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Introduction 

In this paper we want to relate two different aspects of diffusion theory, the 
probabilistic and the physical, deterministic aspect. In both the diffusion or 

d# , ,  
forward equation ~-=~a # for the density p is basic. (A is the generator and 

its adjoint A* the Fokker-Planck operator.) In the probabilistic theory one 
studies the random motion of an individual particle and # is interpreted as the 
probability density for its position in space. In the physical theory one studies 
a "gas" of particles and # is interpreted as the actual density of particles in space. 
The former is a non-random quantity, but if the particles of the gas move 
randomly the latter is a random quantity, and one can ask in what sense they 
are related. The physicists explanation is that in physics there are in general 
many particles even in an "infinitesimal" volume, so in some sense the density 
is large and by some law of large numbers its fluctuations ought to be small, 
so it can be well approximated by its average which is given by the probability 
density. 

Here we consider the simplest possible system where this question can be 
rigorously studied, namely the gas consists of non-interacting particles and the 
motion of each individual one is Markovian and defined by the generator A. 
At any time the particles form a Poisson system in space with a density determined 
by the forward equation. In order to obtain a situation where the density is 
large we take the density as p.  p, where # is fixed and p ~ oe. It is then straight- 
forwardly shown that the actual random particle density divided by p converges 
in probability to the non-random density # which is given by the forward 
equation. This is the law of large numbers for the system. We can also go further 
and study the fluctuations around equilibrium suitably scaled by l /p in the 
limit p ~ oe. A central limit is proved saying that these fluctuations are in the 
limit distributed as a certain Gaussian random density field. 

The physical theory of fluctuations in continuous media gives a prescription 
for how this random field g(t, x) can be constructed as follows [2, 5]: Since the 
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random particle density evolves in a Markovian way, and the average motion 
is that determined by the forward equation one makes the Ansatz that g(t, x) 
is a Gauss-Markov process determined by the generalized Langevin equation 

~ = A * g + w  by adding the equation a white noise w(t, x). obtained in forward 

The correlations of this noise are uniquely determined by the requirement that 
the correlations of g at any fixed time should have values which are obtained 
directly from the limit of the Poisson distribution in space at any time: 

(g(x, t) g(y, t)) = ~(x) ~ ( x -  y)-- Q*(x, y). 

The relation between the correlations of g, Qg, and those of w, Q*, is obtained 
by solving the equation for g: 

t 

g(t)= ~ ea*Ct-S)w(s)ds 
- o o  

and taking averages: 
o0 

Qg= ~ ea 'Q w e a' dt. 
0 

This equation can then be solved for Qw giving the so called fluctuation-dissipation 
relation: QW = _ (A* Q* + Q*A). 

It is shown how the random field g (t, x) can rigorously be constructed within 
the theory of random Schwartz distributions. I.e. only smeared averages 
X(t, ~0)---"~ g (t, x) (p (x) dx" are considered for nice test functions q~. We construct 
a random process X(t, .) whose values are tempered distributions and show 
that it is a Gauss-Markov process which in an appropriate sense is a solution 
of the above Langevin equation, so that the heuristic theory can be justified 
mathematically. It is also shown that the process X(t, .) can be taken to have 
continuous trajectories with probability one. It can hence be regarded as an 
infinite dimensional diffusion process, and the reason that it can be constructed 
without too much difficulty is the fact that it is defined by a linear Langevin 
equation and therefore Gaussian, and the difficulties encountered e.g. in quantum 
field theory in constructing non Gaussian generalized random fields need not 
be overcome. Finally we explicitly treat some typical cases of physical interest. 
It is not necessary to assume that the Markov motion of the individual particles 
is actually a diffusion. It can be allowed to be a Markov process of quite general 
type. 

We have only considered the case of completely non-interacting particles. 
It is an interesting problem to derive similar limit theorems in the more realistic 
situation when the particles interact. In [6] this problem is discussed for some 
simplified models in kinetic theory with a non-linear Boltzmann equation for 
the average density. 

1. Construction of a Poisson System of Independent Markovian Particles 

We assume that the Markov process describing the motion of each individual 
particle is defined by known transition probabilities P(t,x,  dy), t>=O, x , y ~ R  a. 
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The state space 22 is hence R e. They define for each xe22 a measure Px on the 
space of paths x(t), 0__<t< 1, f20= C[0, 1] or D[0, 1] depending on whether the 
particles move continuously or can jump. Px is defined on the a-algebra of Borel 
sets in (2 o an d Px (x (0)= x )=  1. Since we want to consider a system in equilibrium 
we assume that there is also an invariant measure # on 22 (finite on compact 
subsets of 2; and hence a-finite). 

We want to construct the Poisson process of independent particles moving 
according t o P(t, x, dy) and having at any time a Poisson distribution in 22 with 
density #. It is technically convenient to do this by considering the path space 
f 2 = C ( - o o ,  oo) or D ( - o o ,  oo) of an individual particle equipped with the 
measure v generated by # and the transition probabilities and then constructing 
a Poisson system in ~2 with density v. In this way all particle distributions in 22 
corresponding to different times are constructed simultaneously and basic 
properties such as the invariance of the Poisson property in time are seen very 
easily. 

Let us first construct the measure v on (2. If #(I;) is infinite partition Z into 

~) 22j with #(Z)  finite and {22j} disjoint. For  each j construct v~ on 
1 

CX3 OO OO 

X C[n,n+ l] or X D[n,n+ l]= X f2 n 
- -  o ~  - - o 0  - - o 0  

from cylinder probabilities obtained by joining the paths x(t, con), o),~f2 n, 
n ___ t_< n + 1, giving x (t) the distribution # for t sufficiently negative, and restricting 
x(0) to 2;j. I.e. if C is a cylinder with base A m x ... x A n with Ai measurable c Q  i 
for m<_i<_n and m=<0, n__>0 put 

u(dx) . . . .  
(AM x-..  x A,d n {x(0)e~j} 

These cylinder probabilities are consistent and have finite total mass: 

oO 

Hence, since the g2, are Polish spaces, the extension theorem [8] tells us that 
oO 

they have a unique extension to a measure on X f2n equipped with the product 
- - o O  

a-algebra. When O ,=  C[n, n+ 1] the set of paths which are continuous also 
oO 

when t is an integer has full measure, so vj is indeed a measure on (2c X ~2,. 
- - o O  

If we finally put v - - ~  vj we get the desired (a-finite) measure on f2 having the 
J 

property that v(x(t)eA)=#(A) for every t. This also shows that v is finite on 
compact sets K c O ,  because Ko, the image of K under the mapping co ~ x(0, co) 
is bounded, so that v (K)__< v (x (0) e Ko) = # (Ko) < oo. 

On the measure space (~2, d )  and with the measures v i just constructed we 
can now build a Poisson process with density v using the procedure described e.g. 
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in [9]: For each j take a copy of the space U f2", (O" = f2 x .-. x f2, n times), 
'- o 

eqdipped with the a-algebra of sets A such that A n f2"~r for all n (~r product 
a-algebra a '  x ... x ~r Each point in the space can hence be specified as 
(co~, . . . ,c%) with N > 0  and e)ief2. Le t Pj be the probability measure on this 
space describing a Poisson process with density vj: 

_x~ e-~Ao_.~ ) ,, 
' P J - ~  n! v~. 

I.e. the restriction 0fPj to fP is proportional to the product measure vy = vj x ..- x vj. 
Finally construct the Poisson process with density v by taking together the 
independent processes defined by the Pj, i.e. define it by P, the infinite product 
of th e P~ on the product, H, of the spaces just considered equipped with the 
product a-algebra ~.  A point o f / /  can hence be specified as a double array 
n = {coj,., j = 1, 2 . . . .  ; n = 1, ..., Nj} describing a configuration of points in f2, and 
the measure is defined by the recipie: For each j > 1 let Nj be independent Poisson 
variables with averages vj(O). When the Nj are fixed, for each j the coj, 1,. . . ,  c~ 
are chosen independently in O according to the probability measure 

vj(d@ 
vj(O) ' 

and the random configuration in g2 is specified by rc = {o)j,,}. The fact that P 
describes a Poisson process with density v is seen as follows: 

L e m m a l .  (Compare [9].) For any q)eLl(f2,d,v), rc={coj,,} put S(q~,n)= 
q)(coj, ,). Then E(e i~ =exp  ~ (e i~176176 - 1) v(do)). In particular, if for any Ae~[ 

j,n 

with v(A)< oo we put S(A, n)= S(ZA, n) then for any finite family of such sets 
{At} {S(Ai) } are independent Poisson variables with averages v(Ai). 

Proof Put first Sj(q~, re)= ~ q~ (o)j, .). Then 
n 

E (e i~ ~ e-~Jm) ( t ' n V  ,~ e i~176 vj(de))" = exp ~ (e i~ 1) vi(d@. 

The Sj(q0 are independent, and S(q~)=~Sj(q~). The sum converges a.s. inde- 
J 

pendently of the order of the terms if ~ IE(ei~ - 1[ converges uniformly on 
J 

every interval [Ol<Z [1]. Using the fact that l eZ- l l< lz l  when Rez<O we see 
that the above series is majorized by ~ S I ei~176 - 11 vj(do))< 101S Iq~(co)L v(d@, so 

J 
it is in fact uniformly convergent. The characteristic function of S(q~) is then 

at) 

1-[ E (e i~ = exp ~ (e i~176 1) v (de)). 
1 

The average of S(rp) and the covariance of S((p0 and S(q?2) are  obtained 
directly from Lemma 1 by considering also q~o = tl qh + t2 q~2: 
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Corollary 1. For r q~l, q~2 6 Ll ( (2, d ,  v) 

= (co) v(d ) 

C o v  (S ((Pl) S ((P2)) = ~ q)l (co) (/)2 (co) • ( d o ) .  

The Poisson process just constructed we can now take as the description of 
a system of independent Markovian particles moving in S according t o P(t, x, dy) 
and distributed in S according to #, because of the following facts: 

Lemma 2. For any t the points x(t,  coj,,) form a Poisson system in S with 
density #, i.e. for any q~s Ll(Z, 12) putting 

S (t, r re) = S (r (x (t,"))) = ~ S (q~ (x (t, co j, ~))) 
j ,  n 

we have 

E(eiOS(t, 9))= exp ~ (e i~ 1) #(dx).  

Proof  This follows immediately from Lemma 1 and the fact that 

(ei0,,(~(,, ,o))_ 1) v (dco)= ~ (e i~ 1) p (dx) for all t. 

In order to express the Markov property of the evolution of these Poisson 
systems in 2; let ~r c d be the a-algebra generated by the variables x(s, 09) 
with t 1 < s < t 2 , and ~tl, ,2 = ~ the one generated by the random variables S(~o, re) 
with q~LX(f2, ~r v). We then have the following Markov property: 

Lemma3.  For t > u  and q~6Ll(O,~c.,,,v) we have E(S(qO]~,)=S(u,  qY) with 
q~'(x) = ~ P,, ~(dco) q~ (co). (P,, ~ is the measure on (0, d , ,  ~o) generated by the transition 
probabilities and the initial condition x(u)=x.)  Hence E(S(q~)I~,) depends only 
on the Poisson system in Z at time u and not on its previous values. 

Proof  Take any O~LI(O, ~r v). As in Corollary 1 we have 

E(e iOs(qO S(qg))= ~ e i~162176 ~,o(co) v(do) . exp ~ (e i~162162176 1) v(dco), 

and by Markov property of v this is equal to 

e i~176 q~'(x, u, co)) v(dco), exp ~ (e i~176 1) v(dco)=E(ei~176 q~')). 
n 

For any finite family ~1 . . . . .  ~, we can take r = ~ 0 i Oj and conclude that 
1 n i~ojs(r 

E(e  ' = 0 

for all values of 01 . . . . .  0,, so by the uniqueness theorem for characteristic 
functions 

E(za(S(cp)-S(u,  q~')))=0 for any A ~ ,  

depending only on S(Ol) . . . . .  S(~k,). Such sets generate ~ , ,  and 

S (u, (p')~L~(FI, ~ . ,  P), 

so it is indeed equal to E(S((o)[~). 
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Remark. If we want to consider a non-stationary system where the particles 
form a Poisson system with an arbitrary density # at time zero and then move 
according to P(t, x, dy) we can use the same construction with t?=  C[0, oo) 
or D [0, oo) and v generated by P(t, x, dy) and # as initial measure. In this case 
the particles at time t form a Poisson system with density 

# (t, dy)= ~ # (dx)P(t,  x, dy). 

2. Limit Theorems when the Density is Large 

We now look at the situation when the density becomes large and consider a 
family of Poisson systems defined by P(t, x, dy) and p .  #, where # is a stationary 
(or initial) measure and p ~ oo. The measure on Q is hence p .  v with v generated 
by # and the transition probabilities. (Eo(.) denotes exception with respect to 
this measure, and E (.) = E 1 (').) 

We first prove the law of large numbers: 

Theorem 1. For any q9 ~ L 1 ( f2, ~r v) and ~ > 0 

l i m p  ~ ([ p-1S (q~) - E (S ((o)) [ > ~) = O. 

I.e. the random configuration in 0 defined by p - l  S(~p)=p-X ~,q~(oi,,) converges 
j ,  n 

to the non-random distribution defined by v: E (S (q~)) = ~ @ (o) v (do). In particular 
in the non-stationary situation p - i  S (t, q~) converges to E (S (t, (p)) = ~ # (t, dx) (p (x) 
for any q~ e I2(S, #(t)), i.e. the random configuration in S at time t converges to 
the non-random distribution defined by #(t, dy)= ~ #(dx) P(t, x, dy). 

Proof By Lemma 1 

Ep(e i~ = exp ~ (e i~176176176 - 1) p v (do) 

e iOp-l'o(~ 1 -- i 0 p-1 (p(o) 
= exp(i OE (S(~o))) �9 exp ~ p-1 r (o) q~ (o) v(do) ,  

and by bounded convergence the last integral goes to zero as p--. 0% so the 
assertion follows from the continuity theorem for characteristic functions. 

We can now continue directly and prove a central limit theorem for the 
scaled fluctuations X o (q~) = p -  1/2 (S (~0) --  E (S ((p))), 

Theorem 2. For any q~Ll(g2, d ,  v)c3L2(O, d ,  v) the distribution of Xo(q~ ) 
converges weakly to a centered Gaussian with variance 

V(~o, ~o)-=Var(Xo(q))) = ~ ~0 z (co) v(do) as p --* oo, 

and hence for any finite such family q) l , . . . , q), the distribution of Xo(qh), . . . ,  Xp(q0,) 
converges weakly to a centered Gaussian with covariances 

v(~o~, %)= ~ ~0,(o) ~j(~o) ddo). 
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Proof  By Lemma 1 

Eo (e iOx o (~0)) = exp 5 (e i~176 1 - i 0 p -1/2 ~0 ((D)) p V (do) 

= e x p (  Oz V(~P,2 ~P!) 

e i~176  p-1/2 q~(m)+OZ(2p)-l q)2((~) 2.co. 
�9 exp5 p_lcpz(co) ~o t )v(dm),  

and as in the previous proof the last integral goes to zero, so that 

_ 02  V(~o, q,) 

lim E o (e i~ x. (~)) = e 2 
n 

Applying this result to q~ = ~  0 i ~0i we prove the last assertion�9 
1 

The central limit theorem for the fluctuations of the distribution in Z is 
obtained directly by considering S(t, ~p) in Theorem 2. For simplicity we only 
consider the stationary case in the following. 

Corollary 2. For any bounded q)~Ll(X, 12) put 

Xp (t, q~) = p - 1/2 (S (t, q~) -- E (S (t, cp))), 

then for any finite such family ~ol, ...,q~, and t l< . . .< t ,  the distribution o f  
X p ( tl , cp l ) . . . . .  X p ( t,, cp,) converges weakly to a centered Gaussian with covariances 

V(ti, ~ol; tj, cpj)--~ cPi(x)#(dx)n( t j - t i ,  x, dy)q~j(y) for  i< j .  

Also, for q~j(t, x) bounded e LI(Rl x Z, dt  x d12) the distribution o f  

Xp(q~j)=~Xp(t,q~j(t, .))dt,  j = l  . . . .  ,n 

converges weakly to a centered Gaussian with covariances 

V(q~i, 992)= ~ (~o i (s, x) q~j (t, y)+ q~j (s, x) q~i (t, y))12 (dx) n ( t -  s, x, dy) ds d t 
s < t  

if  these are finite. 

Proof  This follows directly from Theorem 2 and the Markov property of v: 

E (X. (ti, ~o,) X. (tj, %)) = S ~o, (x (t~, ~)) % (x (tj, ~)) v (do~) 

= ~ c p i ( x ) # ( d x ) P ( t j - t i , x ,  dy)q~j(y ) for t i< t  j. 

3. Construction of  the Gaussian Limit Random Field 
as a Generalized Stochastic Process 

We now want to construct a Gaussian random field X(t ,  ~p)="Sg(t, x)~o(x)dx"  
having the covariances V(t, ~Pl; rE, q~z) obtained for the fluctuations in Corollary 2 
and show that it has the properties prescribed by the physical theory mentioned 



2 1 2  A .  M a r t i n - L 6 f  

in the introduction. For t 1 = t 2 we see from the expression for V that formally 
E (g (t, x) g (t, y)) = # (x) 6 (x - y) if # has a density, so we can not hope to construct 
g(t, x) as an ordinary stochastic process but rather as a stochastic distribution 
as mentioned in the introduction. A convenient space which can carry such a 
generalized process is the space of tempered distributions 5 ~' dual to the Schwartz 
class 5e of test functions on Z which is widely used in analysis. Since 5 P is a 
nuclear space this allows us to make use of the theory of probability measures 
on the dual of a nuclear space for which the basic theorems concerning the 
construction of measures, characteristic functionals and their continuity theorems 
are well developed and reasonably simple [3]. 

Let us recall the basic facts about a nuclear space and how to construct a 
probability measure on its dual (Minlos theorem). To conform with the notation 
of [3] let q~d be the space ,9 ~ of infinitely differentiable testfunctions q~ on R e for 
which x p D~ ~0 are bounded for all multiindices p, q. 

V 
With the topology defined by the norms 

sup I xp D a q~l 
X 

Ipl, I~1 -< n 

or equivalently by the norms 

sup [~(xPDqq~)2dx]l/2 for n = 0 , 1 , 2 , . . .  
Iph Iql =< n 

this is a nuclear space [3]. (A simple direct proof of this fact is obtained by using 
the sequence of norms IIq~l[,= [~ (H" ~0) 2 dx] 1/2, n>O, which are equivalent to the 
others. Here H is the operator defined by H q~ = ]xl 2 ~0 - A q~ well known in quantum 

d 
mechanics, whose eigenvalues are 2p=y '  (2pi+1) for pi=O, 1, 2 . . . . .  K. It6 pri- 

1 
vate communication). The dual space 4~ is the space of tempered distributions 
in R e, which we consider as a measurable space (q~, cgd) with the e-algebra cg a 
generated by the cylinder sets C =  {X; X ~ ,  X(q~0, . . . ,  X(q~,)eA} for arbitrary 
finite families ~ol, ...,q~,~4~ a and arbitrary Borel sets AcR". The topology of 
~ is generated by the norms dual to those defining the topology of 4~n: IIXII_,= 

sup IX(~o)l. The norms IIq~ll, increase, i.e. IIq~lln < [1(011,+1 for n>0 ,  and hence 
il~il._-<i 
IlXll_._- > Ilxil_._l for n>0.  

Minlos theorem tells us that a probability measure on ( ~ ,  cgn) can be con- 
structed if its values for all cylinder sets are prescribed in a consistent way and the 
following continuity condition is fulfilled: The probability measures on R 1 defined 
by P~(A)=P(X(q~)~A) are weakly continuous when q~ varies in q~n. Alternatively 
the probability measure can be constructed from the characteristic functional 
F(q))=E(e ~xt~')) if it is a positive definite, continuous functional with F(0)=I .  
(These facts are proved in detail in [3].) In particular a Gaussian measure with 
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E (X(go))= 0, E (X(goa) X(go2) ) = V(q h,  q~2) and a characteristic functional 

_ v ( ~ ,  ~o) 
F(go)= e 2 

can be constructed if V(gol, go2) is any positive definite continuous bilinear form 
o n  a~d x a~d. 

These facts immediately allow us to construct the limit process as a generalized 
stochastic process in space-time. 

Theorem 3. The bilinear form o f  Corollary 2 

V(goi, go2) = ~ (gol(S, x) (o 2 (t, y) + go2 (s, x) go1 (t, y)) # (dx) P (s - t, x, dy) ds d t 
s<=t 

_ v ( q , ,  ~o) 

is continuous on 4)a+ i x q~a+i, and hence e 2 is the characteristic functional 
o f  a Gaussian measure P on (~d+l, odd+l), i.e. 

v (q,, ~) 

E(e~X(~))=e 2 

~(dx) 
/f S 1 + Ix[ q < oo for some q > 0 .  Also, for go~4)a+ i the distribution of  Xp(go) defines 

a measur e Po on (~'d+l, cdn+O with characteristic functional 

Fp (go) = exp ~ (e ip- ~/~ s ~ (t, x(,, o,)) d~_ 1 -- i p - i/2 ~ go (t, X (t, CO)) d t) p v (dco), 

and Pp converges weakly t o P as p ~ ~ .  

Proo f  The continui ty of V(go, go) follows from the estimate 

go (s, x) go (t, y) li (dx) P ( t -  s, x, d y) ds dt 
s < t  

#(dx)  ds dt 
< supt, y (1 + t2)[go (t, y)[ sups, ~ (1 + s 2) (1 + Ix [q)[go (s, x)[~ 1 + Ix  ]q 1 + s 2 1 + t z" 

_ v ( , p ,  ~) 
Hence e 2 is the characteristic functional of a Gaussian measure as required. 
F rom Lemma 2 with go (co) = ~ go (t, x (t, co)) dt follows that Fp (go) is equal to E o (e ix.(*)). 
It is continuous,  because 

[log Fp (go~) - log Fp (go2)[ < 2 P 1/2 ~ [goi( t, x(t,  co)) - go2 (t, x(t,  co))[ v(dco) at  

= 2 p  1/2 ~ [goi(t, X)--go2(t, x)l # ( d x ) d t  

#(dx)  dt 
< 2 p  1/z sup,,~ (1 + t2)(1 + Ix} q) Igol(t, x ) -  go2 (t, x)] ~ 1 + Ix] q 1 + t 2 '  

and is hence the characteristic functional of a measur  e Pp on (r cga+0. Since 
_V(q, (o) 

Fp(go)~e 2 for each go~d+l, .  P p ~ P  follows from the L6vy continuity 
theorem, which is valid for measures on the dual of a nuclear space [7]. (Only 
the convergence of Fv(go) for each go and the continuity of the limit is needed.) 

We can now construct a Gaussian process X(t ,  go) with go ~ q~a having the finite 
dimensional distributions obtained in Corollary 2 as the limits of those of X.  (t, go). 
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Theorem4. On ( ~ + l ,  qfd+l) there is a Gaussian process X(t) with values in 
( ~'d, ~a) and with covariances 

E(X(tl ,  go1) X(t2, go2))= V(tl, go1 ; t2, go2) = f go1(x) #(dx) P(t 2 - t 1, x, dy) go2 (Y) 

for tl<_t2, gol, go2eOa if A, the generator of P(t ,x,  dy), is defined on ~a and is 
continuous in the following sense: sup IAgo (x)l-<__ C ][go [[p for some p. 

Moreover, for some p P(lIX(t)ll_p< oo)--1 for all t. The distribution of X(t) 
is the G aussian measure on ( ~'d, c~a) with covariances E ( X ( 6 go l) X ( t, go 2) )= 

~(dx) 
~ go l(x) go 2 (x) #(dx) for each t. We still assume that ~ l + [ x l q < o o  for some q >_ O. 

Also, for go~qb a the distribution of Xp(t, go) defines a measure on (q~'a, cga) with 
characteristic functional 

exp ~ (e ip-'/2 ~(x)_ 1 - i p -t/2 go (x)) p . I~(dx), 

and this measure converges weakly to the Gaussian distribution of X (t) as p ~ oo. 

Proof We construct the random variable X(to, go) on (q~+l, cgd+l) as the limit 
of  X(go,) for some sequence go.(t, x)~qBa+ 1 converging to 6(t-to)go(x). Take e.g. 

t 2 

go,(t,x)=g,(t-to)go(x ) with g,( t )=(l / -2~a.)- le  --~" and a ,~0.  

Then 

(x(go")- x(go~))~ = E(x(go~- go~)~) 
= 2 I (g, ( s ) -  gm (s)) go (x)(g, ( t ) -  g,,(t)) go (y)/~ (dx) P ( t -  s, x, dy) ds d t. 

S ~ t  

Each term, e.g. 

~ go(x)#(dx) ~ g,(s)g,,(t)dsdt ~ n ( t - s , x ,  dy)go(y) 
s<=t 

converges to �89 ~ go2 (x) # (dx), because the innermost integral is continuous in t -  s. 
Hence X(go,) converges in mean square, and for some subsequence {n'} X(go,,) 
converges a.s. to some limit X(t  o, go), and because ~a is separable we can assume 
that this holds simultaneously for all go in a dense subset. For each n the functional 
go ~ X,(go)=X(g,.  go) is continuous on ~a and hence an element of ~ .  Hence if 
we can show that for some p sup ]1X, ][_p < oo a.s. we know that the X,, (go) converge 

for all goE q~a a.s., and then the limit X(to) is an element of q~, because ~ is weakly 
complete [3]. In this way we have constructed X(to) as a random variable on 
(~a+l, cga+l) with values in q~ and such that []X(to)II_p<oo a.s. as required. By 
the mean square convergence the distribution of any finite family X(t  1, go1),..., 
X(t , ,  go.) is the Gaussian one with covariances V(t i, goi; tj, goj) obtained by letting 
n --* oo as indicated above. The statements about Xp (t, go) follow as in Theorem 3. 

To show the boundedness of []X.[I_p for some p we need the following lemma 
whose proof is given afterwards. 

Lemma4.  I f  X has a Gaussian distribution on (q~'a, cga) with covariances 
E(X(gol)X(goz))=C(gol, go2), and if ~ C(goi, goi)--D<oo for some p-orthonormal 

i 
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sequence (i.e. (r (Pj)v = 6ij) then 
3R 2 

P([lXl[_p>R)<2e so 

We show that ~ I lX .+ l -X . l [_p<oe  and IjX1J[_p<oe a.s. for some p. 
1 

Sup I[X.[t_e will then be bounded a.s. Put Y . = X . + I - X  .. Then 
n 

c.(q~, ~o)-~(Y.~ (~o)) 

= 2  S (g.+ l(s)-g.(s))(g.+ l(t)-g.(t)) V(s, q~ ; t, rp) ds dt 
s ~ t  

�9 =2  S (g.+l(s)-g.(s))(g.+l(t)-g.(t))(V(s,~o; t, ~o)- V(0, q~; 0, (p))dsdt, 
s<=t 

so if we can show that ~[V(s,  rpi;t,q)~)-V(O, cpi;O,~o~)[<C'(t-s ) for some 

p-orthonormal sequence {cp~} we get 

C.(r ~o~)<2 C' ~ (g.+l(s)+g.(s))(g.+l(t)+g.(t))(t-s)ds d t<41/2  C' a.. 
i s<=t 

Then from Lemma 4 we can conclude that 

--(const) R~ 
p(ll y.II_p> R.)_~2e ~. 

and if we put R. = n-Z, a.  = n -5 e.g. Borel-Cantelli's lemma tells us that 

Z II Y, l l - ,<  ~ a.s. 
n 

The estimate for V can be derived as follows. For any transition semigroup T t 
on R n with generator A we have 

t 
( ~ - ~ ) ~ 0 =  ~ ~ A ~ 0 d s  

0 

if ~0 is in the domain of A. Hence 

l~--S I IV(s, q~; t, ~o) - v(o, ~o; 0, q~/I = I ~o (~) ~(dx) I, e(u, x, dy) A q,(y) du 
0 

< C ( t -  s)lifo lip, j" I~o (x)l ~(dx)< C'(t-s)II~oll~, 
if A is continuous in the sense postulated and p' is big enough. By the nuclearity 
of ~d for some p > p' there is a p-orthonormal sequence {q~} such that ~ II q~ll~, < o% 

and the estimate is hence valid. 
The a.s. boundedness of IIXlll_p follows from Lemma4  if p can be chosen 

so that D < ~ .  As in the proof of Theorem 3 it follows that E(X~(q~) 2) < const II q~ II~, 
for some p', and hence again by the nuclearity D < ~  for some p>_ ft. Since IlXll_p 
decreases as p increases the largest of the two p-values can be used. 

Proof of Lemma 4. Let S be the sphere {X; IIXll_p<R} and S N the sphere 
of radius R in R N. Let B be a cylinder set of the form B = {X; X(f~), ..., X(fN)eA } 
with f ~ d ,  i= 1 . . . .  , N and A a Borel set in R N. We can assume that ( f ,  fj)v=6~j. 
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Under the mapping X ~ ( X ( f l )  , . . . ,X( fn) )~R ~V S is mapped onto SN. Indeed, 
X e S implies 

x,X(y,) = x  xif, <_R 2 xif, =R2Xx , 
1 

N 

so putting xi=X(f~) we see that ~2 x~ < R  2. Conversely, let X i, i= 1,...,  N be such 
1 

that Xi(fj)=Sij and X i ( f ) = 0  if f is not in the linear hull of fl  . . . . .  fN. For any 
N 

(x 1 . . . .  , xN)e S N put X =  ~ x i X i. Then X is mapped onto (x 1 . . . .  , xN) , and for any f 
1 

N N 

with I[f[Ip=< 1 we have f = ~  c~ f i + f  with c~=(f, fi)v, ~ c~_-< 1 and X ( f ) = 0 ,  so 
N ] 1 1 

[X(f ) l<  ~ ci x i[ < R  and ItXII_v<R. Hence we can conclude that if B is disjoint 

from S then A is disjoint from SN, and 

\ 1  

The variables Xi=X(f i )  are Gaussian with E(Xi)=O, E(X~)= C(fi, f i)=di,  and 
N 

d-- ~ d i-< D. For any such family 
1 

P X ~ > R  2 <2e  8a 

N 
This can be seen as follows: By a rotation in R N which does not change ~ X~ 

1 

or d we can make the variables independent, so we need only consider that case. 
Then for each i: 

xZ[1 ~ 

E(eSX[)= ~ e d x = ( 1 - 2 s d i )  -1/2 if 2sd i< l  , 
d, 

and 
N 2 N 

E(eS~X')=~I(1--2sd~)-l/2<=(1--2sd)-l/2 if 2 s d < l  
1 

N N 

by the elementary inequality I - I (1 -a l )>  1 - ~  a i. We can then conclude that 
1 1 

so if we put 2s d=�88 we get the estimate above. Thus we see that 

3RE 

P(B)<2e  8o 

for any cylinder B_~ S ~, and it follows that the same bound holds for P (SO too. 
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We next want to show that the process X(t) is also Markovian and in an 
appropriate sense a solution of a stochastic differential equation corresponding 

dg ~, 
to the Langevin equation for the formal density g(t, x): ~d~=n g t w  with 

E (w (t, x) w (s, y)) = - 3 ( t -  s) (A* 6 ( x -  y) # (x) + 3 (x - y) # (x) A). 

If we multiply both sides by an arbitrary testfunction go(t, x)~#a+ 1 and integrate 
by parts formally, we see that the equation satisfied by X(go)= "S g(t,x)go(t,x)dtdx" 
and W(go) = "S w(t, x) go(t, x) dt dx" is: 

X ( ~ )  = X (A go) + W(go) 

and that the covariances of W are defined by 

E (W(qh) W(go2) ) = - ~ (gol(t, x) A (~ (t, x) + go2 (t, x) A gol(t, x)) dt #(dx). 

(That this is actually a positive definite form can be seen from the expression 

- 2 ~ go (x) A go (x) # (dx) = lira t-1 ~ Ex (go (x ( t ) ) -  go (x)) 2 # (dx).) 
z~.o 

It is now straighforward to verify that this equation holds for X(go). 

Theorem 5. I f  A is defined in #a and is continuous, then the random field X(go) 
m space-time satisfies the Langevin equation in the weak sense: 

where W(go) is a Gaussian random field in space-time with covariances 

E (w(gol) w(go2)) = - ~ (gol(t, x) A go2 it, x) + go2(t, x) A gol(t, xl) dt  #(dx).  

. Proof. Because A is assumed to be continuous the equation 

actually defines a Gaussian random field, and we only have to check that it has 
the above covariances. It is enough to check the case go1 = go2: 

~-Ago(s,x) #(dx)dst~ P ( t - s , x ,  dy ) +Ago(t,y) dr. 

As already mentioned, for any transition semigroup T~ on R d with generator A 
t 

we have (T t -  1) go = S Ts A go ds if go is in the domain of A. (We here use operator 
o 

notation and indicate the time dependence by a subscript.) Hence for go, $~#e§ 
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we have: 

o r  

d#O~Tt-sAq~,dsdt=-  ~ d#OsTt-~AT-udSdtdu 
s<=t s<=t<=u 

(! 7:) = -  ~ d#O~ Z_~A dt d s d u = -  I d#O~(T._~-I) dsdu, 
s ~ u  s<__u 

s e t  

3(~ + A ~o Putting ~,, = - ~ -  t we hence see that 

as claimed above. 
The Markov property of the process X(t) is heuristically "obvious" from the 

Langevin equation by the same argument as for an ordinary finite dimensional 
such equation: The solution can be written 

t 

g(t,y)dy= ~ d s~w(s , x )dxP( t - s , x ,  dy ). 
- -  00 

Hence the conditional average of g (t, y) for t > 0 given w (s, x) for s < 0 should be 
given by 

0 

~( t ,y )dy= ~ ds~w(s,x)dxP(t-s,x, dy)=lg(O,z)dzP(t,z, dy) 
- -  oc~ 

because w(s, x) and w(s', x') are independent when s < 0 <  s'. This suggests that 
the conditional average of X(t, q~) given all X(s, O) for s < 0  is given by 

2(t,  ~o)= I g (0, z) d z P (t, z, d y) q~ (y)= X (0, q~,) 

with q~t(z)=~ P(t, z, dy)q~(y). This is indeed easy to verify directly. 

Theorem 6. The Markov property of X(t): For t> t o the conditional average of 
X(t, ~o) given X(s, t)) for all s<__to, Oe~ a is given by 2(t, ,p)=X(to, ,p,_,o) with q~t 
defined above. 

Proof. Because all variables are Gaussian it is enough to check that 

E((X(t, qO-2(t ,  qO)X(s,O))=O for s<to, Oe4~d: 

E (X(s, O)2(t, q~)) = g (X(s, O) X(to, q~,_,o)) 

= j q, (x) ~ (dx) P (to - s, x, d z) P ( t -  to, z, dy) ~o (y) 

= ~ 0 (x) , ( d x )  P ( t -  s, x, dy) q, (y) = E (X(s, O) x ( t ,  q,)) 

by the semigroup equation for P(t, x, dy). 
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Finally we prove that there is a version of the process X(t) which is a.s. con- 
tinuous in the topology of ~}. 

Theorem 7. Under the same assumptions as in Theorem 4 a modified process 
X'(t) can be constructed such that for some p: 

P(lIX'(t)-X(t)l[_p= 0)= 1 for any t, 

and 

P(lim sup J[ X'(t + h)-  X'(t)[l_p = O)= 1 
h$O [t[<T 

P(rsluprilX'(t)[l_p< oo)= 1 
I 

for any T>0.  In particular, X'(t) is a.s. continuous in the topology of ~'a. 

Proof Since E(X(t+h, ~p)-X(t, cp)) 2 = 2(V(0, ~p; 0, ~p)- V(0, ~p; h, q~)) it follows 
from the estimate ~ V(0, ~Pi; 0, ~Pi)- V(0, ~p~; h, ~pi)~c'h and Lemma 4 that 

i 
3R 2 

p([[X(t+h)_X(t)[[_v>R)<=2e 16~'h for some p. 

We use the well known method of constructing X'(t) by interpolating X(t) 
linearly between the points t . ,k=2 -~. k and then considering the limit n ~ ~ .  
Let X, (t) be the interpolating process: 

for 

X.(t) = (1-2)X(t . ,k)+2X(t . ,k+ 0 

t = ( 1 - 2 )  t . ,k+26.k+l ,  0__<2__<1. 

It is easy to check that for three consecutive points 

t l ~ n , k = ~ n + l ,  2k~ t 2 =  fn+l,  2k+l~ t 3 ~ n , k + l - ~ ' t ' n + l ,  2k+2 

we have 

sup []X.+a(t)-X,(t)[l_p<__}(l[X(t2)-X(q)l[_p+ I[X(ta)-X(t2)lI_p) 
tl <--_t<--t3 

if []X(t)]l_p< ~ a.s. for all t. 

Hence 

P( sup [[X.+l(t)--X.(t)l[_v>R)<ge-(C~ 
h <t<-_t3 

and 

P(sup EIX,+I(t)-X,(t)([_p>R,,)<4. T. 2" e -( . . . .  t)2-R.~, 
H < T 

so with Rn=n -2 e.g. Borel-Cantelli's lemma tells us that 

~ lsupr ]IX.+ 1 (t)-  X.(t)l[_p < oo a.s. 
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It follows that with probability one limX.(t, q))=X'(t, q~) exists for all q~ and is 
hence an element of q~, and that "-' ~ 

lim sup [IX.( t ) -X'( t ) l l_p=O , sup I[X'(t)[l_p< ~ .  
n~oo I t l < T  [ t l < T  

Since 

sup II X'( t  + h ) -  X'(t)l L _p 
I t l ~ T  

< sup [ IX ' ( t+h) -X , ( t+h) l l _p+  sup I lX , ( t+h) -S , ( t ) l l_p  
[t] <= T ItI < T 

+ sup [1X. (t) - X'(t)ll _p 
Itl_-<T 

and X, ( t ) i s  continuous in Jl'J[_p uniformly for ]tl_~T a.s. it follows that X'(t) 
has the same property as stated. 

4. Some Examples 

4.1. Brownian Motion 
__d _l~-rl 2 

In this case P(t, x, dy)= (2 n t) 2 e 2t dy and the invariant measure is ordinary 
A 

Lebesque measure, #(dx )=dx .  The generator A is the Laplacian 2 '  and the 

continuity condition of Theorem 4 is easily verified. The Langevin equation is 
hence the ordinary heat equation with white noise added: 

dg 1 
-d-~-=~ a g + w ,  

and the covariances of w are determined by 

E (~ w (t, x) q9 (t, x) d t d x)2 = _ ~ q~ (t, x)A ~o (t, x) at dx  

=~ [gradx q~ (t, x)l 2 dt dx .  

4.2. A General Diffusion 

We can more generally consider a diffusion with a generator defined by 

_ ~ 2 ~ 0 ( x )  _ ~ 0 ( x )  

with e.g. infinitely differentiable coefficients of at most polynomial growth at 
infinity and an equilibrium density # (x) satisfying the stationary forward equation 

~2(aij#) ~ 0(b/#)---0 
axi c~xj ~ c~x i " 
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The Langevin equation is the forward (Fokker-Planck) equation driven by white 
noise whose covariances are determined by 

E(f w(t, x) q? (t, x) dt dx) 2 

x)['tv'_ . , 82q~(t, x)~ b,(x)~)~.., . = - 2 ~ ~o(t, ~ au~x, + ~i #(x)dt  dx 

=2~  au(X) 8x i c~xj ] I~(x)dtdx. 

The last expression which is manifestly non-negative is obtained by partial 
integration using the equation for # (x). 

4.3. Random Flight with Independent Velocities 

The state of each particle is determined by its position x and velocity u~R ~/2. 
The velocity is only changed at collisions with some medium. These form a 
Poisson process in time with intensity 2, and after each collision the velocity 
is independent of everything in the past with a given distribution F(du). The 
position is determined by 

x(t)=x(O)+ i u(s) ds. 
0 

The velocity process is Markovian with transition probabilities 

P(t, u, dr) = e-~t 6 (u, dr) + (1 - e-zt) F(dv). 

(6(u, dr) is the distribution function of a unit mass at u.) The stationary measure 
is F, and the generator is defined by 

Atp (u) = 2 ~ (F(dv)-  3 (u, dr)) q~ (v). 

The generator of the process (x (t), u (t)) is hence defined by 

A ~o (x, u) = u. grad x q~ (x, u) + 2 j" (F(dv) - 6 (u, dr)) ~o (x, v) 

and the invariant measure by #(dx, du)= dx .  F(du). The forward equation for a 
distribution f ( t ,  x, du) dx which has a density in x is hence given by 

df(t,  x, du) 
d t u- gradx f ( t ,  x, du) + 2 [. f ( t ,  x, dr) (F(du)-  ~ (v, du)). 

The Langevin equation for the formal random distribution g(t, x, du)dx having 
a density in x is hence obtained by adding white noise w(t,x,  du)dx whose 
covariances are determined by 

E(5 w(t, x, du) ~,(t, x, u)ax) 2 
= - 2 ~ ~0 (t, x, u) (u. grad~ (p (t, x, u) 

+ ~ ~ (F(dv)- a (u, dr)) ~o (x, v)) dt dx f(du) 

= 2 2 ~ (p (t, x, u) (F(du) 6 (u, d r ) -  F(du) V(dv)) q~ (t, x, v) dt dx 

= 2 2 y [y (o 2 (t, x, u) V(du) -  [y (p (t, x, u) F(du)] 2] d t dx.  
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A process of this type is the so called wind-tree model in the "Boltzmann limit", 
which has been studied in the physics literature I-4]. In the three dimensional 
wind-tree model for example F is the uniform distribution on a sphere. 

4.4. An Arbitrary Markov Process with a Finite Number of States 

If 27 is a finite set the generator A is a matrix with elements A(x, y) such that 
A(x, y)>_0, x 4:y, ~ A(x, y)=0,  and the invariant measure has a density such 

Y 

that ~/~ (x) A (x, y) = 0. The process g (t, x) in this case is an ordinary finite dimen- 
~g 

sional Gauss-Markov process with covariances E(g (s, x) g(t, y))= # (x )P ( t - s ,  x, y) 
for t >  s, so it need not be constructed as a generalized stochastic process. The 
Langevin equation is 

dg(t, x)_  ~ g (t, y) A (y, x) + w (t, x) 
dt 

Y 

with 

E(w(s, x) w(t, y))= - 6 ( t -  s) (Iz(x) A (x, y) + # (y) A (y, x)). 

(That these covariances actually form a positive definite matrix follows from the 
fact that - 2 ~ (p (x) ~t (x) A (x, y) ~0 (y)--- ~ (q~ (x) - tO (y))Z # (x) A (x, y).) The fact 

X , y  ~r 

that g is defined by the above Langevin equation can be seen directly by the 
following heuristic argument. Consider the gas of particles and let S(t, x) be the 
number of particles at x. As p ~ ~ we have approximatively 

S(t, x ) = p .  #(x)+ p ~/2 g(t, x). 

The number of particles dS(t,x, y)jumping from x to y in a small interval dt 
is the sum of S(t, x) independent Poisson variables with mean and variance 
A(x, y)dr, so when p is large, dS(t, x,y) is approximatively Gaussian with mean 
and variance S(t, x)A(x, y)dt, and with sufficient accuracy we can write 

dS (t, x, y) = (/9 # (x) + pl/2 g (t, x)) A (x, y) d t + (p # (x) A (x, y))t/2 dW(t, x, y), 

where W(t, x, y) are independent Wiener processes with E(dW2) = dt. In the flow 
equation 

dS (t, x) = ~ dS (t, y, x ) -  dS (t, x, y) 
y4:  x 

we can then equate the terms proportional to 101/2 and get 

d g (t, x) = ~ g (t, y) A (y, x) d t + ~ (# (y) A (y, x)) 1!2 d W(t, y, x) 
y y4~x  

- (#(x) A (x, y))1/2 dW(t, x, y). 
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Call the last term dW(t, x). W(t, x) are then Wiener processes, and it is easy to 
check that 

F~ (a W(t, x) cl W(t, y)) = - (~ (x) A (x, y) + ~ (y) A (y, x)) ctt 

dW(t, x) 
so we have the above Langevin equation with w(t, x)=  dt 

Acknowledgements. This work was done when the author was staying at Cornell University 
in 1973 with support from the N.S.F. The author benefitted very much from clarifying discussions 
with K. It6 and F. Spitzer. 

References 

1. Doob, J.L.: Stochastic Processes. New York: Wiley 1953 
2. Fox, R.F., Uhlenbeck, G. E.: Contributions to the Theory of Non-Equilibrium Thermodynamics I 

and II. Phys. Fluids 13, 1893-1902 and 2881-2890 (1970) 
3. Gelfand, I.M., Vilenkin, N.J.: Generalized Functions, Vol. 4. New York-London: Academic 

Press 1966 
4. Hauge, E.H.: What Can One Learn from Lorentz Models? In: Transport Phenomena. G. Kircze- 

now, J. Marro eds. Lecture Notes in Physics 31, Berlin-Heidelberg-New York: Springer 1974 
5. Hauge, E.H., Martin-L/Sf, A.: Fluctuating Hydrodynamics and Brownian Motion. J. Statist. 

Phys. 7 259-281 (1973) 
6. Kac, M.: Some Probabilistic Aspects of the Boltzmann Equation, Acta Phys. Austriaca, Suppl. X, 

379-400 (1973) 
7. Meyer, P.-A.: Le Th6orbme de Continuit6 de P, Lbvy sur les Espaces Nucl6aires. S6m. Bourbaki, 

18e ann6e, 1965/66, no. 311 
8. Neveu, J.: Mathematical Foundations of the Calculus of Probability. San Francisco: Holden Day 

1965 
9. Neveu, J.: Processus A16atoires Gaussiens. Les Presses de l'Universit6 de Montr6al 1968 

Received September 30, 1975 


