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The General Random Ergodic Theorem. II 

Eijun Kin 

w 1. Introduction 

The present paper continues the investigations of "The general random 
ergodic theorem I ' ,  and the following problem is considered: 

Suppose (f2, N, m) and (X, Z, #) are two o-finite measure spaces, and {f(t, co)(x)} 
and {g(t, co)(x)} are two (t, co, x)-measurable families of functions defined on X. 
Then we can ask under what conditions there exists a function F*(co, x) in 
LI(f2 |  ) such that 

T 

y f(t, co)(x) dt 
0 
T 

J g(t, co)(x) dt 
0 

converges (as T ~  oo) to the function F*(co, x) almost everywhere on ~ |  

The problem analogous to a continuous case arises for discrete families of 
measurable functions. 

In w 2 we state the general random ergodic theorems for a continuous para- 
meter case in connection with this question, of which proofs appear in w 3. In w 4 
we shall indicate similar results in a discrete parameter case. 

The idea of the proofs, which appeal to the representation into an infinite 
product space, is due to the author [1] being a slight modification of the method 
given by Doob [2]. 

w 2. The Continuous Case 

Let (f2, ~ ,  m) and (X, 2, #) be two a-finite measure spaces and {St: t>0} a 
measurable non-singular semi-flow on (f2, ~ ,  m). We recall that, by virtue of the 
non-singularity and the group property of {St}, there exists a family {fl(t, co)} of 
positive integrable functions such that, by the Radon-Nikodym theorem, 

m(S~A)= j fl(t, co) elm 
for any A e ~ ,  and A 

co)=/3(t, co)/3(s, s co) 

for almost all coe~, and that if we take {S~} to be measure preserving, the density 
function fl(t, co) is identically equal to one. Throughout this paper, we shall restrict 
ourselves to real valued functions, and further, unless otherwise stated, p will be an 
arbitrary positive integer and each Ek (k= 1, 2,...) will be a 1-dimensional Borel 
set. 
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The following theorem, a continuous analogue of the generalization of Hopt's 
theorem [3] proved by Halmos [4] and Dowker [5], plays an essential role in 
our present paper. 

Theorem 1. Let f(co) be an integrable function on (2 and g(co) a non-negative 
measurable function on f2 satisfying 

Ct3 

~ g(St co) ~ (t, co) d t=  o~ 
0 

almost everywhere on (2. Then the limit 

T 

f (S, co) fi (t, co) dt 
lim o 

S g (s, co)/~ (t, co) d t 
0 

exists and is f inite almost everywhere on (2. 

Now suppose f =  { f ( t ,  co)(x): t>O} and g = {g(t, co)(x): t_>O} are two (t, co, x)- 
measurable families of functions defined on X. We consider the mapping It(:, g) 

+ + 

from Q |  to ( | 1 7 4 1 7 4  1 defined by 

H<:, ~) (co, x) = (0, a) 

it(O) = f ( t ,  co)(x), rh(a)=g( t  , co)(x) 

where ~,(0) and tlt(q ) are the t-coordinate functions of 0 and a respectively, and 
+ 

consider the shift transformation semi-group {Qt: t > 0} on (| Rt) 2 defined by 

Q,((0o, aO: u___0)=((0,+,, ao+t): u~O). 

By ~,w(:, g) we stand for the a-field generated by all finite unions of sets of the form: 
for every sequence (t 1 . . . .  , t,) with 0 < t  1 < -.. < tn<  m, 

((0, a): ~t, (0) @ E l , . . .  , ~t, (0) e Ep,  rlq (a) e Ep + 1 , ' " ,  rltp (a) e E 2 p}, 

and put, for any a e Y(f, g), 

;.(:,. (A) = m | ~ (H(-~)~ A). 

Obviously {Qt} is 5~~ g)-measurable. Moreover, for a function h (co)fixed in L 1 (~), 

we consider the mapping 171 h from f2 to ( 8  R~) given by/7 h co = 0, where ~, (0) = h (t, co), 
h (t, co) = h (S t co) and denote by sr h the q-field generated by all finite unions of sets 
of the form: for any sequence (q . . . .  ,t,) of non-negative real numbers with 
t 1 < . . .  < tn, 

{0: ~t~(O)~E~ . . . . .  ~,~ (0)eEp} 

and define ~h (B) = m (H~ ~ B) for any B e.Jh. 

+ 

1 | @Rt,  R t = ( - o o ,  oo). 
t_->0 
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We say that  the pair (f, g) of two families has the property A if for any A e s176 ' g), 
there exists a positive constant  K such that  2(or ' g)(Q/-1 A)<___ K . 2 ( I  ' g)(A) for any t 
with t >_-0, and that the pair (f, g) has the property B if for any A e ~(I,  g) with 
2~:, ~) (A) > O, 1 r 

liTm_,~f T 0 ~ 2(i, g)(Q/- 1A)d t>O.  

Then our main result reads as follows: 

Theorem 2. Let f =  { f ( t ,  co)(x): t>0}  and g =  {g(t, e))(x): t>0}  be two (t, co, x)- 
measurable families of  functions defined o n X  satisfying that 

(i) f (0,  o)) (x) belongs to Lj ((2 | X), 

(ii) for almost all (o~,x)e~?| g(t,o~)(x) is positive for any t>=O and 
or) 

g(t, o)(x) d t=  oo, 
0 

(iii) the pair (f, g) has the properties A and B. 

Then there exists a null set N in f~ such that, for any o~ e f 2 - N ,  the limit 
T 

I f ( t ,  oo)(x) dt 
lira o 

T--* o0 

S g(t, at 
0 

exists and is finite for almost all x e X .  

In case the measures m and /~ are finite, take {St: - o o < t < o o }  to be a 
measurable non-singular flow and consider the product  set ( |  R , ) |  R~), where 
| R t = | Rt, Rt = ( -  oo, oo). Then we have the following 

- - o O < t < 0 0  

Theorem 3. Suppose { f ( t ,  ~o)(x): - oo < t < oo} and {g(t, co)(x): - m < t < m} 
are two (t, ~o, x)-measurable families of functions defined on X satisfying that 

(i) f(0,  o~)(x) belongs to LI(~? | X), 

(ii) g(t, co)(x) is positive for almost all (co, x ) e f 2 |  and for any t, and 

(iii) there exists a positive constant K such that 

1 r 
lim sup --~ 5/~ {x: f (t, + t, co) (x) E E, , ... , f (tp + t, e)) (x) e Ep, 

T - - . m  I 0 

g (q + t, ~o) (x)e E v + 1 , ' " ,  g (tv + t, o~) (x) e E 2 v} fi ( -  t, coo) d t 

K .  tt {x: f (tl , oo)(x)e E1, . .. , f ( t v, co)(x)e E v, 

g(tl,  o))(x)~Ev+l, .. . ,  g(t v, co)(x)~ E2p} 

holds almost everywhere on f2, where (tx,.. .  , re) is an arbitrary sequence of real 
numbers with t~ < ... < tp. Then, except for a set of m| zero, the limit 

T 

f ( t ,  co)(x) dt 
lira o 

T ~ o 0  

i g(t, eo)(x)dt 
exists and is finite, o 
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Remark. Note that Theorem 2 extends Theorem 4 obtained by the author in 
[1] which generalizes Doob's ergodic theorem [2] and that Theorem 3 extends 
Theorem 1 obtained by the author in the same paper. 

The following corollary together with Theorem 1 generalizes Anzai's theorem 
[6] and Hopf's ergodic theorem [3] which extends Birkhoff-Khintchine's theo- 
rem [7]. 

Corollary 1. Let { T(t, co)x: t >= O} be a (t, co, x)-measurable quasi semi-group of 
endomorphisms of X with respect to {St: t>O}. I f  m is finite, then for any f e L l ( X  ) 

oo 

and a positive measurable function g defined on X with ~ g(T(t, co)x)dt= o~ 
m | p-almost everywhere, the average o 

T 

~ f(T(t ,  co) x)dt  
0 

T 

g(r(t ,  co) x) dt 
0 

converges (as T--~ co) to a finite function almost everywhere on Y2 | X. 

w 3. Proofs of Theorems 

The proof of Theorem 1 depends essentially on the following lemmas which 
are the continuous analogues of those given by Dowker [-5]. 

Lemma 1. Let u(t) be a real valued measurable function defined on [0, ~ )  and 
T any fixed positive real number. Suppose 

r 

sup ju(t+s)dt>=O 
O < r < T  0 

for any non-negative real number s. Then 

v v + T  

~u(t)dt+ ~ (u(t)) + dt>=O 
0 v 

for any positive real number v, where (u(t)) + = max (u(t), 0). 

Lemma 2. Let f(oo) be a measurable function defined on f2 such that either the 
positive part or the negative part is integrable. I f  we put 

E(cO=~co: sup ~f(Stco) fl(t, co) dt>=O 
( o < v__.~ 

for an arbitrary positive rational number a, then 

f(o)) dm >= O. 
E(a)  

In this time, the proof of Theorem 1 can be easily proved by the same manner 
as used by Halmos I-4]. 

Proof of Theorem 2. We shall establish the proof by returning to Theorem 1 
in which {St: t >= 0} is considered a measurable semi-flow. 



140 E. Kin: 

Let (f, g) be the pair given in the theorem and h(co) belong to L1(~2 ). We define 
+ + + + 3 the mapping q~ of Q |  into ( | 1 7 4 1 7 4 1 7 4 1 7 4  ( |  follows: 

q~ (co, x) = (z, 0, a), where (t (z) = h (S t co), it (0) = f ( t ,  co) (x) and r/t (a) = g (t, co)(x), and 
+ 3 consider the shift transformation semi-group {Zt: t_>0} on (| given by 

Z,((z,, 0,, a,): u__>0)=((~,+,, 0,+,, a,+,): u__>0). 

Furthermore, we denote by 5q the a-field generated by all finite unions of sets of 
the form 

{(z, 0, a): ~tl(r)eE1, ..., (~p(r)eEp, ~,~(O)zEv+l,.. . ,  Gp(O)eE2v, 

. . . ,  

and put ~(A)=m@#(~o -1 A) for any AEY. Clearly {Zt} is ~-measurable  and 2 
is a a-finite measure which is not necessarily invariant under {Zt}. The following 
three lemmas contribute essentially to the proof of the theorem. 

Lemma 3. 1 ~ {Zt} is non-singular with respect to 2. 

2 ~ There exists such a positive constant K as for any A ~  with 2(A)>0, 

0< l im  sup 2 ( Z i - I A ) d t < K . 2 ( A ) .  
T ~ o o  1 0 

Proof. Cf. [1], Lemma 4. 

From Lemma 3 we have 

Lemma 4. There exists a a-finite measure v on 5f  satisfying 

(i) v ( A ) < K  2 2(A) for A~5r  

(ii) v is equivalent to 2, and 

(iii) v is invariant under {Zt}. 

Proof. Cf. [1], Lemma 5. 

Lemma 5. I f  �9 is an arbitrary 3 p-dimensional Borel function, then 

. . . ,  r  . . . ,  . . . ,  0 ,  a )  
(| Rt) a 

= ~ ~(h( t l ,  co), .. . ,  h(tp, co),f(t  1, co)(x),... , f ( t  v, co)(x), 
f~| 

g(t, co)(x), ..., g(t, co) (x)) dm| x) 

where h (ti, co) = (t~ (z), f ( t i ,  co) (x) = ~t~ (0) and g (ti, co)(x) = th~ (a) (1 <= i N p). 

Proof. Cf. [1], Lemma 2. 

Let us continue the proof of the theorem. 
Notice that Lemma 4 implies that {Zt} is a measurable semi-flow on 

+ 3 ((| , 2~, v). In order to apply Theorem 1 to {Zt}, we consider the functions ~(01) 
and ~(o 2) given by 

O(ol)(z, 0, a)=40(0) and O(o2)(z, 0, a)=IIo(a). 
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Then, for any t >_-0, 
0(O o, o)) = o, 

and 
0(o2)(Zt(z, 0, ~))= 012)(z, 0, ~). 

In view of Lemma 4, Lemma 5 and the conditions (i), (ii) in the theorem, we see 
that t)(o 1) is v-integrable, 0(o 2) is positive and 

00 

+ 3 0(o2)(Zt(r, 0, a)) dr=  oo for almost all (z, O, a ) e ( |  . 
o 

Thus, from Theorem 1, it follows that the limit 

T 

S 0(old(z,( 0, o))dt 
lira o 

T r ~ o o  

0, dt 
0 

+ 3 exists and is finite v-almost everywhere on ( |  . Again, by L e m m a 4  and 
Lemma 5, we come to the desired conclusion. 

Proof  o f  Theorem 3. In the sequel, we make use of the mapping and the Y-  
measurable shift t ransformation group {Zt: - o o  < t <  oo} as in the proof of the 
preceding theorem. 

The following lemmas stand by the proof of the theorem. 

Lemma 6. For the constant K given in the theorem, it follows that 

1 r 
lim sup %- ~ m | # {(co, x): h (t 1 + t, co) ~ E l , . . .  , h (tp + t, co) ~ Ep, 

T ~ c o  I 0 

f ( t  I + t, co)(x)e E;+~, . . . ,  f ( tp  + t, co)(x)eE2p , 

g(t  I +t ,  co)(x)eE2v+l , . . . ,  g(tp + t, co)(x)eE3; } dt 

_-<K. m |  {co, x): h(tl ,  co)eEl,  . . . ,  h(t p, co)e Ep, f ( t l ,  co)(x)eEp+ 1 . . . .  

f ( tp, co)(x)E E2 p , g(tl, co)(x)e E2p+ l, . .. , g(tp, co)(x)e Eap}, 

where (t I . . . .  , tp) is an arbitrary f ini te  sequence o f  real numbers with t 1 < . . .  < t v. 

Proof  Cf. [1], Lemma 1. 

This lemma yields the next 

Lemma 7. 1 ~ For the constant K in Lemma 6, and for any A~5~,  

1 r 
lim sup ~-  o~ 2(Z; -~ A ) d t <  K 2(A).  

2 ~ There exists a f ini te  measure v on s such that 

(i) v ( A ) < K 2 ( A )  for  A ~ ,  ~ ,  

(ii) v is invariant under {Zt} , and 

(iii) v (A) = 2 (A) 

for  any {Zt}-invariant set A e ~,L~. 
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Proof Cf. [1], Lemma 3. 

To establish the proof of the theorem, consider the functions ~(Ol) and ~(O2) 
given by 

O~ ) (z, 0, a) = ~o (0) and 0(o 2) (r, 0, a) = t/o (a). 

Then we have, for any t, 

G" (z, (~, 0, ~)) = 011~ (~, 0, ~) 
and 

0~o 2) (Z,(z, 0, ~))= 0~ ~ (z, 0, o). 

Since Lemma 7 implies that {Zt} is a measurable flow, according to Lemma 5, 
Lemma 7 and the conditions (i), (ii) in the theorem, one can easily verify that 0~ ~ 
is v-integrable, ~9(O 2) is positive and 

o0 

I G~)(z,( ~, o, o))at = oo 
0 

for almost all (z, 0, a)~( |  Rt) 3 (see Hopf [3-1). Accordingly, by Theorem 1, the limit 

T 

I 0 ~ ( z , (  ~, 0, o)) a t  

lim o 
T 

I G2)(z,( ~, 0, o))dt 
0 

T ~  oo 

exists and is finite v-almost everywhere on (| R,) 3, so that the desired conclusion 
follows from Lemma 5 and Lemma 7. 

w 4. The Discrete Case 

In this section, we shall state similar results in a discrete case as in a continuous 
case. 

Let {S,: n>0} be a non-singular discrete semi-flow on (~2, ~ ,  m). Then, by 
the non-singularity and the group property of {S,}, there exists a family {fl(n, co)} 
of multiplicative density functions with respect to {S,} (see w 2). Here we need the 
following lemma due to E. Hopf (cf. [3, 4, 5]). 

Lemma 8. Let f ( @  be an integrable function on f2 and g(~o) a non-negative 

measurable function on Q with ~ g(SkCO)= oO for almost all o~f2, where {Sn} is 
k = O  

measure preserving. Then the limit 

n--1 

lim k= o 
. - - 1  

.4 ~ F, g(& ~) 
k = 0  

exists and is finite almost everywhere on f2. 



The General Random Ergodic Theorem. II 143 

Owing to this lemma, Theorem 2 becomes 

Theorem 4. Let f =  {f(n, co)(x): n>0} and g = {g(n, co)(x): n>0} be two (co, x)- 
measurable families of functions defined on X satisfying that 

(i) f(0, co)(x) belongs to L~(f2| 

(ii) g(n, co)(x) is positive for each n>O and ~ g(k, co)(x)=oo for almost all 
(co, x)~t2| X, k=o 

(iii) the pair (f, g) has the properties A and B (see w 2). 

Then, except for a set of m|  zero, 

n - 1  

f (k, co)(x) 
lira k =  0 

n--1 
n ~  oo ~,, g ( ] s  c o ) ( X )  

k=O 

exists and is finite. 

In case m and # are finite, Theorem 3 becomes 

Theorem 5. Suppose {f(n, co)(x): n=0,  4-1,...} and {g(n, co)(x): n=0,  _ 1,...} 
are two (co, x)-measurable families of functions defined on X satisfying 

(i) f(0, co) (x) belongs to L~ (f2 | X), 

(ii) g(n, co)(x) is positive for each n and for almost all (co, x )e f2 |  
(iii) there exists a positive constant K such that 

1 n--1 

lim sup - -  ~ r {x: f ( k  1 + k, e))(x)~E 1 . . . .  , f(kp + k, co)(x)~Ep, 
n ~ m  n R = O  

g(k 1 + k, co)(x)eEp+ 1 . . . .  , g(kp + k, co) (x) eE2p I �9 fi( - k, co) 

< K .  ~ {x: f ( lq ,  co)(x)eE1,..., f(kp, co)(x)eEp, 

g(k 1, co)(x)e Ep+ ~ . . . . .  g(kp, co)(x)sE2~} 

holds almost everywhere on f2, where (k I . . . . .  kp) is an arbitrary sequence of  integers 
with kl<.. .  < kp. Then, except for a set of re| zero, the limit 

n - 1  

f (k, co)(x) 
lira k=0 

tl--1 n~oO 
Y~ g(k, co)(x) 

exists and is finite, k= o 

In conclusion we note that Theorem 4 and Theorem 5 extend both Gladysz's 
theorems [8] and Tsurumi's theorem [93 which generalizes Doob's theorem [2] 
and Hopfs  theorem [33. 

Corollary2. Let {T(n, co)x: n=>0} be a (co, x)-measurable discrete quasi semi- 
group of endomorphisms of X with respect to {S,: n => 0}. I f  m is finite, then for any 

f ~LI (X  ) and a positive measurable function g defined on X with ~, g(T(k, co) x)= oo 
k=O 

10 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 22 
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for almost all (co, x)6Q| X, the limit 

2 f (r(k ,  co) x) 
lim k= o 

n-1 
,~o~ E g(T(k, co) x) 

k=O 

exists and is finite almost everywhere on f2 | X. 
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