On the Last Time and the Number of Boundary Crossings Related to the Strong Law of Large Numbers and the Law of the Iterated Logarithm

T. L. Lai*1 and K. K. Lan²

¹ Department of Mathematical Statistics, Columbia University New York, N.Y. 10027, USA

² Department of Mathematics, Queens College, CUNY, Flushing, N.Y. 11367, USA

1. Introduction and Summary

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with $EX_1 = 0$, $S_n = X_1 + \cdots + X_n$, and let $(b(n))_{n \ge 1}$ be a sequence of real numbers. Define

$$N(b(n)) = \sum_{n=1}^{\infty} I_{[S_n \ge b(n)]},$$
(1.1 a)

$$\tilde{N}(b(n)) = \sum_{n=1}^{\infty} I_{[|S_n| \ge b(n)]}.$$
(1.1 b)

Kolmogorov's strong law of large numbers can be stated in terms of the random variable $\tilde{N}(\varepsilon n)$ as follows:

$$P[\tilde{N}(\varepsilon n) < \infty] = 1 \quad \text{for every } \varepsilon > 0.$$
(1.2)

To obtain a stronger result than Kolmogorov's strong law, Slivka and Severo [12] have discussed the moments of $\tilde{N}(\varepsilon n)$ and they proved that for $r \ge 1$,

$$E|X_1|^{r+1} < \infty \Rightarrow E\tilde{N}^r(\varepsilon n) < \infty \quad \text{for all } \varepsilon > 0.$$
(1.3)

Motivated by the Marcinkiewicz-Zygmund extension of Kolmogorov's strong law, Stratton [14] proved that for $r \ge 1$ and $\alpha > \frac{1}{2}$,

$$E|X_1|^{(r+1)/\alpha} < \infty \Leftrightarrow E\tilde{N}^r(\varepsilon n^{\alpha}) < \infty \quad \text{for all } \varepsilon > 0.$$
(1.4)

There is in fact a misprint in [14] where the requirement $\alpha > 0$ should be replaced by $\alpha > \frac{1}{2}$.

An earlier result to strengthen almost sure convergence for normalized sample sums was due to Strassen [13] who, instead of N(b(n)) and $\tilde{N}(b(n))$, considered

$$L(b(n)) = \sup \{ n \ge 1 : S_n \ge b(n) \},$$
(1.5a)

$$\tilde{L}(b(n)) = \sup \{n \ge 1 : |S_n| \ge b(n)\}$$
 (sup $\emptyset = 0$). (1.5b)

^{*} Research supported by ONR Grant N00014-67-0108-0018.

In other words, Strassen considers the last exit time $\tilde{L}(b(n))$ while Slivka and Severo consider the number of exits $\tilde{N}(b(n))$. Again Kolmogorov's strong law can be restated in terms of the last exit time $\tilde{L}(\varepsilon n)$ as $P[\tilde{L}(\varepsilon n) < \infty] = 1$ for all $\varepsilon > 0$, and it follows easily from the results of Baum and Katz (see [1, 9, 13] or Section 4 below) that for $\alpha > \frac{1}{2}$ and r > 0,

$$E|X_1|^{(r+1)/\alpha} < \infty \Leftrightarrow E\tilde{L}(\varepsilon n^{\alpha}) < \infty \quad \text{for all } \varepsilon > 0.$$
(1.6)

An obvious connection between $\tilde{L}(b(n))$ and $\tilde{N}(b(n))$ is the following:

$$\tilde{N}(b(n)) \leq \tilde{L}(b(n)). \tag{1.7}$$

Likewise we have the inequality:

$$N(b(n)) \leq L(b(n)). \tag{1.8}$$

Making use of (1.6) and (1.7), together with Lemma 3 in Section 2, we can prove that in (1.4), the condition $r \ge 1$ as imposed by Stratton can be dropped. In fact we shall prove in Section 3 the following one-sided theorem involving $N(\varepsilon n^{\alpha})$ which then immediately implies the corresponding two-sided result involving $\tilde{N}(\varepsilon n^{\alpha})$.

Theorem 1. Let $X_1, X_2, ...$ be i.i.d. random variables with $EX_1 = 0$, $E|X_1|^q < \infty$ for some $1 \le q \le 2$. Let $\alpha > 1/q$ and r > 0. Set $S_n = X_1 + \cdots + X_n$ and define $N(\varepsilon n^{\alpha})$ as in (1.1 a). Then

$$E(X_1^+)^{(r+1)/\alpha} < \infty \Leftrightarrow EN^r(\varepsilon n^{\alpha}) \quad for \ all \quad \varepsilon > 0$$

$$\Leftrightarrow EN^r(\varepsilon n^{\alpha}) \quad for \ some \ \varepsilon > 0.$$

We remark that for the one-sided result in Theorem 1, we require the twosided moment condition $E|X_1|^q < \infty$ for some $1 \le q \le 2$. A counter-example to show that this condition cannot be dropped can be found in Section 2 of [2].

The law of the iterated logarithm can be formulated in terms of $\tilde{N}(\varepsilon(2n \log \log n)^{1/2})$ as follows: If $EX_1 = 0$ and $EX_1^2 = \sigma^2$, then

$$P[\tilde{N}(\varepsilon(2n\log\log n)^{1/2}) < \infty = 1 \quad \text{if } \varepsilon > \sigma,$$

=0 if $\varepsilon < \sigma.$ (1.9)

However, Slivka [11] showed that $E\tilde{N}^r(\varepsilon(2n \log \log n)^{1/2}) = \infty$ for all r > 0 and $\varepsilon > 0$. In [14], Stratton sharpened Slivka's result and found that if X_1 is symmetric with $EX_1 = 0$ and $EX_1^{2(m+1)} < \infty$ for some positive integer *m*, then

 $E\tilde{N}^{r}(\sigma(2(1+\delta)n\log n)^{1/2}) < \infty \quad \text{if } 1 \le r < \min(m, 1+\delta);$ (1.10a)

$$E\tilde{N}^{r}(\sigma(2(1+\delta)n\log n)^{1/2}) = \infty \quad \text{if } r > 1+\delta.$$
(1.10b)

There is in fact a misprint in Stratton's paper [14, p. 1012] where the moment condition $EX_1^{2m} < \infty$ should be changed to $EX_1^{2(m+1)} < \infty$ and the factor σ should be added to $(2(1+\delta) n \log n)^{1/2}$. Stratton's proof makes use of the Berry-Esseen bound, the form he quotes being the following result of Katz [7]:

$$E|X_1|^p < \infty \Rightarrow \sup_{x} |\Phi(x) - P[S_n \le \sigma n^{1/2} x]| \le C(p, \sigma^{-p} E|X_1|^p) n^{-(p-2)/2}, \quad (1.11)$$

where $C(p, \eta)$ is a universal constant depending only on p and η and Φ is the distribution function of the standard normal distribution. Now (1.11) is valid for 2 and, as is well known (cf. [4, p. 53]), it cannot be extended to the case

Boundary Crossings, Strong Law and LIL

p>3. However, Stratton's proof deals with the case $p=2(m+1)\geq 4$ and therefore (1.11) cannot be applied as he stated. What should be applied instead is the following result due to Esseen [4, p. 73]: If $E|X_1|^k < \infty$ for some integer $k\geq 3$, then for $|x|\geq \{(1+\delta)(k-2)\log n\}^{1/2}$,

$$|\Phi(x) - P[S_n \le \sigma n^{1/2} x]| \le c(\delta, \beta_1, \dots, \beta_k) n^{-(k-2)/2} / (1+|x|^k),$$
(1.12)

where δ is any fixed number with $0 < \delta < 1$ and $c(\delta, \beta_1, ..., \beta_k)$ is a finite constant depending only on δ and the moments $\beta_i = E[X_1]^i$, i = 1, ..., k.

If we apply (1.12) in place of (1.11), we can indeed prove Stratton's result. However, by applying a result of [2] instead, we can drop the assumption that X_1 is symmetric and weaken the moment condition $EX_1^{2(m+1)} < \infty$; also we shall no longer require *m* to be an integer and we can prove the one-sided theorem involving $N(\sigma(2(1+\delta)n\log n)^{1/2})$ which then immediately implies the corresponding result for the number of exits \tilde{N} of the two-sided region studied by Stratton. Our result, which will be proved in Section 3, is the following theorem:

Theorem 2. Let $X_1, X_2, ...$ be i.i.d. random variables such that $EX_1 = 0$, $\infty > EX_1^2 = \sigma^2 > 0$. Set $S_n = X_1 + \cdots + X_n$ and define $N(\varepsilon(n \log n)^{1/2})$ as in (1.1a) and $L(\varepsilon(n \log n)^{1/2})$ as in (1.5a). Then for any r > 0, the following statements are equivalent:

$$\int_{[X_1>e]} X_1^{2(r+1)} (\log X_1)^{-(r+1)} dP < \infty.$$
(1.13)

$$EL^{\epsilon}(\varepsilon(n\log n)^{1/2}) < \infty \quad \text{for all } \varepsilon > (2r)^{1/2}\sigma.$$
(1.14)

$$EN^{r}(\varepsilon(n\log n)^{1/2}) < \infty \quad \text{for all } \varepsilon > (2r)^{1/2} \sigma.$$
(1.15)

$$EN^{r}(\varepsilon(n\log n)^{1/2}) < \infty \quad for \ some \ \varepsilon > 0. \tag{1.16}$$

$$EL'(\varepsilon(n\log n)^{1/2}) < \infty \qquad for some \ \varepsilon > 0. \tag{1.17}$$

As an easy corollary of Theorem 2, we obtain the following analogue for \tilde{L} and \tilde{N} :

Theorem 3. Let $X_1, X_2, ...$ be i.i.d., $S_n = X_1 + \cdots + X_n$ and define $\tilde{N}(\varepsilon(n \log n)^{1/2})$, $\tilde{L}(\varepsilon(n \log n)^{1/2})$ as in (1.1 b) and (1.5 b) respectively. Then for any r > 0, the following statements are equivalent:

$$EX_1 = 0, \quad EX_1^2 = \sigma^2 \quad and \quad E|X_1|^{2(r+1)}(1 + \log^+|X_1|)^{-(r+1)} < \infty.$$
(1.18)

$$EL'(\varepsilon(n\log n)^{1/2}) < \infty \qquad for \ all \ \varepsilon > (2r)^{1/2} \sigma. \tag{1.19}$$

$$E\tilde{N}^{r}(\varepsilon(n\log n)^{1/2}) < \infty \quad \text{for all } \varepsilon > (2r)^{1/2} \sigma.$$
(1.20)

$$E\tilde{N}^{r}(\varepsilon(n\log n)^{1/2}) < \infty \quad \text{for some } \varepsilon > 0.$$
(1.21)

$$EL'(\varepsilon(n\log n)^{1/2}) < \infty \qquad for \ some \ \varepsilon > 0. \tag{1.22}$$

The equivalence between (1.18) and (1.22) was first discovered in [9] where it was proved by applying Theorem 3 of [8]. This equivalence, as pointed out in [9], sharpens an earlier result of Strassen [13] who, by embedding the sample sum process in Brownian motion, has shown that if $EX_1 = 0$, $EX_1^2 = \sigma^2$ and $E|X_1|^p < \infty$ for some p > 2(r+1), then (1.19) holds. In [9], it is also proved that under the condition (1.18),

$$E\tilde{L}(\varepsilon(n\log n)^{1/2}) = \infty \quad \text{if } \varepsilon < (2r)^{1/2}\sigma, \qquad (1.23)$$

a result first obtained by Strassen under the stronger moment condition $E|X_1|^p < \infty$ for some p > 2(r+1). In view of (1.7), Stratton's result (1.10b) implies (1.23), but Stratton has to assume that X_1 is symmetric with $EX_1^{2(m+1)} < \infty$ for some integer m > r. In Section 3, we shall prove the following theorem which completely generalizes the results of Slivka and Stratton.

Theorem 4. Let X_1, X_2, \ldots be *i.i.d.* random variables, $S_n = X_1 + \cdots + X_n$ and define $N(\varepsilon(n \log n)^{1/2})$ as in (1.1 a). Let r > 0.

(i) If X_1 is symmetric, then

$$EN^{r}(\varepsilon(n\log n)^{1/2}) = \infty \quad for \ all \ 0 < \varepsilon < (2r E X_{1}^{2})^{1/2}.$$
(1.24)

(Since we do not assume any moment condition on X_1 , EX_1^2 in (1.24) can be infinite.)

(ii) If X_1 satisfies the moment condition (1.18), then (1.24) still holds.

From Theorems 3 and 4, we see that for sample sums, Strassen's strengthening of the law of the iterated logarithm in terms of the finiteness of the *r*-th moment of the last exit time $\tilde{L}(\varepsilon(n \log n)^{1/2})$, a concept which he calls in [13] the *r*-quick lim sup, turns out to be equivalent to the finiteness of the *r*-th moment of the number of exits $\tilde{N}(\varepsilon(n \log n)^{1/2})$ considered by Stratton. Furthermore, in view of (1.6) and Theorem 1, the refinement of the strong law of large numbers by Severo, Slivka and Stratton, who consider the finiteness of *r*-th moment of $\tilde{N}(\varepsilon n^{\alpha})$, again turns out to be equivalent to the notion of *r*-quick convergence studied by Strassen [13] and Lai [9], who consider the *r*-th moment of $\tilde{L}(\varepsilon n^{\alpha})$ instead. Some statistical applications showing the usefulness of the concept of *r*-quick convergence can be found in [9] and the references thereof.

So far we have discussed boundaries of the form $\varepsilon n^{\alpha} (\alpha > 1/2)$ and $\varepsilon (n \log n)^{1/2}$ to obtain the *r*-quick analogues of the Marcinkiewicz-Zygmund strong law and the law of the itered logarithm. In Section 4, we shall extend our results to general boundaries and in this connection, we obtain a general form of the Hsu-Robbins-Erdös-Baum-Katz theorem on convergence rates for the tail probabilities of sample sums.

2. Some Preliminary Lemmas

Lemma 1. Let $X_1, X_2, ...$ be i.i.d. random variables, $S_n = X_1 + \cdots + X_n$ and let $(b(n))_{n \ge 1}$ be a nondecreasing sequence of nonnegative numbers. Define N = N(b(n)) as in (1.1 a) and let $N_m = \sum_{n=1}^m I_{[S_n \ge b(n)]}$. Assume that $EN^r < \infty$ for some r > 0. (i) If $r \ge 1$, then $\sum_{n=1}^{\infty} EN_n^{r-1} I_{[S_n \ge b(n)]} < \infty$. Boundary Crossings, Strong Law and LIL

(ii) If r > 0 and r is not an integer, then $\sum_{n=1}^{\infty} n^{r-[r]-1} E N_n^{[r]} I_{[S_n \ge b(n)]} < \infty$.

Proof. (i) is an immediate consequence of the following relation:

$$N^{r} = N^{r-1} \sum_{n=1}^{\infty} I_{[S_{n} \ge b(n)]} \ge \sum_{n=1}^{\infty} N_{n}^{r-1} I_{[S_{n} \ge b(n)]}.$$
(2.1)

If r > 1, then (ii) follows directly from (i). Assume that 0 < r < 1. It is easy to see that $(x+1)^r - x^r$ is decreasing in x > 0. Let $N_0 = 0$. Then

$$EN_{m}^{r} = E\sum_{n=1}^{m} (N_{n}^{r} - N_{n-1}^{r}) = E\sum_{n=1}^{m} (N_{n}^{r} - N_{n-1}^{r}) I_{[S_{n} \ge b(n)]}$$
$$\geq E\sum_{n=1}^{m} (n^{r} - (n-1)^{r}) I_{[S_{n} \ge b(n)]} \ge r\sum_{n=1}^{m} n^{r-1} EI_{[S_{n} \ge b(n)]}$$

Letting $m \to \infty$ above gives the desired conclusion.

Lemma 2. With the same notations as in Lemma 1, assume that $EX_1 = 0$, $E|X_1|^q < \infty$ for some $1 \le q \le 2$ and $b^q(n) \ge n$ for all n. Then given any positive integer r and $0 < \delta < 1$, there exist positive constants α , C and integer m_0 depending only on r, δ , q and $E|X_1|^q$ such that $1-\delta < \alpha < 1$ and for all $m \ge m_0$ and $\varepsilon > 0$,

$$EN_m^r I_{[S_m \ge \varepsilon b(m)]} \ge Cm^r P[S_{[\alpha m]} \ge ((r+1)\delta + \varepsilon)b(m)].$$

$$(2.2)$$

Proof. Let $1 - \delta < A < 1$ be a constant such that

$$4(1-A) E |X_1|^q \le \delta^q.$$
(2.3)

Take any positive integer k and positive integers $1 \leq i_1 \leq \cdots \leq i_k$ satisfying $i_k \geq A i_{k+1}$. Then by the Markov inequality and an inequality due to von Bahr and Esseen [5],

$$P[S_{i_{k}} - S_{i_{k-1}}] \ge -\delta b(i_{k})] \ge 1 - P[|S_{i_{k}} - S_{i_{k-1}}| > \delta b(i_{k})]$$
$$\ge 1 - 2(\delta b(i_{k}))^{-q}(i_{k} - i_{k-1}) E |X_{1}|^{q} \ge \frac{1}{2}.$$
(2.4)

The last inequality above follows from (2.3) and the assumption that $b^q(n) \ge n$. Therefore

$$P\left(\bigcap_{j=1}^{k} \left[S_{i_{j}} \ge \varepsilon b(i_{j})\right]\right) \ge P\left(\bigcap_{j=1}^{k} \left[S_{i_{j}} \ge \varepsilon b(i_{k})\right]\right)$$
$$\ge P\left[S_{i_{k}} - S_{i_{k-1}} \ge -\delta b(i_{k}), S_{i_{k-1}} \ge (\delta + \varepsilon) b(i_{k}), S_{i_{k-2}} \ge \varepsilon b(i_{k}), \dots, S_{i_{1}} \ge \varepsilon b(i_{k})\right]$$
$$\ge \frac{1}{2} P\left(\bigcap_{j=1}^{k-1} \left[S_{i_{j}} \ge (\delta + \varepsilon) b(i_{k})\right]\right)$$
$$\ge \dots \ge \left(\frac{1}{2}\right)^{k-1} P\left[S_{i_{1}} \ge ((k-1)\delta + \varepsilon) b(i_{k})\right].$$
(2.5)

Let $\alpha = (1+A)/2$ and $m_0 \ge 2/(1-A)$. Then for $m \ge m_0$, $[\alpha m] \ge Am$ and

$$EN_{m}^{r}I_{[S_{m} \geq \varepsilon b(m)]} \geq E\left\{I_{[S_{[\alpha m]} \geq \varepsilon b([\alpha m]])}\left(\sum_{i=[\alpha m]}^{m}I_{[S_{i} \geq \varepsilon b(i)]}\right)^{r}I_{[S_{m} \geq \varepsilon b(m)]}\right\}$$
$$\geq \left((1-\alpha)m\right)^{r}(\frac{1}{2})^{r+1}P[S_{[\alpha m]} \geq \left((r+1)\delta + \varepsilon\right)b(m)].$$
(2.6)

The last relation follows from (2.5) and the multinomial expansion of $\left(\sum_{i=\lfloor \alpha m \rfloor}^{m} I_{[S_i \ge \varepsilon b(i)]}\right)^r$ since there are at most *r* distinct factors in each of the $(m - \lfloor \alpha m \rfloor)^r$ terms (not necessarily distinct) of the multinomial expansion.

Lemma 3. With the same notations as in Lemma 1, if $EN^{\gamma} < \infty$ for some $0 < \gamma < 1$, then $\sum n^{\gamma-1} P[S_n \ge b(n)] < \infty$. Now assume that

$$EN^{r} < \infty \quad \text{for some } r \ge 1. \tag{2.7}$$

(i) If $EX_1 = 0$, $E|X_1|^q < \infty$ for some $1 \le q \le 2$ and $b^q(n) \ge n$ for all large n, then given any $\delta > 0$, there exists α such that $1 - \delta < \alpha < 1$ and

$$\sum n^{r-1} P[S_{[\alpha n]} \ge ((r+1)\delta + 1)b(n)] < \infty.$$
(2.8)

(ii) If X_1 is symmetric, then given any $0 < \alpha < 1$,

$$\sum n^{r-1} P[S_{[\alpha n]} \ge b(n)] < \infty.$$

$$(2.9)$$

Proof. By Lemma 1 (ii), $EN^{\gamma} < \infty$ implies that $\sum n^{\gamma-1} P[S_n \ge b(n)] < \infty$ if $0 < \gamma < 1$. Now assume (2.7). To prove (i), since changing b(n) for finitely many *n*'s does not change (2.7), we can without loss of generality assume that $b^q(n) \ge n$ for all *n*. If *r* is an integer, then (2.8) follows from Lemma 1 (i) and Lemma 2. If *r* is not an integer, then by Lemma 1 (ii), $\sum n^{r-[r]-1} EN_n^{[r]} I_{[S_n \ge b(n)]} < \infty$, so an application of Lemma 2 gives (2.8). To prove (ii), since X_1 and $-X_1$ have the same distribution, (2.7) implies that $E\tilde{N}^r < \infty$. An application of Lemmas 2 and 3 of [14] then proves (2.9) in a similar manner.

Lemma 4. Suppose $X_1, X_2, ...$ are independent symmetric random variables and $a_1, a_2, ...$ are positive constants. Let $X'_n = X_n I_{\lfloor |X_n| \leq a_n \rfloor}$, $S'_n = X'_1 + \cdots + X'_n$ and $S_n = X_1 + \cdots + X_n$. Then for any $\varepsilon > 0$,

$$P[S_n \ge \varepsilon] \ge \frac{1}{2} P[S'_n \ge \varepsilon]. \tag{2.10}$$

Proof. Let $X''_n = X_n - X'_n$, $S''_n = S_n - S'_n$. By symmetry, (X'_n, X''_n) and $(X'_n, -X''_n)$ have the same distribution. Hence by independence, (S'_n, S''_n) and $(S'_n, -S''_n)$ have the same distribution. Therefore

$$P[S'_{n} \ge \varepsilon] \le P[S'_{n} \ge \varepsilon, S''_{n} \ge 0] + P[S'_{n} \ge \varepsilon, S''_{n} \le 0]$$
$$= 2P[S'_{n} \ge \varepsilon, S''_{n} \ge 0] \le 2P[S_{n} \ge \varepsilon].$$

3. Proof of Theorems

Proof of Theorem 1. Under the assumptions $EX_1 = 0$, $E|X_1|^q$ for some $1 \le q \le 2$ and $\alpha > 1/q$, it follows from the corollary to Theorem 1 of [2] (see also Theorem 5 of that paper) that the following statements are equivalent:

$$E(X_1^+)^{(r+1)/a} < \infty; (3.1)$$

 $EL'(\varepsilon n^{\alpha}) < \infty$ for all $\varepsilon > 0;$ (3.2)

$$\sum n^{r-1} P[S_n \ge \varepsilon n^{\alpha}] < \infty \quad \text{for some } \varepsilon > 0.$$
(3.3)

We shall now show that these statements are equivalent to each of the following statements:

$$EN^{r}(\varepsilon n^{\alpha}) < \infty$$
 for all $\varepsilon > 0;$ (3.4)

$$EN^r(\varepsilon n^{\alpha}) < \infty$$
 for some $\varepsilon > 0.$ (3.5)

Since $N(\varepsilon n^{\alpha}) \leq L(\varepsilon n^{\alpha})$, (3.2) implies (3.4). Clearly (3.4) implies (3.5). Since $q\alpha > 1$, it follows from Lemma 3 that (3.5) implies (3.3). The proof of Theorem 1 is complete.

Proof of Theorem 2. By Theorem 4 of [2], (1.13) is equivalent to each of the following statements:

$$\sum n^{r-1} P[\sup_{k \ge n} (k \log k)^{-1/2} S_k \ge \varepsilon] < \infty \quad \text{for all } \varepsilon > (2r)^{1/2} \sigma;$$
(3.6)

$$\sum n^{r-1} P[S_n \ge \varepsilon (n \log n)^{1/2}] < \infty \quad \text{for some } \varepsilon > 0.$$
(3.7)

Clearly $(3.6) \Leftrightarrow (1.14) \Rightarrow (1.17) \Rightarrow (3.7)$. It is obvious from (1.8) that $(1.14) \Rightarrow (1.15)$. Since $(1.15) \Rightarrow (1.16)$, it remains to prove $(1.16) \Rightarrow (3.7)$. This implication follows from Lemma 3 since $\varepsilon^2 n \log n > n$ for all large *n*.

Proof of Theorem 4. To prove (i), since $0 < \varepsilon < (2r E X_1^2)^{1/2}$, we can choose $\alpha > 1$ and c such that

$$\alpha \varepsilon < (2r \operatorname{Var} X_1 I_{[|X_1| \le c]})^{1/2}.$$
 (3.8)

Define

$$X'_{n} = X_{n} I_{[|X_{n}| \leq c]}, \ S'_{n} = X'_{1} + \dots + X'_{n}, \ \tau^{2} = E(X'_{1})^{2}.$$
(3.9)

Since X_1 is symmetric, $EX'_1 = 0$ and we obtain by Lemma 4 that

$$P[S_n \ge \alpha \varepsilon (n \log n)^{1/2}] \ge \frac{1}{2} P[S'_n \ge \alpha \varepsilon (n \log n)^{1/2}].$$
(3.10)

Choose $k \ge 6$ such that $\alpha \varepsilon/\tau < (k-2)^{1/2}$. Then by an inequality due to Esseen [4, p. 75-76],

$$P[S'_{n}/(\tau n^{1/2}) \ge (\alpha \varepsilon/\tau)(\log n)^{1/2}]$$

$$\ge 1 - \Phi((\alpha \varepsilon/\tau)(\log n)^{1/2}) - c_{1} n^{-1/2} \{1 + (\alpha \varepsilon/\tau)^{3} (\log n)^{3/2}\}$$

$$\cdot \exp(-\alpha^{2} \varepsilon^{2} \log n/(2\tau^{2})) - c_{2} n^{-(k-2)/2}$$

$$= (c + o(1))(\log n)^{-1/2} \exp(-\alpha^{2} \varepsilon^{2} \log n/(2\tau^{2})), \qquad (3.11)$$

where c, c_1, c_2 are positive constants and Φ is the distribution function of the standard normal distribution. From (3.8) and (3.11), we obtain that

$$\sum n^{r-1} P[S'_n \ge \alpha \varepsilon (n \log n)^{1/2}] = \infty,$$

so by (3.10),

$$\sum n^{r-1} P[S_n \ge \alpha \varepsilon (n \log n)^{1/2}] = \infty.$$
(3.12)

If 0 < r < 1, then by Lemma 3, (3.12) implies that $EN^r(\varepsilon(n \log n)^{1/2}) = \infty$. Now

assume $r \ge 1$ and take $1 < \beta < \alpha$. It is easy to see that (3.12) implies that

$$\sum n^{r-1} P[S_{[\beta^{-2}n]} \ge \varepsilon(n \log n)^{1/2}] = \infty.$$
(3.13)

Therefore by Lemma 3 (ii), $EN^r(\varepsilon(n \log n)^{1/2}) = \infty$. Hence we have proved part (i) of Theorem 4.

To prove part (ii) of the theorem, since X_1 need not be symmetric, instead of defining X'_n by (3.9), we define

$$X'_{n} = X_{n} I_{[|X_{n}| \leq c]} - E X_{1} I_{[|X_{1}| \leq c]}, \quad \tau^{2} = E(X'_{1})^{2},$$

$$X''_{n} = X_{n} - X'_{n}, \quad S'_{n} = X'_{1} + \dots + X'_{n}, \quad S''_{n} = X''_{1} + \dots + X''_{n},$$
(3.14)

where we choose $\alpha > 1$ and c so large that (3.8) is satisfied and

$$2r E(X_1'')^2 < (\theta \varepsilon)^2 \quad \text{with} \ 1 < 1 + \theta < \alpha.$$
(3.15)

Take $\beta > 1$ such that $\beta + \theta < \alpha$. Then

$$\sum n^{r-1} P[S_n \ge \beta \varepsilon (n \log n)^{1/2}] + \sum n^{r-1} P[|S_n''| \ge \theta \varepsilon (n \log n)^{1/2}]$$
$$\ge \sum n^{r-1} P[S_n' \ge \alpha \varepsilon (n \log n)^{1/2}].$$
(3.16)

As before, making use of Esseen's inequality as in (3.11), we obtain that

$$\sum n^{r-1} P[S'_n \ge \alpha \varepsilon (n \log n)^{1/2}] = \infty.$$
(3.17)

In view of (3.15), it follows from Theorem 3 of [8] that

$$\sum n^{r-1} P[|S_n''| \ge \theta \varepsilon (n \log n)^{1/2}] < \infty.$$
(3.18)

From (3.16), (3.17) and (3.18), it follows that

$$\sum n^{r-1} P[S_n \ge \beta \varepsilon(n \log n)^{1/2}] = \infty.$$
(3.19)

Take $0 < \delta < 1$ such that $(1 - \delta)^{-1/2} \{(r+1)\delta + 1\} < \beta$. It is easy to see from (3.19) that for all α with $1 - \delta < \alpha < 1$,

$$\sum n^{r-1} P[S_{[\alpha n]}] \ge ((r+1)\delta + 1) \varepsilon (n \log n)^{1/2}] = \infty.$$
(3.20)

Since $\varepsilon^2(n \log n) > n$ for all large *n*, it follows from Lemma 3(i) that

$$EN^{r}(\varepsilon(n\log n)^{1/2}) = \infty$$
(3.21)

when $r \ge 1$. When 0 < r < 1, (3.19) implies (3.21) by Lemma 3.

4. General Upper-Class Boundaries and the Convergence Rate of Tail Probabilities for Sample Sums

In [13, pp. 339–340], Strassen has proved the following theorem: If $S_n = X_1 + \cdots + X_n$, where X_1, X_2, \ldots are i.i.d. with $EX_1 = 0$, $EX_1^2 = \sigma^2$ and and $E|X_1|^p < \infty$ for some p > 2(r+1), and if $t^{-1/2}b(t) \uparrow \infty$ while $t^{-q}b(t) \downarrow 0$ as $t \uparrow \infty$

for some q > 1/2, then the following two statements are equivalent:

$$\int_{1}^{\infty} t^{r-3/2} b(t) \exp(-b^2(t)/2\sigma^2 t) dt < \infty;$$

$$E\tilde{L}'(b(n)) < \infty.$$
(4.1)
(4.2)

In particular, if for all large t,

$$b(t) = \{2\sigma^2 t (r \log t + \frac{3}{2}\log_2 t + \log_3 t + \dots + \log_{k-1} t + \delta \log_k t)\}^{1/2},\$$

where $\log_2 t = \log \log t$, etc., then

$$E\tilde{L}(b(n)) = \infty$$
 or $<\infty$ according as $\delta \le 1$ or $\delta > 1$. (4.3)

In what follows, we shall assume $EX_1 = 0$ and consider boundaries b(t) which satisfy (4.1). We have seen in (1.6) that if $b(t) = t^{\alpha} (\alpha > \frac{1}{2})$, then (4.2) holds if and only if $E|X_1|^{(r+1)/\alpha} < \infty$, i.e., $E(\Psi(|X_1|))^{r+1} < \infty$, where $\Psi(t) = t^{1/\alpha}$ is the inverse function of b(t). Likewise Theorem 3 asserts that if $b(t) = \varepsilon(t \log t)^{1/2}$, $t \ge 1$, where $\varepsilon > (2r)^{1/2} \sigma$, then (4.2) holds if and only if $E(\Psi(|X_1|))^{r+1} < \infty$, where

 $\Psi(t) \sim t^2/(2\varepsilon^2 \log t)$

is the inverse function of b(t). This observation suggests the general analogue in Theorems 5 and 6 below for the last exit time of the region bounded by general boundaries b(t) and -b(t).

In the proof of Theorems 1, 2 and 4 in Section 3, we have seen that the relation (4.2) is closely related to the convergence of a certain type of series. In [1], Baum and Katz studied some series of this type and proved that for $\alpha > \frac{1}{2}$ and r > 0, the following three statements are equivalent:

$$E|X_1|^{(r+1)/\alpha} < \infty \quad \text{and in the case } \alpha \leq 1, \ EX_1 = 0; \tag{4.4}$$

$$\sum n^{r-1} P[\sup_{k \ge n} k^{-\alpha} | S_k] \ge \varepsilon] < \infty \quad \text{for all } \varepsilon > 0;$$
(4.5)

$$\sum n^{r-1} P[|S_n| \ge \varepsilon n^{\alpha}] < \infty \quad \text{for some } \varepsilon > 0.$$
(4.6)

This result generalizes an earlier theorem of Hsu and Robbins [6] and Erdös [3] who consider the special case $\alpha = r = 1$, and the proof given by Baum and Katz follows closely that of Erdös. In [2], by using a different approach, Chow and Lai have obtained inequalities, called Paley-type inequalities, which relate the series in (4.5) or (4.6) with $E|X_1|^{(r+1)/\alpha}$ and thereby give another proof of the result of Baum and Katz. By an extension of the method of [2], we can prove the following generalization of the Hsu-Robbins-Erdös-Baum-Katz theorem.

Theorem 5. Let $X_1, X_2, ...$ be i.i.d. random variables such that $EX_1 = 0$ and $E|X_1|^q < \infty$ for some $1 \le q \le 2$, and let $S_n = X_1 + \cdots + X_n$. Let b be a real-valued function on $[1, \infty)$ satisfying the following condition:

b(t) is ultimately nondecreasing,
$$\liminf_{t \to \infty} b(\delta t)/b(t) > 1$$
 for all large δ , and
there exists $\beta > 1/q$ such that $\lim_{t \to \infty} t^{-\beta} b(t) = \infty$. (4.7)

Define $\Psi(x) = \inf\{t: b(t) > x\}$ for $x \ge 0$. Then for any r > 0, the following statements are equivalent:

$$E(\Psi(X_1^+))^{r+1} < \infty;$$
 (4.8)

$$\sum n^{r-1} P[\max_{j \le n} S_j \ge b(\varepsilon n)] < \infty \quad \text{for all } \varepsilon > 0;$$
(4.9)

$$\sum n^{r-1} P[S_n \ge \varepsilon b(\varepsilon n)] < \infty \qquad for some \ \varepsilon > 0; \qquad (4.10)$$

$$EL'(b(n)) < \infty; \tag{4.11}$$

$$EN^{r}(b(n)) < \infty . \tag{4.12}$$

Proof. We shall prove $(4.8) \Rightarrow (4.9) \Rightarrow (4.11) \Rightarrow (4.12) \Rightarrow (4.10) \Rightarrow (4.8)$. To prove $(4.8) \Rightarrow (4.9)$, without loss of generality, we can assume that $E|X_1| \neq 0$. Let k be a positive integer such that $k(q\beta-1) > r$. We note that

$$P[\max_{j \leq n} S_{j} \geq b(\varepsilon n)] \leq P[\max_{j \leq n} X_{j} \geq b(\varepsilon n)/2k] + P[\max_{j \leq n} S_{j} \geq b(\varepsilon n), \max_{j \leq n} X_{j} \leq b(\varepsilon n)/2k].$$

$$(4.13)$$

For large t, $x \ge b(t)$ implies that $\Psi(x) \ge t$. Therefore for all large n,

$$P[\max_{j \le n} X_j \ge b(\varepsilon n)/2k] \le n P[X_1 \ge b(\varepsilon n)/2k] \le n P[\Psi(2k X_1^+) \ge \varepsilon n].$$
(4.14)

Define $\tau_1^{(n)} = \inf\{j \ge 1: S_j \ge b(\varepsilon n)/2k\}, \tau_2^{(n)} = \inf\{j \ge 1: S_{\tau_1^{(n)}+j} - S_{\tau_1^{(n)}} \ge b(\varepsilon n)/2k\}$, etc. Then

$$P[\max_{j \leq n} S_j \geq b(\varepsilon n), \max_{j \leq n} X_j \leq b(\varepsilon n)/2k] \leq P[\tau_i^{(n)} \leq n \text{ for } i = 1, ..., k]$$

= $P^k[\tau_1^{(n)} \leq n] = P^k[\max_{j \leq n} S_j \geq b(\varepsilon n)/2k]$
 $\leq \{(2k/b(\varepsilon n))^q E | S_n |^q\}^k$, by the submartingale inequality
 $\leq \{(4k/b(\varepsilon n))^q n E | X_1 |^q\}^k$, by the Esseen-von Bahr inequality [5]
 $= o(n^{-k(q\beta - 1)}).$ (4.15)

The last relation above follows from the assumption that $\lim_{n \to \infty} n^{-\beta} b(n) = \infty$. It is easy to see from (4.7) that

$$\limsup_{x \to \infty} \Psi(\eta x)/\Psi(x) < \infty \quad \text{for any } \eta > 1.$$
(4.16)

Hence (4.8) implies that $E(\Psi(2kX_1^+))^{r+1} < \infty$, and therefore

$$\sum n' P[\Psi(2kX_1^+) \ge \varepsilon n] < \infty.$$
(4.17)

Since $k(q\beta - 1) > r$, it follows from (4.15) that

$$\sum n^{r-1} P[\max_{j \le n} S_j \ge b(\varepsilon n), \max_{j \le n} X_j \le b(\varepsilon n)/2k] < \infty.$$
(4.18)

From (4.13), (4.14), (4.17) and (4.18), we obtain (4.9).

We shall now prove that $(4.9) \Rightarrow (4.11)$. Without loss of generality, we can

assume that b(t) is nondecreasing for $t \ge 1$. We need only note that

$$\sum_{i=1}^{\infty} 2^{ri} P[S_n \ge b(n) \text{ for some } n \ge 2^i] \le \sum_{i=1}^{\infty} 2^{ri} \sum_{j=i}^{\infty} P[\max_{n \le 2^{j+1}} S_n \ge b(2^j)]$$
$$\le c_1 \sum_{j=0}^{\infty} 2^{rj} P[\max_{n \le 2^{j+2}} S_n \ge b(2^j)]$$
$$\le c_1 \sum_{m=2}^{\infty} \sum_{m < 2^{j+1} \le m < 2^{j+2}} m^{r-1} P[\max_{n \le m} S_n \ge b(m/4)]$$
$$= c_1 \sum_{m=2}^{\infty} m^{r-1} P[\max_{n \le m} S_n \ge b(m/4)].$$

It is obvious from (1.8) that (4.11) \Rightarrow (4.12). To prove (4.12) \Rightarrow (4.10), we apply Lemma 3. If 0 < r < 1, then the desired result is immediate from Lemma 3. Now assume that $r \ge 1$. By (4.7), $b^q(n) > n$ for all large *n*. Therefore if (4.12) holds, then by Lemma 3, there exists $\frac{1}{2} < \alpha < 1$ such that

$$\sum n^{r-1} P[S_{[an]} \ge (\frac{1}{2}(r+1)+1)b(n)] < \infty.$$
(4.19)

It is obvious that $(4.19) \Rightarrow (4.10)$.

To prove (4.10) \Rightarrow (4.8), we follow the argument due to Erdös [3]. For $k=1, \ldots, n$, let $A_k^{(n)} = [X_k \ge 2\varepsilon b(\varepsilon n)], B_k^{(n)} = [|\sum_{\substack{1 \le j \le n, j \ne k}} X_j| \le \varepsilon b(\varepsilon n)]$. Since $\beta > 1/q$ and $E|X_1|^q < \infty, n^{-\beta} S_{n-1} \to 0$ a.s. by the Marcinkiewicz-Zygmund strong law of large numbers. Therefore by (4.7), $\lim_{n \to \infty} P(B_1^{(n)}) = 1$. Also for all large $n, P(A_1^{(n)}) \le P[X_1 \ge n^{1/q}] = o(1/n)$ since $E|X_1|^q < \infty$. Therefore we can choose n_0 such that for $n \ge n_0$, $P(B_1^{(n)} - nP(A^{(n)}) \le 1/2$. Hence for $n \ge n_0$,

$$P[S_n \ge \varepsilon b(\varepsilon n)] \ge \sum_{k=1}^n \{P(A_k^{(n)} \cap B_k^{(n)}) - P(A_k^{(n)} \cap (A_1^{(n)} \cup \dots \cup A_{k-1}^{(n)}))\}$$
$$\ge \sum_{k=1}^n P(A_k^{(n)})(P(B_1^{(n)}) - nP(A_1^{(n)})) \ge \frac{1}{2} nP(A_1^{(n)}).$$

Hence (4.10) implies that

$$\sum n^{r} P[X_{1} \ge 2\varepsilon b(\varepsilon n)] < \infty.$$
(4.20)

Since $\Psi(x) > t$ implies $x \ge b(t)$ for all large t, it is easy to see using (4.16) that (4.20) implies (4.8).

By a modification of the proof of Theorem 5, we obtain the following theorem which considers boundaries b(t) satisfying weaker growth conditions than (4.7) but under stronger two-sided moment conditions on X_1 .

Theorem 6. Let $X_1, X_2, ...$ be i.i.d. random variables such that $EX_1=0$ and $E|X_1|^{2+\theta} < \infty$ for some $\theta > 0$. Let $S_n = X_1 + \cdots + X_n$, and let b be a real-valued function on $[1, \infty)$ satisfying the following condition:

b(t) is ultimately nondecreasing, $\liminf b(\delta t)/b(t) > 1$

for all large
$$\delta$$
 and $\lim_{t \to \infty} (t \log t)^{-1/2} b(t) = \infty.$ (4.21)

Define $\Psi(x) = \inf \{t: b(t) > x\}$ for $x \ge 0$. Then for any r > 0, the statements (4.8), (4.9), (4.10), (4.11) and (4.12) are equivalent.

Proof. We first prove (4.8) \Rightarrow (4.9). Without loss of generality, we can assume that $0 < \theta < 1$. Choose a positive integer k such that $k \theta/2 > r$. Letting $\sigma^2 = EX_1^2$, we can without loss of generality assume that $\sigma \neq 0$. As in the proof of Theorem 5, we obtain that

$$P[\max_{j \le n} S_j \ge b(\varepsilon n), \max_{j \le n} X_j \le b(\varepsilon n)/2k] \le P^k[\max_{j \le n} S_j \ge b(\varepsilon n)/2k].$$
(4.22)

By the Lévy inequality (cf. [10, p. 248]),

$$P[\max_{j \leq n} S_j \geq b(\varepsilon n)/2k] \leq 2P[S_n \geq b(\varepsilon n)/2k - (2n\sigma^2)^{1/2}]$$
$$\leq 2P[S_n \geq b(\varepsilon n)/3k].$$
(4.23)

Using (1.11), we obtain that for all large n

$$P^{k}[S_{n} \ge b(\varepsilon n)/3k] \le \{1 - \Phi(b(\varepsilon n)/(3k\sigma n^{1/2})) + cn^{-\theta/2}\}^{k} \le c_{1} \exp(-b^{2}(\varepsilon n)/(18k\sigma^{2}n)) + c_{2}n^{-k\theta/2}$$
(4.24)

where c, c_1 and c_2 are positive constants. Since $\lim_{n \to \infty} b^2(\varepsilon n)/(n \log n) = \infty$ and $k\theta/2 > r$, it follows from (4.23) and (4.24) that

$$\sum n^{r-1} P^{k} [\max_{j \leq n} S_{j} \geq b(\varepsilon n)/2k] < \infty.$$
(4.25)

Using (4.22) and (4.25), we can prove the implication (4.8) \Rightarrow (4.9) as in Theorem 5.

The proof of (4.9) \Rightarrow (4.11) in Theorem 5 carries over and since $\lim_{n \to \infty} b^2(n)/n = \infty$, so does the proof of (4.12) \Rightarrow (4.10). Since $EX_1^2 < \infty$, $(n \log n)^{-1/2} S_n \to 0$ a.s. and $P[X_1 \ge n^{1/2}] = o(1/n)$. Therefore we can again apply the argument due to Erdös as in Theorem 5 to prove (4.10) \Rightarrow (4.8).

Acknowledgment. The authors wish to thank Professor Y.S. Chow for his encouragement and suggestions.

References

- Baum, L., Katz, M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120, 108-123 (1965)
- Chow, Y. S., Lai, T. L.: Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings. Trans. Amer. Math. Soc. 208, 51-72 (1975)
- 3. Erdös, P.: On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286-291 (1949)
- Esseen, C. G.: Fourier analysis of distributions of functions. A mathematical study of the Laplace-Gaussian law. Acta Math. 11, 1-125 (1945)
- 5. Esseen, C. G., von Bahr, B.: Inequalities for the *r*th absolute moment of a sum of random variables, 1 < r < 2. Ann. Math. Statist. **36**, 299-303 (1965)
- Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33, 25-31 (1947)
- 7. Katz, M.: The probability in the tail of a distribution. Ann. Math. Statist. 34, 312-318 (1963)
- 8. Lai, T. L.: Limit theorems for delayed sums. Ann. Probability 2, 432-440 (1974)

- 9. Lai, T.L.: On r-quick convergence and a conjecture of Strassen. To appear in Ann. Probability 4 (1976)
- 10. Loève, M.: Probability Theory. Princeton: Van Nostrand (1963)
- 11. Slivka, J.: On the law of the iterated logarithm. Proc. Nat. Acad. Sci. U.S.A. 63, 289-291 (1969)
- 12. Slivka, J., Severo, N.C.: On the strong law of large numbers. Proc. Amer. Math. Soc. 24, 729-734 (1970)
- 13. Strassen, V.: Almost sure behavior of sums of independent random variables and martingales. Proc. 6th Berkeley Sympos. Math. Statist. Probab. Univ. Calif., 2, 315-343 (1967)
- 14. Stratton, H.: Moments of oscillations and ruled sums. Ann. Math. Statist. 43, 1012-1016 (1972)

Received June 11, 1975