \big(Z_{t}(\tau, \theta, \sigma) \big) \, dt = \infty$$

for almost all $(\tau, \theta, \sigma) \in (\bigotimes R_t)^3$ (see Hopf [3]). Accordingly, by Theorem 1, the limit

$$\lim_{T \to \infty} \frac{\int\limits_{0}^{T} \psi_0^{(1)}(Z_t(\tau, \theta, \sigma)) dt}{\int\limits_{0}^{T} \psi_0^{(2)}(Z_t(\tau, \theta, \sigma)) dt}$$

exists and is finite v-almost everywhere on $(\otimes R_t)^3$, so that the desired conclusion follows from Lemma 5 and Lemma 7.

§ 4. The Discrete Case

In this section, we shall state similar results in a discrete case as in a continuous case.

Let $\{S_n : n \ge 0\}$ be a non-singular discrete semi-flow on (Ω, \mathcal{B}, m) . Then, by the non-singularity and the group property of $\{S_n\}$, there exists a family $\{\beta(n, \omega)\}$ of multiplicative density functions with respect to $\{S_n\}$ (see § 2). Here we need the following lemma due to E. Hopf (cf. [3, 4, 5]).

Lemma 8. Let $f(\omega)$ be an integrable function on Ω and $g(\omega)$ a non-negative measurable function on Ω with $\sum_{k=0}^{\infty} g(S_k \omega) = \infty$ for almost all $\omega \in \Omega$, where $\{S_n\}$ is measure preserving. Then the limit

$$\lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} f(S_k \omega)}{\sum_{k=0}^{n-1} g(S_k \omega)}$$

exists and is finite almost everywhere on Ω .

142

Owing to this lemma, Theorem 2 becomes

Theorem 4. Let $f = \{f(n, \omega)(x) : n \ge 0\}$ and $g = \{g(n, \omega)(x) : n \ge 0\}$ be two (ω, x) measurable families of functions defined on X satisfying that

(i) $f(0, \omega)(x)$ belongs to $L_1(\Omega \otimes X)$,

(ii) $g(n, \omega)(x)$ is positive for each $n \ge 0$ and $\sum_{k=0}^{\infty} g(k, \omega)(x) = \infty$ for almost all $(\omega, x) \in \Omega \otimes X$,

(iii) the pair (f, g) has the properties A and B (see § 2).

Then, except for a set of $m \otimes \mu$ -measure zero.

$$\lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} f(k, \omega)(x)}{\sum_{k=0}^{n-1} g(k, \omega)(x)}$$

exists and is finite.

In case *m* and μ are finite, Theorem 3 becomes

Theorem 5. Suppose $\{f(n, \omega)(x): n = 0, \pm 1, ...\}$ and $\{g(n, \omega)(x): n = 0, \pm 1, ...\}$ are two (ω, x) -measurable families of functions defined on X satisfying

- (i) $f(0, \omega)(x)$ belongs to $L_1(\Omega \otimes X)$,
- (ii) $g(n, \omega)(x)$ is positive for each n and for almost all $(\omega, x) \in \Omega \otimes X$.

(iii) there exists a positive constant K such that

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \sum_{R=0}^{n-1} \mu \left\{ x \colon f(k_1 + k, \omega)(x) \in E_1, \dots, f(k_p + k, \omega)(x) \in E_p, \\ g(k_1 + k, \omega)(x) \in E_{p+1}, \dots, g(k_p + k, \omega)(x) \in E_{2p} \right\} \cdot \beta(-k, \omega) \\ & \leq K \cdot \mu \left\{ x \colon f(k_1, \omega)(x) \in E_1, \dots, f(k_p, \omega)(x) \in E_p, \\ g(k_1, \omega)(x) \in E_{p+1}, \dots, g(k_p, \omega)(x) \in E_{2p} \right\} \end{split}$$

holds almost everywhere on Ω , where (k_1, \ldots, k_n) is an arbitrary sequence of integers with $k_1 < \cdots < k_p$. Then, except for a set of $m \otimes \mu$ -measure zero, the limit

$$\lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} f(k, \omega)(x)}{\sum_{k=0}^{n-1} g(k, \omega)(x)}$$

exists and is finite.

In conclusion we note that Theorem 4 and Theorem 5 extend both Gladysz's theorems [8] and Tsurumi's theorem [9] which generalizes Doob's theorem [2] and Hopf's theorem [3].

Corollary 2. Let $\{T(n, \omega) : n \ge 0\}$ be a (ω, x) -measurable discrete quasi semigroup of endomorphisms of X with respect to $\{S_n: n \ge 0\}$. If m is finite, then for any $f \in L_1(X)$ and a positive measurable function g defined on X with $\sum_{k=0}^{\infty} g(T(k, \omega) x) = \infty$ 10 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 22

for almost all $(\omega, x) \in \Omega \otimes X$, the limit

$$\lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} f(T(k, \omega) x)}{\sum_{k=0}^{n-1} g(T(k, \omega) x)}$$

exists and is finite almost everywhere on $\Omega \otimes X$.

References

- 1. Kin, E.: The general random ergodic theorem. I. Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 120-135 (1972).
- 2. Doob, J.L.: The law of large numbers of continuous stochastic processes. Duke Math. J. 6, 290-306, (1940).
- 3. Hopf, E.: Ergodentheorie. Berlin: Springer 1937.
- 4. Halmos, P.: An ergodic theorem. Proc. Nat. Acad. Sci. U.S.A., 32, 156-161 (1946).
- 5. Dowker, Y. N.: A new proof of the general ergodic theorem. Acta Szeged 12, 162-166 (1950).
- 6. Anzai, H.: Mixing up property of Brownian motion. Osaka Math. J. 2, 1, 51-58 (1950).
- 7. Khintchine, A.: Zu Birkhoffs Lösung des Ergodenproblems. Math. Ann. 107, 485-488 (1933).
- 8. Gladysz, S.: Ein ergodischer Satz. Studia Math. 15, 148-157 (1956).
- 9. Tsurumi, S.: On general ergodic theorems. Tôhoku Math. J. 6, 264-273 (1954).

Eijun Kin Department of Mathematics Tokyo Metropolitan University Setagaya, Tokyo, Japan

(Received May 20, 1971)

144