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The phenomenon of independence of random variables is shown to be singular 
in that, e.g., there are both finite and infinite sample spaces on which two 
random variables can be independent iffone is constant. Furthermore on [0, 1], 
with Lebesgue measure for probability, the usual function spaces contain 
dense subsets each member of which is independent only of constants. Finally, 
the requirement of independence among a set of orthonormal functions is 
shown to imply, in all but trivial instances, that the orthogonal complement 
of the space is infinite-dimensional. 

0. Introduction 

The distinguishing feature of probability theory vis-/t-vis measure theory is the 
role played in the former by the concept of independence. In the following, inde- 
pendence is studied from the standpoint of its rarity as a phenomenon. The results 
show that independent sets and independent functions are thinly distributed and, 
in some instances, (essentially) absent. 

1. Independent Events 

In correspondence about an ealier draft of this paper, E.O.Thorp remarked that 
if X is a finite or countably infinite sample space, X = {xl, x 2 . . . .  }, then the assign- 
ment of probabilities: P({xk})=2 -k!, k = 2 , 3  . . . .  , and P ( { x l } ) = l - ~  P({xk}), 

k=>2 
produces a probability measure on the o--field 5 P of (all) subsets of X and, with 
respect to this measure, if A, B~5 ~ and {A, B} c~ {qS, X} =~b then A and B are not 
independent. 

If X is finite, X={Xl,  x2 . . . . .  xn} then the assignment: P({xk})=e , where 
1 

is irrational and 0<e<n_-~-i-, for k = 2 , 3  . . . .  ,n, P ( { x l } ) = l - ( n - 1 ) e ,  also yields 

no nontrivial pairs of independent events. 
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Finally, if X is countably infinite, X = {xl, x 2 . . . .  }, let N be decomposed into 
infinitely many pairwise disjoint infinite subsets Nz,  N3, ... and let P({xk})-- 
pk= ~ 2 -m~, k = 2 , 3  . . . .  , P({xl}) - - - -p l=l- -~pk .  Then if A, BE5 a, P ( A \ B ) ,  

m~Nk k > 2  

P ( B \ A )  and P(A c~ B) are three numbers p, q, r, each a sum of some Pk- (For 
purposes of discussing independence, it may be assumed that A u B~x  1.) The 
independence of A and B implies that (p + r) (q + r) = r and in particular that p, q, r 
are algebraically dependent. However, the arguments proving the transcendence 
of the classical Liouville numbers show here that p, q, r are always algebraically 
independent. This last construction is due to S. Schanuel. 

Hence there are many kinds of examples of sample spaces that admit no 
nontrivial pairs of independent events and hence no nontrivial sets of independent 
random variables. The examples indicated above deal exclusively with atomic 
sample spaces (from which the early studies in probability sprang). In the next 
section attention is focussed on the sample space X -- [0, 1] with Lebesgue measure 
as probability defined for members of the a-field 5 e of Borel-measurable sets. 
In this setting, the singularity of the condition of independence will appear in a 
different but equally emphatic way. 

2. Random Variables 

All random variables considered will be real-valued an d  defined on X - [ 0 ,  lJ 
endowed with Lebesgue measure P for the a-field 5 p of Borel sets. Since every 
nonatomic separable sample space is measure-isomorphic to {X, 5 p, P}, the results 
below have a generality somewhat greater than their superficial appearance 
might suggest. 

For any random variable f, Ind (f) stands for the set of random variables g 
such that f and g are independent. If K is the set of constant functions then for all 
f, K c Ind (f). Some of the results below have the reversed conclusion as the central 
statement. Clearly independence is "stable modulo null sets," i.e., if A and B are 
independent sets and if M and N are null sets then each of the pairs {A o M, B o N} 
is independent, where "o" may mean " u  " or " \  " for either member or both 
members of the pair. Thus, as in several other parts of analysis, theorems and 
proofs below are to be read "modulo null sets". For  example, the statement, 
"Every nonempty measurable set B has metric density 1 everywhere in B," is to 
be so interpreted. 

(2.1) Lemma. Let f~  C([0, 1]) and for some Yo assume: (a) f -  1 (Yo) ~ {xl, X2 . . . .  , Xn} 

is finite of cardinality n > 1; (b)f '  exists and is continuous in some neighborhood of 

each x,; (c) 0 + If'(x~)l = 1 .  

I f  B is a nonnull Borel set in [0, lJ and if f and ;gB (the characteristic function of B) 
are independent, then 

P(B) = x~2B 

at 
i=1  
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Proof Let inf If(xz)l = 2 m. Then 2 m > 0 and since f is continuous in neighborhoods 

of the x i, there are open intervals/2i around the xz where f i s  strictly monotone and 

If'(x)[>m. On the compact set [0, 1 ] \  0 U/, [f(x)-Yol>6 for some 6>0.  Then 
i = 1  

tl 

for e in (0, c~), f - l ( ( yo -e ,  y o + e ) ) c  U /2ii and, since f i s  strictly monotone in U/, 
i - 1  

f -  1 ( (Yo - e, Y0 + e)) n U / i s  an open interval I~ containing xi, whence 

f -  i ((Yo - e, Yo + e) = 0 I~. 
i = 1  

Clearly, ire is small enough the intervals I~ are pairwise disjoint. Below I~ is written 
simply as //. Furthermore, owing to the fundamental properties of derivatives, 
P(Ii) = (cq(yo) + t//(e))2 e, where ~h(~) ~ 0 as e ~ 0. Thus 

P( f -  l((y o - e, Yo + a)) m B) = ~ P(I, n B) 
i = 1  

= p ( f -  1 (Yo - ~, Yo + a)) P(B) 
and so 

n 

EP(IimB) 
i= 1 ~ P(Ii ~ B) 

E P(I,) 
i = 1  i = 1  

1 . 1 ~ x L P ( I i c ~ B ) ~  ~ , 
n 

i = l  

Since we may regard B as having metric density 1 everywhere in/3 and 0 every- 
where offB, we find, as a ~ O, the right member approaches 

G(B,f Yo)- ~. c~i(Yo cq(Yo). 
x i~B / i =  1 

Note that G(B,f Yo), for f and Y0 fixed and/3 variable, is capable of assuming 
at most 2 ~ different values. On the other hand, for a nonconstant continuous 
function g defined on [0, 1], the set {P(g-I(A)): A a Borel set} is infinite. These 
remarks lead to 

(2.l) Corollary. For f as described in Lemma 2.1, I n d ( f ) n  C([0, 1] )=K.  

(2.l) Example. Let f ( x ) =  sin2nx, 0 < y  o < 1, or - 1 <Yo <0, 0 < P ( B ) <  1. Then 
the numerator and denominator of G(B,f Yo) are respectively 2 n l / 1 - y o  2 and 
4 r c ] / 1 - y o  2 whence G(B,f, yo)=�89 A similar calculation and Corollary 2.1 lead to 
the observation: 

ind(cos2~kx)uInd(sin2~kx n C([0, 1]) =K .  
k = l  
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f(f l) 

0 b 

Fig. 2.1 

The example suggests that for a fairly general and simply described set of 
functions f Ind(f)c~ C([0, 1])= K. Indeed, there obtains 

(2.1) Theorem. I f  f is the restriction to [0, 1] of a function f analytic in a region 
containing [0, 1] and i f f  is not constant then Ind (f)c~ C[0, 11 = K. 

Proof. The identity theorem for analytic functions shows that for each y, 
card ( f -  1 (y)) is finite. 

If for each y there is an xy s f - l (y)  where f ' (xy)= 0, then since f- l(yl)c~f-l(y2) 
= q5 if Yl =~ Y2, the set {xy} is infinite and has a limit point x o in [0, 1]. By the identity 
theorem for analytic functions, f '  - 0, f is constant, a contradiction. Thus for some 
Y0, f ' : t :0 on f-l(yo) and the function G(B,f, Yo) is definable. By Corollary 2.1 
the result follows. 

(2.2) Example. Let f be measurable. Assume that for some subinterval [a, b], 
f - l ( f ([a,  b]))=[a,  b-I and that f -1  is measurable on f([a, bJ). Then Ind(J )=K.  
The basic property o f f  is shown in Figure 2.1. (Continuity o f f  is not assumed.) 
To show Ind ( f )=  K the following development serves. 

For any measurable set S c  [0, 1], let 

~0s(X) ={0, x~S 
, xr 

Then there obtains 

(2.2) Lemma. For 0 < a < b < 1, Ind (q~a, b~) -- K. 

Proof. If a measurable g~K, then for some Borel set A, 0 < P ( g - I ( A ) ) <  1. On the 
other hand if g ~ Ind (q~Ea, b~), then for all Borel sets, in particular for A, and a < c < 
d<_b 

P(g- I(A)) = P(g-*(A) c~ [c, d]) 
P([c, d]) 
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k2 

kl 

ci 

O<kt <k2 

kl k2 
3= -~_d#Y=-b_ a -  

-- I 

ed 

y=f(x) 

1 

k2 kl 
c - b d - c  

Fig. 2.2 

since [c, d] = -1 ~oj~,b~([-c, d]). By metric density arguments, as Id-c t  ~ O, the right 
member approaches either 0 or 1 whereas the left member is in (0, 1), a contradiction. 

The assertion of Example 2.2 is a corollary to Lemma 2.2. 
Indeed, if g e Ind (f) let 

~ f - l ( y ) ,  y~f([a,  b]) 
k(y) = [0, otherwise 

and let h = k o f  Then h=~0E~,b j. As a Borel measurable function of the Borel 
measurable function f, h is also independent of g, a contradiction of Lemma 2.2. 

(2.3) Example. Let f b e  the function depicted by the solid line graph in Figure 2.2. 

Let J = f - l ( [ a ,  fl]) and let the Borel set B and Y be independent. Then for 0 < c~ < fl 
<kl ,  J is the union of three equally long and disjoint subintervals I~ of I-a, b], 
/2 of [b, c] and 13 of [c, 1] and 

3(~-~) 
P(J) = - -  = 3 P(Ij), j = 1, 2, 3. 

7 
Thus 

P(B c~ J) = P(B n I~) + P(B c~ I2) + P(B c~ I3) 

= P(B) P(J), 
and so 

p(B)= P(Bc~I~) ~ P ( B n I 2 )  q P ( B ~ I 3 )  
3 P(I~) 3 P(I2) 3 P(I3) 
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If [fl- el ~ 0, 0 < c~ < fi < kl, metric density arguments now show that P(B)= O, 1, ~, 
or 1. On the other hand, if k~ < c~ < fl < k2, then similar calculations show that 
P(B)=0,1 or 1. Hence the only Borel sets B independent of all sets f - l ( j )  are 
[0, 13 and r and so Ind (f) = K. 

If the graph o f f  is as in Figure 2.2 for 0 < x _< c and then follows the dashed line 
for c _< x-< 1, metric density arguments show that for B to be independent o f f - l ( j )  
there must obtain P(B) = O, �89 1 if k 1 < c~ < fl < k 2 ; similarly if 0 < ~ < fl < kl, then 

c5+e6 2~5+e7 36+e~ 
P (B)=0 ,36+7 ,  3 7 + 6 '  36+6  o r 3 ~ , w h e r e e = 0 o r l .  F o r T = l ,  6=2,  these 

values are 0, ~, 2, _~, 4 or 1. The nontrivial values are all different from the non- 
trivial value �89 Thus again Ind ( f )=  K. 

Since k~ and/c a are arbitrary, it is clear that for any polynomial g, an arbitrarily 
small portion of the graph of g can be excised and replaced by a graph resembling 
one of the graphs in Figure 2.2. The resulting function ~ is continuous and Ind(~) 
= K. Thus there obtains 

(2.2) Theorem. For f in E = L;,  l ~ p  < ~ or C([0, 13), and ~>0 there is in E an 
f such that [ I f - f l l n<e  and Ind ( f ) = K .  

The functions of the types given above can, by "rounding the corners of their 
graphs," be made to belong to C~([0, 1]) without disturbing the validity of the 
proofs given for the properties of their sets Ind (f). It is sufficient for such purposes, 
that the corner-rounding be carried out over a union of intervals of total measure 
less than one. 

A routine calculation shows that Ind(sin27cx) is {c 1 Zt~.~+c27~0,~l~,l~: 
q ,  c2 MR}. Further analysis shows that for a wide class of functions f in C 1 ([0, 13), 
Ind ( f ) = { ~  ck Xs~: ck ~IR, Sk a union of nonoverlapping intervals, Sk~St=4), 
k ~ 1}. Precise hypotheses on f for which the above obtains are as follows" 

f e  C1([0, 1]); m = m i n f < m a x f - M ;  f - l (m)={p i } ;  

f - l ( M ) = { q j }  where pl <ql <p2<q2<. . . ;  f ' - l (O)={p l ,P2 , . . . , q l , q2 , . . . } ;  for 
1 

m < y < M ,  f - l ( y )  is finite, say {q(y), ..., r,(y)}; f'(rk(y))= where g(y)>0 
and g(y) is integrable on [m, M]. akg(Y) 

The situation is exemplified by the functions sin 27cnx, cos 2~nx  and more 
generally by functions corresponding to the graph in Figure 2.3. Let 11 = [PI, q~], 

u P(I1) P(I2) 
I2=[q~,P2], I3=[P2 ,q2] , . . . .  If G = ~ g ( y ) d y ,  then a~= G ' a2= G ' etc. 

rn 

Metric density arguments show that if B is independent for f -  ~ ( ( -  o% y)) for all y 
~ak  

then P(B) = ~s , where S = {k: P(B c~ lk) + 0}. Furthermore, for k in S, P(B c~ Ik) = 
~ak  

k 

ak - P(Ik) whence each such B is the union of such I k and the conclusion follows. 
~ a j  
J 

The above results as well as some below reveal an unusual situation: a function f 
for which Ind(f)  is a iinear set. The classic example of S. Bernstein shows that this 
phenomenon is not universal: Let X = { x l , x 2 ,  x3,x4}, P(xi)= �88 i=1 ,2 ,3 ,4 ,  



Independence of Events and of Random Variables 339 

Fig. 2.3 

fl  =)~ . . . . .  7, f2 =Zt . . . .  37, f3 =Z~xl,x4~. Thenf2,f3 Mnd(fl) but f 2 - f 3  ~Ind(fl) since 
(fz - f 3 ) -  1(1) = {x3}, fl- 1(1) = {xl, x2} and ( f z - f 3 ) - l (1 )c~ f i - l (1 )=~ .  

If the members of Ind(f)  are mutually independent, then Ind(f)  is linear. 
However, in all the examples given Ind (f) contains members that are not mutually 
independent. Nevertheless for these examples Ind(f)  is linear. 

(2.3) Example. In the following there is given a rather general construction of a 
continuous, piecewise linear function f such that Ind (f) is the linear set consisting 

n--1 
of the linear combinations ~ Cm)~Z m of the characteristic functions ZI,, of the 

m= n 
intervals Ira, m = 0, 1, ..., n -  1, on which f is linear. The construction obtains for 
arbitrary neN.  

(2.3) Lemma. Let ~o, e2 . . . .  , ~,-1 >0  be arbitrary. There are numbers k > 0  and 
0 = a o < a 1 <.. .  < a, = 1 and a continuous piecewise linear function f such  thatf(ao) = 
f(a2) . . . . .  O, f (a l )=f (a2)  . . . . .  k, f ' (x )=(-1)mere  in (%,  am+~). (Two such func- 
tions are shown in Fig. 2.4.) 

n - l ~ j  )-1 m-1 1 
P r o o f L e t k = ( j ~ = l  ,am=kQ~= - ~ j ) , m = l , 2 =  . . . .  , n - l .  Thendirectcalcula-  

tion verifies that the corresponding f satisfies the requirements given in the state- 
ment of the lemma. 

(2.4) Lemma. For arbitrary n, there are n positive numbers rio, ~1 . . . . .  ft,-1 such 
that if S' and S" are different subsets of {0,1, . . . , n - l }  then 2 ~ j ~ = ~ j  and 
n - 1  S '  S "  

m=O 
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1 x 

Fig. 2.4 

Proof For each of the (2" - 1) z pairs S', S" of subsets of {0, 1, ..., n -  1} let FI(S', S") 
be the hyperplane defined by the equation ~ x j - ~  xj=O. Let a be the open 

n - 1  S' S" 

simplex defined by the conditions ~ x j = l ,  x j>0 ,  j = l ,  2 , . . . , n - 1 .  Then 
j = o  

a \  ~ II(S',S") is nonempty and for (rio, fil . . . .  , ft .-l) in it, the requirements 
(S ' ,S ' )  

of lemma are satisfied. 

(2.3) Theorem. Let flo, i l l , . . . ,  ft,- t be chosen according to Lemma 2.4, let % = 1~tim, 
m= O, 1 . . . . .  n -  1, and let k, a 1, ..., an-1 be chosen according to Lemma 2.3. 7hen 
the corresponding f is such that I n d ( f ) =  {~ CmZtm} where Zrm is the characteristic 
function of the interval Im=[a,,~a,,+a], m=0,  1, ..., n - 1 .  

Proof It will be shown that a Borel set B is independent of f-1((~, fl)) for all ~,/~ 
iff B is the union ~) I,,, S a subset of {0, 1, 2, ..., n -  1}. First, for any c~, fi such that 

m ~ S  n -  1 

f-l((e,/~))#qS, f= l ( ( e , /~ ) )=~  Jm, where the interval JmcIm and P(Jm)= ~ - e ,  
n--1 n - 1  n--1 am 

m=0,1  . . . .  , n - l ,  whence, P ( f  ~((~,/3)))= Z f l - e = ( / ~ - e )  ~ f l~=/~-e '  If B =  
m=O (Xm m=0 

L_) Ira, then P(B)= ~ P(Im)=k( ~ fl..) and P(Bc~f-l((e,  fl)))= ~ (fl-~)flm = 
m ~ S "  m E S '  m ~ S '  m ~ S '  

1 .-1 
fi - e - P(B). = P(B). P ( f -  l((e, fi))) since ~ = m~=ofim ---= 1. Hence B and kY B , k 

f x ((~,/~)) are independent. 
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Conversely, if B and f -  1 ((e, fi)) are independent for all e, fl, and if B is not a 
union U Ira, Sc{O, 1 . . . .  , n - l } ,  then for some Jo P(IjomB)P(Ijo\B)>O. As in 

m~S 

earlier metric density calculations 
n - - 1  

2P(J  B) 
"&l P(Jjc~B) (fl-c~)fij n~l P(Jjc~B) 

If x'eIjo is a point of metric density 1 for B, (such an x' exists since P(Ijo r~B)> 0) 
and if e<f(x')<fl  and Ifl-a[ o 0 ,  then the above shows 

P(B) = ( E fi2) 
j eS"  

if " " where J0 ~S'. On the other hand, x ~(io is a point of metric density 0 for B (such 
an x" exists since P(ljo \ B) > 0) then the same argument and calculation show 

P(B) = ( ~ flj) 
j ~ S "  

wberejo ~S". Thus S':~S" and, owing to the way the flj were chosen, ~ flj:~ ~ fly. 
The contradiction shows B = U Ira, S ~ {0, 1 . . . .  , n - 1 }. jcs" j~s" 

tn~S 

If g s I n d ( f )  then for all y, g - ~ ( ( -  o% y)) is a Borel set B and so g - l ( ( _  o% y))= 
n - i  n - 1  

I m. Clearly g = ~ Cm)~, ~. By the above gEInd(f )  iff g = ~ c~zi, .. 
m~S m= 0 m= 0 

Remarks. 1. For  0 = a o < a 1 < . . .  < a, = 1 given, the numbers ~,~ = (k(%+ 1 - a,,))- a, 
m = 0, 1, 2, ..., n - 1, for arbitrary positive k, permit the construction of Lemma 2.3. 
However, the condition of Lemma 2.4 is not satisfied unless the % satisfy 
~, (am+l-am)=~ ~ (%+1-a,,) for every pair of distinct subsets S', S" of 

r u E S  ~ r u E S  ~' 

{0, 1, . . . ,  n - l } .  
2. In the notations of these examples, if the condition f(aa)=f(a3) . . . . .  k is 

relaxed and is replaced by f(al)= kl, f(a3)= k 3 . . . .  , where kl, k3, ... >0, and not 
all kj are equal, and if, via, e.g., the Schanuel Construction of w 1, the numbers tim 
are chosen so that the set of all sums { ~ fi,,}, S ~  {0, 1, 2 . . . .  , n -  1} is algebraically 

rueS 
independent over 2g, then the corresponding f is such that I n d ( f ) = K .  The 
existence of such an f follows from the solution of a simple set of equations for 
k l ,  k 3 . . . . .  aa, a2, . . . ,  a,_ 1 with the boundary condition that not all kj are equal. 

The crucial step is the proof, via metric density arguments, that for any Borel 
set B independent off-~((~, fl)) for all ~, fl, P(B) is given by at least two expressions 

j~s~ and j~ s~  where S[' #S~,  in denial of the assumption of algebraic 

jeS'I'= S], jeS~2' = S~ 

independence for the sums ~ tim. 
m~S 

3. The denseness in several function spaces of the set of functions f for which 
I n d ( f ) - - K  shows in a rather extreme way how unnecessarily strong the "mutual  
independence" hypothesis is in the classical limit theorems of probability. Indeed, 
for example, if {f,} is a set of mutually independent random variables for which the 
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central limit theorem holds, then for a suitable norm l] ... 11 and a suitable sequence 
of positive numbers e , ~ 0 ,  there is a sequence {J~} such that IIf.-f.II <~, and for 
which the conclusion of the central limit theorem holds. However, for each n, 
Ind(j~)=K. In other words the J~ are not even pairwise independent, much less 
mutually independent. 

Let d(g) stand for the maximal number of linearly independent members of 
Ind (g), then since K __c Ind (g), d(g)> 1, and the results above show that for arbitrary 
neN,  there is an f ,  such that d(f,)= n. Thus in some Banach function space E e.g., 
C([0, 1]), let E , - { f : d ( f ) = n } = d - l ( n ) ~ E ,  n = l , 2  . . . .  , oo. Then these mutually 
disjoint sets exhaust E, whence at least one is of the second category. (See w 4.) 

3. Independence and Orthogonality 

In this section, the underlying sample space X is arbitrary. If (f~} is a set of non- 
constant mutually independent functions in L 2 then for a~-~f~, {f~-a~} is a 
set of mutually independent, nonzero and orthogonal functions. Clearly the 

A-a  ) 
function 1 is in {fz-a~}" and so the set ~ = ~ ] [ ~ 2 ~ w { 1 } ~  ,~ --,-, J is orthonormal and 

independent. There arises the question: Can {f~} or S or {f~} w {1} span L2? The 
answer is essentially, "no," as the following lines show. 

(3.1) Theorem. I f  {f~} is a set of orthonormal and mutually independent functions 
in L 2, then for card (f~} > 3 the orthogonal complement M • of the span M of the f~ 
is itself different from {0) and is infinite-dimensional i l l  2 is infinite-dimensional. 

Proof The essential tool is the well-known equation 

k 

~ f;:fK:.., f;:  dP = I-[ ( ~ f;: dP) 
X i = l  X 

valid if the fz, are mutually different and if the Pi are nonnegative integers. From 
this equation and the assumed orthogonality relations it follows that for )~ +/~ 

0=  ~fafudP= ~fxdP~fudP. 
X X X 

Hence, if for some 2, IfxP+-O, then for all 2 . 2 ,  ~f~dP=0,  i.e., ~ f~dP=0 for all 2 
X X X 

save at most one (A). Clearly it may be assumed that each f~ is a nonnull member 
of L 2, i.e., ~ f2 dP> 0. Thus, if f~ ,  fx~, ..., f ~  are pairwise different then 

x 
k 

... f #P= H (If ,dP)>O 
X i = l  X 

and so all products fxifz2 
members of L 2. 

Let f~,fx,,fz . . . . . .  fz~ 
(nonnull) member of M I. 

(fz~fz: ... fz~) fzo dP= 
x 

... fx~ of pairwise different members of {fx} are nonnull 

be pairwise different. Then for k>2,  f~lfz2-.-f~ is a 
Indeed, for fx0 e {fa}, 

k 

I~(~f~ dP) if fzo,fxl, ...,fx~ 
i = O X  
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are pairwise different, 

=[I (~ f z ,  dP)~f2jdp if f~o =f~ j . 
i* j  X X 

In either event, since k > 2 and f;~, +fx it follows that f~lfx2 ... fzk is in M • 
If fx, fal, .... fxk are pairwise different and if fx, ful, f,2, .... fu~ are pairwise 

different and if A1A2 ,..Ak=L1L2 ,..LI then k=l  and (fx~,A:, . . . ,Ak}= 
{ful, f ~  . . . .  , fu~}" Indeed, multiplying both sides of the last numerical equation 
preceding by s  ... s and integrating leads to 

0<  Sf~f~2 . . . f ~ d P =  Sf;~lf~z ""fxkL1L2 ...f~,dP. 
X X 

If {fz, ,f;~ . . . .  ,fzk} 4: {f,~ , f~  . . . . .  f~}, the right side of the above may be written 
(~ Fdn)(~f?dP)where f,  is in the symmetric difference of {fz~,fz2,-'-,f;.k} and 
X X 
{f,~,fg~ . . . . .  s However, ~fTdn=O and a contradiction obtains. 

x 
Thus the set of W of products 

{fzlfz~ ... f ~  : f z , f z l , f~ ,  ...,fz~ pairwise different, k>=2} 

is contained in M • 
The arguments show that different sets {fx,fz~,fz2, ...,fz~} generate different 

products f~,f~ . . . f~  and that these are pairwise orthogonal. Thus if {fz} is 
infinite, M • is infinite-dimensional. When {fz} is finite, say cardinality ({f~})= 

n + l then clearly the dimension of M ~ is at least (~ ) + (~ ) + . . . + (~ ) = 2" - n -1 .  

Remarks. 1. If X is a sample space consisting of two elements xa, x2, let f~ - 1, 
fz(xl)= - f z (x2)=  1. Then {fl,f2} consists of orthogonal independent functions 
if P(xO = P(x2) = �89 Indeed, ~ f f 2  dP = 1 . 1 . � 8 9  1. ( -  1). �89 = 0. Furthermore f~ eK 

X 
whence f2eInd(fl) .  Clearly L 2 is two-dimensional, whence in this case M•  {0}. 

Thus the number three in the statement of the theorem is best possible. 
2. The construction in the proof is similar to that used to construct the Walsh 

functions from the Rademacher functions. 
If {f;~} spans L 2 so does S, which cannot be true by Theorem 3.1. 

4. Problem 

1. For the usual Banach function spaces E on [0, 1] which of the sets d l(n)c~E 
is (are) of the second category? 
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