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1. Introduction and Summary 

Let X 1, X2 . . . .  be a sequence of i.i.d, random variables with EXI=O, 
S,,=X~ +... +X,, and let (b(n)),>~ be a sequence of real numbers. Define 

X(b(n)) = i I[s.>=b(n)l' (1.1 a) 
n--1 

-N(b(n)) = i I[Is,,I >=b(n)l" (1.1 b) 
n--1 

Kolmogorov's strong law of large numbers can be stated in terms of the random 
variable N(en) as follows: 

P [ N ( e n ) < o o ] = l  for every e>0.  (1.2) 

To obtain a stronger result than Kolmogorov's strong law, Slivka and Severo [12] 
have discussed the moments of N(en) and they proved that for r >  1, 

ElXllr+l<oo~EN~(en)<oo for all e>0 .  (1.3) 

Motivated by the Marcinkiewicz-Zygmund extension of Kolmogorov's strong 
law, Stratton [14] proved that for r=> 1 and ~>�89 

ElXll(~+l)/~'<oo~ENr(~n~')<oo for all 5>0. (1.4) 

There is in fact a misprint in [14] where the requirement c~ > 0  should be replaced 
by ~>�89 

An earlier result to strengthen almost sure convergence for normalized 
sample sums was due to Strassen [13] who, instead of N(b(n)) and N(b(n)), 
considered 

L(b(n))=sup {n > 1: S,> b(n)}, (1.5a) 

L(b(n))=sup {n>= l: ISnl>b(n)} (sup 0=0) .  (1.5b) 
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In other words, Strassen considers the last exit time L(b(n)) while Slivka and 
Severo consider the number of exits br Again Kolmogorov's strong law 
can be restated in terms of the last exit time L(sn) as P [ L ( e n ) < ~ ] = l  for all 
5>0, and it follows easily from the results of Baum and Katz (see [1, 9, 13] or 
Section 4 below) that for a>�89 and r > 0 ,  

E[Xl[(r+l)/~<oo<=~ELr(en~)<oo for all ~>0. (1.6) 

An obvious connection between L(b(n)) and N(b(n)) is the following: 

N (b (n)) < L(b (n)). (1.7) 

Likewise we have the inequality: 

N (b (n)) <= L(b (n)). (1.8) 

Making use of(1.6)and (1.7), together with Lemma 3 in Section 2, we can prove 
that in (1.4), the condition r__> 1 as imposed by Stratton can be dropped. In fact 
we shall prove in Section 3 the following one-sided theorem involving N(e n ~) which 
then immediately implies the corresponding two-sided result involving N(sn~). 

Theorem 1. Let X1, X 2 ,  . . .  be i.i.d, random variables with EXa =0, EIXa]q<~ 
for some l=<q<2. Let a> l/q and r>0.  Set S ,=XI  +. . .+ X, and define N(eW) 
as in (1.1 a). Then 

E(X[)(r+a)/~<~<~ EN~(sn ~) for all 5>0 

~ ENr(sn ~) for some e>0.  

We remark that for the one-sided result in Theorem 1, we require the two- 
sided moment condition El X11 q < ~  for some 1 < q < 2. A counter-example to 
show that this condition cannot be dropped can be found in Section 2 of [2]. 

The law of the iterated logarithm can be formulated in terms of 
N(5(2n log log n) 1/2) as follows: If E X  1 =0  and EX] = 6  2, then 

P[N(5(2nloglogn)l /2)<~=l if 5>a ,  

= 0  if 5<a .  (1.9) 

However, Slivka [11] showed that ENr(e(2n log log n) 1/2) = ov for all r >0  and 
e > 0. In [14], Stratton sharpened Slivka's result and found that if X1 is symmetric 
with E X 1 = 0 and E X 2 (" +1)< ~ for some positive integer m, then 

EN~(a(2(l+cS)nlogn)l/2)<~ if l < r < m i n ( m ,  1+6);  (1.10a) 

E~lr(a(2(l+5)nlogn)l/2)=~ if r > 1 + 6 .  (1.10b) 

There is in fact a misprint in Stratton's paper [-14, p. 1012] where the moment 
condition E X } m < ~  should be changed to EX2(m+I)<~ and the factor o- should 
be added to (2(1 +6)n log n) 1/2. Stratton's proof makes use of the Berry-Esseen 
bound, the form he quotes being the following result of Katz [7]: 

EIXIIP<oo ~ sup l~(x) -P[Sn~anl /2x]]~ C(p, a-PEIX1]P)n (p-2)/2 (1.11) 

where C(p, ~) is a universal constant depending only on p and t/ and �9 is the 
distribution function of the standard normal distribution. Now (1.11) is valid for 
2<p<3 and, as is well known (cf. [4, p. 53]), it cannot be extended to the case 
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p > 3. However, Stratton's proof deals with the case p = 2 (m + 1)> 4 and therefore 
(1.11) cannot be applied as he stated. What should be applied instead is the follow- 
ing result due to Esseen [4, p. 733 : If E IX1 [k < Go for some integer k > 3, then for 
[xl > {(1 + c~)(k- 2) logn} 1/2, 

] q)(x) -  P[ g ,<  ~nl/2 x] ] <=c( c3, fll . . . . .  ilk) n-(k-  2)/2/(1 -F [xlk), (1.12) 

where 6 is any fixed number with 0 < 6 < 1 and c (6, fil . . . . .  /3k) is a finite constant 
depending only on 6 and the moments fi i=E[Xl[ ~, i=  1 . . . . .  k. 

If we apply (1.12) in place of (1.11), we can indeed prove Stratton's result. 
However, by applying a result of [2] instead, we can drop the assumption that 
X1 is symmetric and weaken the moment condition EX2(m+a)< oo; also we shall 
no longer require m to be an integer and we can prove the one-sided theorem 
involving N(a(2(1 + ~) n log n) 1/2) which then immediately implies the correspond- 
ing result for the number of exits ~r of the two-sided region studied by Stratton. 
Our result, which will be proved in Section 3, is the following theorem: 

Theorem2. Let X 1 , X  2 . . . .  be i.i.d, random variables such that EXz=O, 
o o > E X Z = e r 2 > 0 .  Set S , = X I  + . . . + X  . and define N(e(nlogn) 1/2) as in (1.1a) 
and L(e(n log n) 1/2) as in (1.5 a). Then for any r > O, the following statements are 
equivalent: 

X2(r +l)(log XO-(~ +l) dp  < oo. (1.13) 
[X1>e] 

ELr(e(nlogn)~/2)<ov for all e>(2r)l/za.  (1.14) 

EN~(e(n log n) 1/2) < ~ for all e>(2r)  1/2 or. (1.15) 

EN~(e(nlogn)l/2)<oo for some e>0 .  (1.16) 

EE(e(nlogn)l /2)<oo for some e>0 .  (1.17) 

As an easy corollary of Theorem 2, we obtain the following analogue for 
L and N: 

Theorem 3. Let 221, X 2 . . . .  be i. i. d., S, = X 1 +.. .  + X,  and define N(e (n log n) 1%, 
L(e(n log n) 1/2) as in (1.1 b) and (1.5 b) respectively. Then for any r > O, the followir!g 
statements are equivalent: 

/ ~x~=o ,  E x  2 = o  .2 

EL~(e(n log n) 1/2) < oo 

EN'(e(n log n) 1/2) < oO 

EN~(e(n log n) 1/2) < c~ 

EL~(e(n log n) 1/2) < oo 

and E[X112(r+l)(l+log+lXll)-(r+l)<c~. (1.18) 

for all e>(2r) l / ;a .  (1.19) 

for all g>(2r)l/2o -. (1.20) 

for some e>0 .  (1.21) 

for some e>0 .  (1.22) 

The equivalence between (1.18) and (1.22) was first discovered in [9] where 
it was proved by applying Theorem 3 of [8]. This equivalence, as pointed out in 
[9], sharpens an earlier result of Strassen [13] who, by embedding the sample 
sum process in Brownian motion, has shown that if E X  1=0, E X  2=cr 2 and 
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E[X1]P<oo for some p > 2 ( r + l ) ,  then (1.19) holds. In [-91, it is also proved that 
under the condition (1.18), 

ELr(~(n log n) l/z) = Go if e <(2r) 1/2 a, (1.23) 

a result first obtained by Strassen under the stronger moment condition 
E IX11 p < oo for some p > 2(r + 1). In view of (1.7), Stratton's result (1.10b) implies 
(1.23), but Stratton has to assume that X 1 is symmetric with EX2(m+a)<oo for 
some integer m>r. In Section 3, we shall prove the following theorem which 
completely generalizes the results of Slivka and Stratton. 

Theorem4. Let X 1, X2 . . . .  be i.i.d, random variables, S ,=X1 +.. .  + X ,  and 
define N(e(n log n) t/2) as in (1.1 a). Let r>0 .  

(i) I f  X 1 is symmetric, then 

ENr(e(nlogn)l/2)=oo for all O<~<(2rEX~) 1/2. (1.24) 

(Since we do not assume any moment condition on X 1 , E X  2 in (1.24) can be in- 
finite.) 

(ii) I f  X1 satisfies the moment condition (1.18), then (1.24) still holds. 

From Theorems 3 and 4, we see that for sample sums, Strassen's strengthening 
of the law of the iterated logarithm in terms of the finiteness of the r-th moment 
of the last exit time L(~(n log n)1/2), a concept which he calls in [13] the r-quick 
lira sup, turns out to be equivalent to the finiteness of the r-th moment of the 
number of exits N(e(nlogn) 1/2) considered by Stratton. Furthermore, in view 
of (1.6) and Theorem 1, the refinement of the strong law of large numbers by 
Severo, Slivka and Stratton, who consider the finiteness of r-th moment of N(en~), 
again turns out to be equivalent to the notion of r-quick convergence studied 
by Strassen [13] and Lai [9], who consider the r-th moment of L(en ~) instead. 
Some statistical applications showing the usefulness of the concept of r-quick 
convergence can be found in [9] and the references thereof. 

So far we have discussed boundaries of the form an ~ (e > 1/2) and e(n log n) ~/2 
to obtain the r-quick analogues of the Marcinkiewicz-Zygmund strong law and 
the law of the itered logarithm. In Section 4, we shall extend our results to general 
boundaries and in this connection, we obtain a general form of the Hsu-Robbins- 
Erd6s-Baum-Katz theorem on convergence rates for the tail probabilities of 
sample sums. 

2. Some Preliminary Lemmas 

Lemmal.  Let X l, Xa . . . .  be i.i.d, random variables, S~=XI + . . .+X~ and let 
(b (n))~ >=1 be a nondecreasing sequence of nonnegative numbers. Define N = N(b(n)) 

as in (1.1 a) and let Nm= ~ Its~>=b(~)~. Assume that ENr < oo for some r>0 .  
n = l  

(i) I f  r >_- 1, then ~ , -  1 
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(ii) I f  r > O  and r is not an integer, then ~ nr-{rl- l EN~rl I~s >=b(~)l < oo. 
n = l  

Proof  (i) is an immediate consequence of the following relation: 

N r = N  r-1 ~ IEs>_b(.)~> ~ N:-lI[S>=b(.)~. (2.1) 
n=l n=l 

If r > i, then (ii) follows directly from (i). Assume that O<r < I. It is easy to see 
that(x+ 1)r--xris decreasing in x>O. Let No=O. Then 

E N m = E  ~ ,(N r. - N ~.- 1 )=E  ~ (N;-N:-OIrs.>=b(,)j 
n = l  n = l  

> E ~ ( n r - ( n  - 1)glEs,>b(,)l>r ~, n ~-~ Elts,>b(,) 1. 
n = l  n = l  

Letting m ~ oo above gives the desired conclusion. 

L e m m a 2 .  With the same notations as in Lemma l, assume that E X I = O ,  
g [x l [q<oo  for some l_-<q<2 and bq(n)>n for all n. Then given any positive 
integer r and 0 < 6 < 1, there exist positive constants cr C and integer m o depending 
only on r, (5, q and E]XI[ q such that 1 - ( 5 < ~ < 1  and for all m > m  o and e>0 ,  

EN,~ I~s,, > ~b (,,)1 > C m" P [SL~,q > ((r + 1) (5 + e) b(m)]. (2.2) 

Proof  Let 1 - 6 < A < 1 be a constant  such that  

4(1 - A) EIX11 q< (sq. (2.3) 

Take any positive integer k and positive integers l < i l < . . . < i  k satisfying 
i k____ A i k +1. Then by the Markov inequality and an inequality due to von Bahr and 
Esseen [5 3, 

P[  S , , -  S,~_ : > --(5 b( ik)] >= 1 - P[I S ,~ -  S~_ ~t > c5 b(ik)] 

> 1 --2((5b(ik))-q(ik--ik-~) EIX~ Iq>�89 (2.4) 

The last inequality above follows from (2.3) and the assumption that bq(n)>n. 
Therefore 

k k 

> P [S~ - S~ _~ > - (5 b(ik) , S~ _~ > (6 + 0 b(ik), S~ _~ > ~ b (ik) . . . . .  S~ > e b(ik) ] 
k- -1  

>. . .  > (�89 ~ P[S~ > ((k - 1) (5 + e) b(ik) ] . (2.5) 

Let cr and m o > 2 / ( 1 - A ) .  Then for m>mo,  [ccm]>Am and 

> ((1 - ~) m)' (�89 +2 p [St ~"J > ((r + 1) 8 + e) b(m)]. (2.6) 
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The last relation follows from (2.5) and the multinomial expansion of 

I~s~= ~b(i~l since there are at most r distinct factors in each of the ( m -  [c~ ml) r 
i ml 

terms (not necessarily distinct) of the multinomial expansion. 

Lemma 3. With the same notations as in Lemma 1, i f  E N  ~ < oo for some 0 < 7 < 1, 
then ~ n ~ - 1 p [S,  > b(n)] < oe. Now assume that 

EN" <oo for some r >  l. (2.7) 

(i) I f  E X  1 =0, E[Xl[q<c~ for  some 1 < q < 2  and bq(n)>n for  all large n, then 
given any 6 > O, there exists c~ such that 1 -  (3 < c~ < 1 and 

y~ n r-1 P [S~.j >__((r + 1) ~ + 1) b(n)] < oo. (2.8) 

(ii) I f  X~ is symmetric, then given any 0 < e < l ,  

n ~- a p [SL,,1 ->- b(n)] < oo. (2.9) 

Proof  By Lemma 1 (ii), E N  ~ < oo implies that ~ n ~- 1p[s ,  > b(n)] < oo if 
0 < 7 < 1. Now assume (2.7). To prove (i), since changing b(n) for finitely many n's 
does not change (2.7), we can without loss of generality assume that bq(n)>n 
for all n. If r is an integer, then (2.8) follows from Lemma 1 (i) and Lemma 2. If 
r is not an integer, then by Lemma 1 (ii), ~,,v-~-~l-~ ~,,~" ~TI~T.tS>b(,)1~OO,~- SO an 
application of Lemma 2 gives (2.8). To prove (ii), since X~ and - X1 have the same 
distribution, (2.7) implies that EN ~ < oo. An application of Lemmas 2 and 3 of 
[14] then proves (2.9) in a similar manner. 

Lemma4. Suppose X t ,  X2 . . . .  are independent symmetric random variables 
and a 1, a2, ... are positive constants. Let  X ' , - - X ,  ltlx,l<~,~, S ' ,=X~ +. . .  + X" and 
S, = X1 + " "  + X , .  Then for  any e > O, 

P IS, > e] > 1p  [S', > ~]. (2.10) 
t t l t t !  

Proof  Let X','= X , - X , ,  S~' = S , - S , .  By symmetry, (X',, X',') and (X',, -X ' , )  
have the same distribution. Hence by independence, (S',, S~) and (S',, -S~) have 
the same distribution. Therefore 

- -  t t  ! ~ I t  p[s '~> e] < P[S"  >_e, S, =>0] + P [ S , = e ,  S, _-_GO] 

=2P[S' ,  > e, S ' > O ] < 2 P [ S , > e ] .  

3. Proof of Theorems 

Proof  of  Theorem 1. Under the assumptions E X  1 = O, E IX1 [q for some 1 _<_ q ~ 2 
and ~ > 1/q, it follows from the corollary to Theorem 1 of [2] (see also Theorem 5 
of that paper) that the following statements are equivalent: 

E ( X ? )  ('+1)/~ < oo ; 

E I Z ( e n ~ ) < ~  for all 5>0;  

~ n ~ - l P [ S . > = e n ~ ] < ~  for some 5>0.  

(3.1) 

(3.2) 

(3.3) 
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We shall now show that these statements are equivalent  to each of the following 
statements" 

ENr(~n~)<oe for all e > 0 ;  (3.4) 

ENr(~n~)<oo for some e > 0 .  (3.5) 

Since N(e n ~) < L(e n~), (3.2) implies (3.4). Clearly (3.4) implies (3.5). Since q ~ > 1, 
it follows from L e m m a  3 that (3.5) implies (3.3). The proof  of Theorem 1 is com- 
plete. 

Proof of Theorem 2. By Theorem 4 of [21, (1.13) is equivalent to each of the 
following statements:  

~ n r - l p [ s u p ( k l o g k ) - l / 2 S k > ~ ] < o o  for all e>(2r) l /2~;  (3.6) 
k>n 

~ n r - l p [ s , > e ( n l o g n ) l / 2 ] < o o  for some e > 0 .  (3.7) 

Clearly (3.6) <=>(1.14) ~ (1.17) ~ (3.7). It is obvious from (1.8) that  (1.14) ~ (1.15). 
Since ( 1 . 1 5 ) ~  (1.16), it remains to prove ( 1 . 1 6 ) ~  (3.7). This implication follows 
from L e m m a  3 since e2n log n > n for all large n. 

Proof of  Theorem4. To prove (i), since O<e<(2rEX2)  1/2, we can choose 
c~ > 1 and c such that  

~ < ( 2 r  VarXi  f ~1/2 (3.8) *[IX~l _<c]j �9 

Define 

X'n=XnI[ix.[<_c], S" = X ~  + - - .  + X ; ,  "c 2 = E ( X ; )  2. (3.9) 

Since X~ is symmetric,  EX', = 0 and we obtain by L e m m a  4 that  

P IS, > e e (n log n) 1/2] > ~ p [S', _ ~ e (n log n) ~/2]. (3.10) 

Choose  k=>6 such that ~ e / z < ( k - 2 )  ~/2. Then by an inequality due to Esseen 
[-4, p. 75-76],  

P[S',/(~ n 1/2) ~ (~ e/z)(log n) 1/2] 

> 1 - rb((c~ e/z) (log n) 1/2) - c 1 n - 1/2 { 1 + (c~ e/v) 3 (log n) 3/~ } 

�9 exp ( - e2 ~ 2 log n/(2 ~2)) _ c2 n-(k- 2)/2 

= (c + o(1))(log n) -1/2 exp( - cde 2 log n/(2 ~2)), (3.11) 

where c, q ,  c2 are positive constants and �9 is the distr ibution function of the 
s tandard  normal  distribution. F r o m  (3.8) and (3.11), we obtain that  

n ~- a p [S', => c~ e (n log n) 1/2] = oo, 

so by (3.10), 

n "-1 P[S,  >~e(n log n) 1/2] = oo. (3.12) 

If 0 < r <  1, then by L e m m a  3, (3.12) implies that  EN~(e(nlogn)a/2)=og. Now 
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assume r >  1 and take 1 < f i < a .  It is easy to see that  (3.12) implies that  

2 nr- 1 p [ s t  B _ 2"1 > e(n log n) 1/2] = OO. (3.13) 

Therefore  by L e m m a  3 (ii), ENr(e(n log n) 1/2) = oe. Hence we have proved part  (i) 
of Theorem 4.  

To  prove part  (ii) of the theorem, since X 1 need not  be symmetric, instead of 
defining X', by (3.9), we define 

2('. = X .  Itlx. I <=cl - EX11tlx , [=<cl, "c2 = E(X1) 2, 
(3.14) 

! I [ !  / l  1! X'~ '=X. -X '~ ,  S ' ,=XI  + . . . + X , ,  S , = X 1  + . . . + X ' , ,  

where we choose c~> 1 and c so large that  (3.8) is satisfied and 

2rE(X~')2<(Oe) 2 with 1 < 1 + 0 < ~ .  (3.15) 

Take  p >  1 such that  f l + 0 < ~ .  Then  

n r-1 P[S,>[3e(n log n) 1/2] + 2  nr-1P[[S'~'] > Oe(n log n) 1/2] 

> ~ n ~- 1 p [S', > c~ e (n log n) 1/2]. (3.16) 

As before, making use of Esseen's inequality as in (3.11), we obtain that  

n ~-i P[S', >c~e(n log n) 1/2] = OO. (3.17) 

In view of (3.15), it follows from Theorem 3 of [8] that  

nr -1P[I  S~'I > 0 a(n log n) 1/z] < oe. (3.18) 

F r o m  (3.16), (3.17) and (3.18), it follows that  

'~  n r-1 p [ s , > f l e ( n  log n) 1/2] = o0. (3.19) 

Take  0 < 6 < 1 such that  (1 - 6) - 1/2 {(r -[- 1) (~ q- 1 } < ft. It is easy to see from (3.19) 
that for all c~ with 1 - ~ < c~ < 1, 

n ~- 1 p [S~,I > ((r + 1) 6 + 1) a(n log n) 1/2] = oc. (3.20) 

Since e 2 (n log n)>  n for all large n, it follows from L e m m a  3(i) that  

EN~(e(n log r0 t/z) = OO (3.21) 

when r >  1. When  0 < r <  1, (3.19) implies (3.21) by L e m m a  3. 

4. General Upper-Class Boundaries 
and the Convergence Rate of Tail Probabilities for Sample Sums 

In [13, pp. 339-340],  Strassen has proved the following theorem: If 
S , = X i + . . . + X , ,  where X 1 , X  2 . . . .  are i.i.d, with E X i = 0 ,  EX~=cr  2 and 
and EIXi lP<oo  for some p > 2 ( r + l ) ,  and if t-1/2b(t)$oo while t-qb(t)$O as t~oo 
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for some q>  1/2, then the following two statements are equivalent: 

oo 

t r- 3/2 b(t) exp( - b 2 (t)/2 cr 2 t) d t < oo ; (4.1) 
1 

E~E(b(n)) < o9. (4.2) 

In particular, if for all large t, 

b(t) = (2 a 2 t(r log t +3  log2 t + log3 t + . . .  + log k_ 1 t + c5 log k t)} 1/2 , 

where log 2 t = log log t, etc., then 

EL~(b(n))=oo or <oo according as 6<1  or c5>1. (4.3) 

In what follows, we shall assume E X  1 = 0  and consider boundaries b(t) which 
satisfy (4.1). We have seen in (1.6) that if b(t )=t  ~ (~>�89 then (4.2) holds if and 
only if EJXlff+l)/~<oo, i.e., E(hv(rXll))r+l<oo, where T ( t ) = t  1/~ is the inverse 
function of b(t). Likewise Theorem 3 asserts that if b(t) = e(t log t) ~/2, t > 1, where 
e>(2r)l/acr, then (4.2) holds if and only if E(TJ(fX~I)) "+1 <0% where 

t/*(t) ~ t2/(2 e 2 log t) 

is the inverse function of b(t). This observation suggests the general analogue in 
Theorems 5 and 6 below for the last exit time of the region bounded by general 
boundaries b(t) and - b(t). 

In the proof of Theorems 1, 2 and 4 in Section 3, we have seen that the relation 
(4.2) is closely related to the convergence of a certain type of series. In [1], Baum 
and Katz studied some series of this type and proved that for ~>2 ~ and r>0 ,  the 
following three statements are equivalent: 

EIXll~r+l~/~<oe and in the case ~<1,  E X  1 =0;  (4.4) 

~n~- lP[ supk -~[S k t>e]<o o  for all e>0 ;  (4.5) 
k >=n 

~'.n~-lP[[S,l>en~]<oo for some e>0 .  (4.6) 

This result generalizes an earlier theorem of Hsu and Robbins [6] and Erd6s [3] 
who consider the special case e = r =  1, and the proof given by Baum and Katz 
follows closely that of Erd6s. In [2], by using a different approach, Chow and 
Lai have obtained inequalities, called Paley-type inequalities, which relate the 
series in (4.5) or (4.6) with EIXII ~+~)/~ and thereby give another proof of the 
result of Baum and Katz. By an extension of the method of [2], we can prove 
the following generalization of the Hsu-Robbins-Erd6s-Baum-Katz theorem. 

Theorem5. Let Xi ,  X 2 . . . .  be i.i.d, random variables such that EX1 = 0  and 
EJXllq<oo for some 1<=q<2, and let S , = X I  + . . . + X , .  Let b be a real-valued 
function on [1, oo) satisfying the following condition: 

b(t) is ultimately nondecreasing, lira infb(6t)/b(t)> 1 for all large c~, and 
t ~ o ~  

there exists fl > 1/q such that lira t -~b(t)= oo. (4.7) 
t ~ o o  
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Define ~(x)= in f{ t :  b(t)> x} for x >O. Then for any r > 0 ,  the following statements 
are equivalent: 

E(~(X~-)) ~+~ < oo ; (4.8) 

~ n ' - l  P[maxS;>b(en)]<oo for all 8 > 0 ;  (4.9) 
j<=n 

~n'-lP1-S,>eb(en)] <Do for some a > 0 ;  (4.10) 

EE (b (n)) < Do ; (4.11) 

EN~(b(n)) < Do. (4.12) 

Proof We shall prove (4.8) ~ (4.9) ~ (4.11) ~ (4.12) ~ (4.10) ~ (4.8). To prove 
(4.8) ~ (4.9), without loss of generality, we can assume that E IXll 4:0. Let k be 
a positive integer such that  k(qfl-1)>r. We note that  

P [max S~ > b (8 n)] __< P [max Xj > b (e n)/2 k] 
j<-n j<n 

+ e Emax Sj > b (8 n), max Xj <_ b (~ n)/2 k]. (4.13) 
j= d=<n 

For large t, x>b(t) implies that  ~'(x)>_t. Therefore for all large n, 

P[maxXj>b(en)/2k]<nP[Xl>b(en)/2k]<nP[e(2kX~-)>en ]. (4.14) 

Define zI")=inf{j> 1: S;>b(~n)/2k}, z(2")=inf{j> 1" S~i~+~-S~t,~>=b(~n)/2k }, etc. 
Then 

P [max  Sj>_b(en), maxX;<b(en)/2k] <__P[zl")<n for i=  1, . . . ,  k] 
j<n j<n 

= pk [Z~,) < n] = pk [max Sj > b (8 n)/2 k] 
j<=n 

< {(2k/b(en))~E[S, Iq k, by the submartingale inequality 

<{(4k/b(en))qnEIXlhq} k, by the Esseen-vonBahr inequality I-5] 

=o(n-k(qp-1)). (4.15) 

The last relation above follows from the assumption that lira n-'b(n)=ov. It is 
easy to see from (4.7) that  " ~  

lim sup tP(~lx)/~P(x) < ~ for any ~ > 1. (4.16) 
x ~ o o  

Hence (4.8) implies that  E(TJ(2kXI+))~+~ < ~ ,  and therefore 

n~p1-~P(2kX~-)>en] < ~ .  (4.17) 

Since k(qfl-1)>r, it follows from (4.15) that  

n ~ - l P [ m a x  Sj>b(en), max Xj<b(en)/2kl < ~ .  (4.18) 
j<n j<n 

From (4.13), (4.14), (4.17) and (4.18), we obtain (4.9). 
We shall now prove that  (4.9) ~ (4.11). Without  loss of generality, we can 
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assume that b(t) is nondecreasing for t >  1. We need only note that 

2riP[S.>b(n) for some n>2i]< 2 r i ~ P [  max S ,>b(U)]  
i = 1  i = 1  j ~ i  n<2 j+l  

2rJP[ max S,>b(2J)] 
~Cj~=l n~2J+l - -  

< cl ~ Z mr-1 P [max S, > b (m/4)] 
j = O  2J+l_--<m<2 j + 2  n<=m 

=cl  ~ m~-IP[max S,>_>b(m/4)]. 
m = 2  n<m 

It is obvious from (1.8) that (4.11) ~ (4.12). To prove (4.12) ~ (4.10), we apply 
Lemma 3. If 0 < r <  1, then the desired result is immediate from Lemma 3. Now 
assume that r >  1. By (4.7), bq(n)>n for all large n. Therefore if (4.12) holds, then 
by Lemma 3, there exists �89 < ~ < 1 such that 

Z n~-I P[St~,~>(�89 1)+ l)b(n)] <oo. (4.19) 

It is obvious that (4.19) ~ (4.10). 
To prove (4 .10)~  (4.8), we follow the argument due to ErdSs [3]. For 

k = l  . . . .  ,n, let A(k")=[Xk>2eb(en)], B(k')=[I ~ XjI<eb(en)]. Since f l>l /q  
l < j ~ n , j * k  

and EJX 1 [q<~,  n -p S,_1 -~ 0 a.s. by the Marcinkiewicz-Zygmund strong law of 
large numbers. Therefore by (4.7), lira P(B~'))=I. Also for all large n, P(A~ ~)) 

t l~co 

<P IX  1 > n I/~] =o(1/n) since E IX 1 f q < ~ .  Therefore we can choose no such that 
for n>=no, P(B~")-nP(A('))<-I/2. Hence for n>no, 

P IS, > e b (e n)] > ~ (') (') (') (') = {P(Ak c~Bk ) -P(Ak  ~(Aa w...wA~)l))} 
k = l  

> ~ P(A(k ")) (P(B(~ ")) - nP(A~')))>�89 nP(A~")). 
k = l  

Hence (4.10) implies that 

n~P[X1 __> 2eb(e n)] <oo. (4.20) 

Since 7J(x) > t  implies x>=b(t) for all large t, it is easy to see using (4.16) that (4.20) 
implies (4.8). 

By a modification of the proof of Theorem 5, we obtain the following theorem 
which considers boundaries b(t) satisfying weaker growth conditions than (4.7) 
but under stronger two-sided moment conditions on X~. 

Theorem 6. Let X1, X2, ... be i.i.d, random variables such that E X  1 = 0  and 
EIX1]Z+~ for some 0>0.  Let S,=X~ + . . .+X , ,  and let b be a real-valued 
function on [1, oe) satisfying the following condition: 

b(t) is ultimately nondecreasing, lira infb(6 t)/b(t) > 1 
t~oO 

for all large 5 and lira (t log t)-l/:b(t)= oo. (4.21) 
t~oO 
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Define 7 J ( x ) = i n f { t  - b(t)> x} for x>O. Then for any r > 0 ,  the statements (4.8), 
(4.9), (4.10), (4.11) and (4.12) are equivalent. 

Proof W e  first p rove  (4.8) ~ (4.9). W i t h o u t  loss of general i ty ,  we can  a s s u m e  
tha t  0 < 0 < 1 .  C h o o s e  a pos i t ive  in teger  k such  tha t  k 0 / 2 > r .  Le t t i ng  a2=EX~, 
we can  w i t h o u t  loss of genera l i ty  a s s u m e  tha t  ~ # 0. As in  the  p roo f  of T h e o r e m  5, 
we o b t a i n  tha t  

P[max Sj> b(~n), max Xj <b(en)/2k] __<Pk [ m a x  Sj> b(en)/2k]. (4.22) 
= = j < n  

By the  L6vy i n e q u a l i t y  (cf. [10, p. 248]), 

P[max S~> b(~n)/2k~ <2 P [ S , >  b@n)/2k-(2na2) 1/2] 

< 2P IS, > b(e n)/3 k]. (4.23) 

U s i n g  (1.11), we o b t a i n  t ha t  for all  large n 

pk[S,>b(en)/3k] < {1 - rb(b(en)/(3kanX/2))+cn-~ 

< cl exp ( -  b 2 (e n)/(18 k a 2 n)) + c 2 n- kO/2 (4.24) 

where  c, cl a n d  c 2 are pos i t ive  cons tan t s .  Since lim b2(en)/(nlogn)=oe a n d  

kO/2>r, it fol lows f rom (4.23) a n d  (4.24) tha t  " ~  

n r- 1 pk [ m a x  Sj > b (~ n)/2 k] < oo. (4.25) 
j ~ n  

U s i n g  (4.22) a n d  (4.25), we c an  p rove  the  i m p l i c a t i o n  (4.8) ~ (4.9) as in T h e o r e m  5. 
T h e  p r o o f  of (4.9) ~ (4.11) in  T h e o r e m  5 carr ies  over  a n d  since lira b 2 (n)/n = oo, 

so does the  p r o o f  of (4.12) ~ (4.10). S ince  EX~ <oo, (n log n) -1/2 S n ~ 0 a.s. a n d  
P I X  1 ~ n 1/2] =o(1/n). There fo re  we can  aga in  app ly  the a r g u m e n t  due  to Erdt is  

as in  T h e o r e m  5 to p rove  (4.10) ~ (4.8). 

Acknowledgment. The authors wish to thank Professor Y.S. Chow for his encouragement and 
suggestions. 

References 

1. Baum, L., Katz, M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc, 120, 
108-123 (1965) 

2. Chow, Y.S., Lai, T. L.: Some one-sided theorems on the tail distribution of sample sums with 
applications to the last time and largest excess of boundary crossings. Trans. Amer. Math. Soc. 
208, 51-72 (1975) 

3. Erd/Ss, P.: On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286-291 (1949) 
4. Esseen, C. G.: Fourier analysis of distributions of functions. A mathematical study of the Laplace- 

Gaussian law. Acta Math. 11, 1-125 (1945) 
5. Esseen, C. G., yon Bahr, B.: Inequalities for the rth absolute moment of a sum of random variables, 

1 <r<2.  Ann. Math. Statist. 36, 299-303 (1965) 
6. Hsu, R L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. 

Sci. U.S.A. 33, 25-31 (1947) 
7. Katz, M.: The probability in the tail of a distribution. Ann. Math. Statist. 34, 312-318 (1963) 
8. Lai, T. L.: Limit theorems for delayed sums. Ann. Probability 2, 432-440 (1974) 



Boundary Crossings, Strong Law and LIL 71 

9. Lai, T.L.: On r-quick convergence and a conjecture of Strassen. To appear in Ann. Probability 4 
(1976) 

10. Lo6ve, M.: Probability Theory. Princeton: Van Nostrand (1963) 
ll.  Slivka, J.: On the law of the iterated logarithm. Proc. Nat. Acad. Sci. U.S.A. 63, 289-291 (1969) 
12. Slivka, J., Severo, N.C.: On the strong law of large numbers. Proc. Amer. Math. Soc. 24, 729 734 

(1970) 
13. Strassen, V.: Almost sure behavior of sums of independent random variables and martingales. 

Proc. 6th Berkeley Sympos. Math. Statist. Probab. Univ. Calif., 2, 315-343 (1967) 
14. Stratton, H.: Moments of oscillations and ruled sums. Ann. Math. Statist. 43, 1012-1016 (1972) 

Received June 11, 1975 


