On the Last Time and the Number of Boundary Crossings Related to the Strong Law of Large Numbers and the Law of the Iterated Logarithm

T. L. Lai ${ }^{\star 1}$ and K. K. Lan ${ }^{2}$
${ }^{1}$ Department of Mathematical Statistics, Columbia University New York, N. Y. 10027, USA
${ }^{2}$ Department of Mathematics, Queens College, CUNY, Flushing, N.Y. 11367, USA

1. Introduction and Summary

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with $E X_{1}=0$, $S_{n}=X_{1}+\cdots+X_{n}$, and let $(b(n))_{n \geqq 1}$ be a sequence of real numbers. Define

$$
\begin{align*}
& N(b(n))=\sum_{n=1}^{\infty} I_{\left[S_{n} \geqq b(n)\right]}, \tag{1.1a}\\
& \tilde{N}(b(n))=\sum_{n=1}^{\infty} I_{\left[\left|S_{n}\right| \geqq b(n) \mathrm{I}\right.} . \tag{1.1b}
\end{align*}
$$

Kolmogorov's strong law of large numbers can be stated in terms of the random variable $\tilde{N}(\varepsilon n)$ as follows:

$$
\begin{equation*}
P[\tilde{N}(\varepsilon n)<\infty]=1 \quad \text { for every } \varepsilon>0 . \tag{1.2}
\end{equation*}
$$

To obtain a stronger result than Kolmogorov's strong law, Slivka and Severo [12] have discussed the moments of $\tilde{N}(\varepsilon n)$ and they proved that for $r \geqq 1$,

$$
\begin{equation*}
E\left|X_{1}\right|^{r+1}<\infty \Rightarrow E \tilde{N}^{r}(\varepsilon n)<\infty \quad \text { for all } \varepsilon>0 . \tag{1.3}
\end{equation*}
$$

Motivated by the Marcinkiewicz-Zygmund extension of Kolmogorov's strong law, Stratton [14] proved that for $r \geqq 1$ and $\alpha>\frac{1}{2}$,

$$
\begin{equation*}
E\left|X_{1}\right|^{(r+1) / \alpha}<\infty \Leftrightarrow E \tilde{N}^{r}\left(\varepsilon n^{\alpha}\right)<\infty \quad \text { for all } \varepsilon>0 . \tag{1.4}
\end{equation*}
$$

There is in fact a misprint in [14] where the requirement $\alpha>0$ should be replaced by $\alpha>\frac{1}{2}$.

An earlier result to strengthen almost sure convergence for normalized sample sums was due to Strassen [13] who, instead of $N(b(n))$ and $\tilde{N}(b(n))$, considered

$$
\begin{align*}
& L(b(n))=\sup \left\{n \geqq 1: S_{n} \geqq b(n)\right\}, \tag{1.5a}\\
& \tilde{L}(b(n))=\sup \left\{n \geqq 1:\left|S_{n}\right| \geqq b(n)\right\} \quad(\sup \emptyset=0) . \tag{1.5b}
\end{align*}
$$

* Research supported by ONR Grant N00014-67-0108-0018.

In other words, Strassen considers the last exit time $\tilde{L}(b(n))$ while Slivka and Severo consider the number of exits $\tilde{N}(b(n))$. Again Kolmogorov's strong law can be restated in terms of the last exit time $\tilde{L}(\varepsilon n)$ as $P[\tilde{L}(\varepsilon n)<\infty]=1$ for all $\varepsilon>0$, and it follows easily from the results of Baum and Katz (see [1, 9, 13] or Section 4 below) that for $\alpha>\frac{1}{2}$ and $r>0$,

$$
\begin{equation*}
E\left|X_{1}\right|^{(r+1) / \alpha}<\infty \Leftrightarrow E \tilde{L}\left(\varepsilon n^{\alpha}\right)<\infty \quad \text { for all } \varepsilon>0 \tag{1.6}
\end{equation*}
$$

An obvious connection between $\tilde{L}(b(n))$ and $\tilde{N}(b(n))$ is the following:

$$
\begin{equation*}
\tilde{N}(b(n)) \leqq \tilde{L}(b(n)) . \tag{1.7}
\end{equation*}
$$

Likewise we have the inequality:

$$
\begin{equation*}
N(b(n)) \leqq L(b(n)) \tag{1.8}
\end{equation*}
$$

Making use of (1.6) and (1.7), together with Lemma 3 in Section 2, we can prove that in (1.4), the condition $r \geqq 1$ as imposed by Stratton can be dropped. In fact we shall prove in Section 3 the following one-sided theorem involving $N\left(\varepsilon n^{\alpha}\right)$ which then immediately implies the corresponding two-sided result involving $\tilde{N}\left(\varepsilon n^{\alpha}\right)$.

Theorem 1. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $E X_{1}=0, E\left|X_{1}\right|^{q}<\infty$ for some $1 \leqq q \leqq 2$. Let $\alpha>1 / q$ and $r>0$. Set $S_{n}=X_{1}+\cdots+X_{n}$ and define $N\left(\varepsilon n^{\alpha}\right)$ as in (1.1 a). Then

$$
\begin{aligned}
E\left(X_{1}^{+}\right)^{(r+1) / \alpha}<\infty & \Leftrightarrow E N^{r}\left(\varepsilon n^{\alpha}\right) & \text { for all } \quad \varepsilon>0 \\
& \Leftrightarrow E N^{r}\left(\varepsilon n^{\alpha}\right) & \text { for some } \varepsilon>0
\end{aligned}
$$

We remark that for the one-sided result in Theorem 1, we require the twosided moment condition $E\left|X_{1}\right|^{q}<\infty$ for some $1 \leqq q \leqq 2$. A counter-example to show that this condition cannot be dropped can be found in Section 2 of [2].

The law of the iterated logarithm can be formulated in terms of $\tilde{N}\left(\varepsilon(2 n \log \log n)^{1 / 2}\right)$ as follows: If $E X_{1}=0$ and $E X_{1}^{2}=\sigma^{2}$, then

$$
\begin{align*}
P\left[\tilde{N}\left(\varepsilon(2 n \log \log n)^{1 / 2}\right)<\infty=1\right. & \text { if } \varepsilon>\sigma, \\
& =0 \tag{1.9}
\end{align*} \quad \text { if } \varepsilon<\sigma .
$$

However, Slivka [11] showed that $E \tilde{N}^{r}\left(\varepsilon(2 n \log \log n)^{1 / 2}\right)=\infty$ for all $r>0$ and $\varepsilon>0$. In [14], Stratton sharpened Slivka's result and found that if X_{1} is symmetric with $E X_{1}=0$ and $E X_{1}^{2(m+1)}<\infty$ for some positive integer m, then

$$
\begin{array}{ll}
E \tilde{N}^{r}\left(\sigma(2(1+\delta) n \log n)^{1 / 2}\right)<\infty & \text { if } 1 \leqq r<\min (m, 1+\delta) \\
E \tilde{N}^{r}\left(\sigma(2(1+\delta) n \log n)^{1 / 2}\right)=\infty & \text { if } r>1+\delta \tag{1.10b}
\end{array}
$$

There is in fact a misprint in Stratton's paper [14, p. 1012] where the moment condition $E X_{1}^{2 m}<\infty$ should be changed to $E X_{1}^{2(m+1)}<\infty$ and the factor σ should be added to $(2(1+\delta) n \log n)^{1 / 2}$. Stratton's proof makes use of the Berry-Esseen bound, the form he quotes being the following result of Katz [7]:

$$
\begin{equation*}
E\left|X_{1}\right|^{p}<\infty \Rightarrow \sup _{x}\left|\Phi(x)-P\left[S_{n} \leqq \sigma n^{1 / 2} x\right]\right| \leqq C\left(p, \sigma^{-p} E\left|X_{1}\right|^{p}\right) n^{-(p-2) / 2} \tag{1.11}
\end{equation*}
$$

where $C(p, \eta)$ is a universal constant depending only on p and η and Φ is the distribution function of the standard normal distribution. Now (1.11) is valid for $2<p \leqq 3$ and, as is well known (cf. [4, p. 53]), it cannot be extended to the case
$p>3$. However, Stratton's proof deals with the case $p=2(m+1) \geqq 4$ and therefore (1.11) cannot be applied as he stated. What should be applied instead is the following result due to Esseen [4, p. 73]: If $E\left|X_{1}\right|^{k}<\infty$ for some integer $k \geqq 3$, then for $|x| \geqq\{(1+\delta)(k-2) \log n\}^{1 / 2}$,

$$
\begin{equation*}
\left|\Phi(x)-P\left[S_{n} \leqq \sigma n^{1 / 2} x\right]\right| \leqq c\left(\delta, \beta_{1}, \ldots, \beta_{k}\right) n^{-(k-2) / 2} /\left(1+|x|^{k}\right) \tag{1.12}
\end{equation*}
$$

where δ is any fixed number with $0<\delta<1$ and $c\left(\delta, \beta_{1}, \ldots, \beta_{k}\right)$ is a finite constant depending only on δ and the moments $\beta_{i}=E\left|X_{1}\right|^{i}, i=1, \ldots, k$.

If we apply (1.12) in place of (1.11), we can indeed prove Stratton's result. However, by applying a result of [2] instead, we can drop the assumption that X_{1} is symmetric and weaken the moment condition $E X_{1}^{2(m+1)}<\infty$; also we shall no longer require m to be an integer and we can prove the one-sided theorem involving $N\left(\sigma(2(1+\delta) n \log n)^{1 / 2}\right)$ which then immediately implies the corresponding result for the number of exits \tilde{N} of the two-sided region studied by Stratton. Our result, which will be proved in Section 3, is the following theorem:

Theorem 2. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $E X_{1}=0$, $\infty>E X_{1}^{2}=\sigma^{2}>0$. Set $S_{n}=X_{1}+\cdots+X_{n}$ and define $N\left(\varepsilon(n \log n)^{1 / 2}\right)$ as in (1.1 a) and $L\left(\varepsilon(n \log n)^{1 / 2}\right)$ as in $(1.5 \mathrm{a})$. Then for any $r>0$, the following statements are equivalent:

$$
\begin{array}{ll}
\int_{\left[X_{1}>e\right]} X_{1}^{2(r+1)}\left(\log X_{1}\right)^{-(r+1)} d P<\infty \\
E L^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for all } \varepsilon>(2 r)^{1 / 2} \sigma . \\
E N^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for all } \varepsilon>(2 r)^{1 / 2} \sigma . \\
E N^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for some } \varepsilon>0 . \\
E L^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for some } \varepsilon>0 . \tag{1.17}
\end{array}
$$

As an easy corollary of Theorem 2, we obtain the following analogue for \tilde{L} and \tilde{N} :

Theorem 3. Let X_{1}, X_{2}, \ldots be i.i.d., $S_{n}=X_{1}+\cdots+X_{n}$ and define $\tilde{N}\left(\varepsilon(n \log n)^{1 / 2}\right.$, $\tilde{L}\left(\varepsilon(n \log n)^{1 / 2}\right)$ as in $(1.1 \mathrm{~b})$ and $(1.5 \mathrm{~b})$ respectively. Then for any $r>0$, the following statements are equivalent:

$$
\begin{array}{ll}
E X_{1}=0, \quad E X_{1}^{2}=\sigma^{2} & \text { and } E\left|X_{1}\right|^{2(r+1)}\left(1+\log ^{+}\left|X_{1}\right|\right)^{-(r+1)}<\infty . \\
E \tilde{L}^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for all } \varepsilon>(2 r)^{1 / 2} \sigma . \\
E \tilde{N}^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for all } \varepsilon>(2 r)^{1 / 2} \sigma . \\
E \tilde{N}^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for some } \varepsilon>0 . \\
E \tilde{L}^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)<\infty & \text { for some } \varepsilon>0 . \tag{1.22}
\end{array}
$$

The equivalence between (1.18) and (1.22) was first discovered in [9] where it was proved by applying Theorem 3 of [8]. This equivalence, as pointed out in [9], sharpens an earlier result of Strassen [13] who, by embedding the sample sum process in Brownian motion, has shown that if $E X_{1}=0, E X_{1}^{2}=\sigma^{2}$ and
$E\left|X_{1}\right|^{p}<\infty$ for some $p>2(r+1)$, then (1.19) holds. In [9], it is also proved that under the condition (1.18),

$$
\begin{equation*}
E \tilde{L}^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)=\infty \quad \text { if } \varepsilon<(2 r)^{1 / 2} \sigma, \tag{1.23}
\end{equation*}
$$

a result first obtained by Strassen under the stronger moment condition $E\left|X_{1}\right|^{p}<\infty$ for some $p>2(r+1)$. In view of (1.7), Stratton's result (1.10b) implies (1.23), but Stratton has to assume that X_{1} is symmetric with $E X_{1}^{2(m+1)}<\infty$ for some integer $m>r$. In Section 3, we shall prove the following theorem which completely generalizes the results of Slivka and Stratton.

Theorem 4. Let X_{1}, X_{2}, \ldots be i.i.d. random variables, $S_{n}=X_{1}+\cdots+X_{n}$ and define $N\left(\varepsilon(n \log n)^{1 / 2}\right)$ as in $(1.1 \mathrm{a})$. Let $r>0$.
(i) If X_{1} is symmetric, then

$$
\begin{equation*}
E N^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)=\infty \quad \text { for all } 0<\varepsilon<\left(2 r E X_{1}^{2}\right)^{1 / 2} \tag{1.24}
\end{equation*}
$$

(Since we do not assume any moment condition on $X_{1}, E X_{1}^{2}$ in (1.24) can be infinite.)
(ii) If X_{1} satisfies the moment condition (1.18), then (1.24) still holds.

From Theorems 3 and 4, we see that for sample sums, Strassen's strengthening of the law of the iterated logarithm in terms of the finiteness of the r-th moment of the last exit time $\tilde{L}\left(\varepsilon(n \log n)^{1 / 2}\right.$), a concept which he calls in [13] the r-quick lim sup, turns out to be equivalent to the finiteness of the r-th moment of the number of exits $\tilde{N}\left(\varepsilon(n \log n)^{1 / 2}\right)$ considered by Stratton. Furthermore, in view of (1.6) and Theorem 1, the refinement of the strong law of large numbers by Severo, Slivka and Stratton, who consider the finiteness of r-th moment of $\tilde{N}\left(\varepsilon n^{\alpha}\right)$, again turns out to be equivalent to the notion of r-quick convergence studied by Strassen [13] and Lai [9], who consider the r-th moment of $\check{L}\left(\varepsilon n^{\alpha}\right)$ instead. Some statistical applications showing the usefulness of the concept of r-quick convergence can be found in [9] and the references thereof.

So far we have discussed boundaries of the form $\varepsilon n^{\alpha}(\alpha>1 / 2)$ and $\varepsilon(n \log n)^{1 / 2}$ to obtain the r-quick analogues of the Marcinkiewicz-Zygmund strong law and the law of the itered logarithm. In Section 4, we shall extend our results to general boundaries and in this connection, we obtain a general form of the Hsu-Robbins-Erdös-Baum-Katz theorem on convergence rates for the tail probabilities of sample sums.

2. Some Preliminary Lemmas

Lemma 1. Let X_{1}, X_{2}, \ldots be i.i.d. random variables, $S_{n}=X_{1}+\cdots+X_{n}$ and let $(b(n))_{n \geqq 1}$ be a nondecreasing sequence of nonnegative numbers. Define $N=N(b(n))$ as in (1.1 a) and let $N_{m}=\sum_{n=1}^{m} I_{\left[S_{n} \geqq b(n)\right]}$. Assume that $E N^{r}<\infty$ for some $r>0$.
(i) If $r \geqq 1$, then $\sum_{n=1}^{\infty} E N_{n}^{r-1} I_{\left[S_{n} \geqq b(n)\right]}<\infty$.
(ii) If $r>0$ and r is not an integer, then $\sum_{n=1}^{\infty} n^{r-[r]-1} E N_{n}^{[r]} I_{\left[S_{n} \geqq b(n)\right]}<\infty$.

Proof. (i) is an immediate consequence of the following relation:

$$
\begin{equation*}
N^{r}=N^{r-1} \sum_{n=1}^{\infty} I_{\left[S_{n} \geqq b(n)\right]} \geqq \sum_{n=1}^{\infty} N_{n}^{r-1} I_{\left[S_{n} \geqq b(n)\right]} . \tag{2.1}
\end{equation*}
$$

If $r>1$, then (ii) follows directly from (i). Assume that $0<r<1$. It is easy to see that $(x+1)^{r}-x^{r}$ is decreasing in $x>0$. Let $N_{0}=0$. Then

$$
\begin{aligned}
E N_{m}^{r} & =E \sum_{n=1}^{m}\left(N_{n}^{r}-N_{n-1}^{r}\right)=E \sum_{n=1}^{m}\left(N_{n}^{r}-N_{n-1}^{r}\right) I_{\left[S_{n} \geqq b(n)\right]} \\
& \geqq E \sum_{n=1}^{m}\left(n^{r}-(n-1)^{r}\right) I_{\left[S_{n} \geqq b(n)\right]} \geqq r \sum_{n=1}^{m} n^{r-1} E I_{\left[S_{n} \geqq b(n)\right]} .
\end{aligned}
$$

Letting $m \rightarrow \infty$ above gives the desired conclusion.
Lemma 2. With the same notations as in Lemma 1, assume that $E X_{1}=0$, $E\left|X_{1}\right|^{q}<\infty$ for some $1 \leqq q \leqq 2$ and $b^{q}(n) \geqq n$ for all n. Then given any positive integer r and $0<\delta<1$, there exist positive constants α, C and integer m_{0} depending only on r, δ, q and $E\left|X_{1}\right|^{q}$ such that $1-\delta<\alpha<1$ and for all $m \geqq m_{0}$ and $\varepsilon>0$,

$$
\begin{equation*}
E N_{m}^{r} I_{\left[S_{m} \geqq \varepsilon b(m)\right]} \geqq C m^{r} P\left[S_{[x m]} \geqq((r+1) \delta+\varepsilon) b(m)\right] \tag{2.2}
\end{equation*}
$$

Proof. Let $1-\delta<A<1$ be a constant such that

$$
\begin{equation*}
4(1-A) E\left|X_{1}\right|^{q} \leqq \delta^{q} \tag{2.3}
\end{equation*}
$$

Take any positive integer k and positive integers $1 \leqq i_{1} \leqq \cdots \leqq i_{k}$ satisfying $i_{k} \geqq A i_{k+1}$. Then by the Markov inequality and an inequality due to von Bahr and Esseen [5],

$$
\begin{align*}
P\left[S_{i_{k}}-S_{i_{k-1}}\right. & \left.\geqq-\delta b\left(i_{k}\right)\right] \geqq 1-P\left[\left|S_{i_{k}}-S_{i_{k-1}}\right|>\delta b\left(i_{k}\right)\right] \\
& \geqq 1-2\left(\delta b\left(i_{k}\right)\right)^{-q}\left(i_{k}-i_{k-1}\right) E\left|X_{1}\right|^{q} \geqq \frac{1}{2} \tag{2.4}
\end{align*}
$$

The last inequality above follows from (2.3) and the assumption that $b^{q}(n) \geqq n$. Therefore

$$
\begin{align*}
& P\left(\bigcap_{j=1}^{k}\left[S_{i_{j}} \geqq \varepsilon b\left(i_{j}\right)\right]\right) \geqq P\left(\bigcap_{j=1}^{k}\left[S_{i_{j}} \geqq \varepsilon b\left(i_{k}\right)\right]\right) \\
& \quad \geqq P\left[S_{i_{k}}-S_{i_{k-1}} \geqq-\delta b\left(i_{k}\right), S_{i_{k-1}} \geqq(\delta+\varepsilon) b\left(i_{k}\right), S_{i_{k-2}} \geqq \varepsilon b\left(i_{k}\right), \ldots, S_{i_{k}} \geqq \varepsilon b\left(i_{k}\right)\right] \\
& \quad \geqq \frac{1}{2} P\left(\bigcap_{j=1}^{k-1}\left[S_{i_{j}} \geqq(\delta+\varepsilon) b\left(i_{k}\right)\right]\right) \\
& \quad \geqq \cdots \geqq\left(\frac{1}{2}\right)^{k-1} P\left[S_{i_{1}} \geqq((k-1) \delta+\varepsilon) b\left(i_{k}\right)\right] . \tag{2.5}
\end{align*}
$$

Let $\alpha=(1+A) / 2$ and $m_{0} \geqq 2 /(1-A)$. Then for $m \geqq m_{0},[\alpha m] \geqq A m$ and

$$
\begin{gather*}
E N_{m}^{r} I_{\left[S_{m} \geqq \varepsilon b(m)\right]} \geqq E\left\{I_{\left[S_{[\alpha m]} \geqq s b([\alpha m])\right]}\left(\sum_{i=[\alpha m]}^{m} I_{\left[S_{i} \geqq s b(i)\right]}\right)^{r} I_{\left[S_{m} \geqq \varepsilon b(m)\right]}\right\} \\
\geqq((1-\alpha) m)^{r}\left(\frac{1}{2}\right)^{r+1} P\left[S_{[\alpha m]} \geqq((r+1) \delta+\varepsilon) b(m)\right] \tag{2.6}
\end{gather*}
$$

The last relation follows from (2.5) and the multinomial expansion of $\left(\sum_{i=[\alpha m]}^{m} I_{\left[S_{i} \geqq \& b(i)\right]}\right)^{r}$ since there are at most r distinct factors in each of the $(m-[\alpha m])^{r}$ terms (not necessarily distinct) of the multinomial expansion.

Lemma 3. With the same notations as in Lemma 1, if $E N^{\gamma}<\infty$ for some $0<\gamma<1$, then $\sum n^{\gamma-1} P\left[S_{n} \geqq b(n)\right]<\infty$. Now assume that
$E N^{r}<\infty \quad$ for some $r \geqq 1$.
(i) If $E X_{1}=0, E\left|X_{1}\right|^{q}<\infty$ for some $1 \leqq q \leqq 2$ and $b^{q}(n) \geqq n$ for all large n, then given any $\delta>0$, there exists α such that $1-\delta<\alpha<1$ and

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{[\alpha n]} \geqq((r+1) \delta+1) b(n)\right]<\infty . \tag{2.8}
\end{equation*}
$$

(ii) If X_{1} is symmetric, then given any $0<\alpha<1$,

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{[\alpha n]} \geqq b(n)\right]<\infty \tag{2.9}
\end{equation*}
$$

Proof. By Lemma 1 (ii), $E N^{y}<\infty$ implies that $\sum n^{\gamma-1} P\left[S_{n} \geqq b(n)\right]<\infty$ if $0<\gamma<1$. Now assume (2.7). To prove (i), since changing $b(n)$ for finitely many n 's does not change (2.7), we can without loss of generality assume that $b^{q}(n) \geqq n$ for all n. If r is an integer, then (2.8) follows from Lemma 1 (i) and Lemma 2. If r is not an integer, then by Lemma 1 (ii), $\sum_{(i i)} n^{r-[r]-1} E N_{n}^{[r]} I_{\left[S_{n} \geqslant b b(n)\right]}<\infty$, so an application of Lemma 2 gives (2.8). To prove (ii), since X_{1} and $-\bar{X}_{1}$ have the same distribution, (2.7) implies that $E \tilde{N}^{r}<\infty$. An application of Lemmas 2 and 3 of [14] then proves (2.9) in a similar manner.

Lemma 4. Suppose X_{1}, X_{2}, \ldots are independent symmetric random variables and a_{1}, a_{2}, \ldots are positive constants. Let $X_{n}^{\prime}=X_{n} I_{\left[\left|X_{n}\right| \leqq a_{n}\right]}, S_{n}^{\prime}=X_{1}^{\prime}+\cdots+X_{n}^{\prime}$ and $S_{n}=X_{1}+\cdots+X_{n}$. Then for any $\varepsilon>0$,

$$
\begin{equation*}
P\left[S_{n} \geqq \varepsilon\right] \geqq \frac{1}{2} P\left[S_{n}^{\prime} \geqq \varepsilon\right] . \tag{2.10}
\end{equation*}
$$

Proof. Let $X_{n}^{\prime \prime}=X_{n}-X_{n}^{\prime}, S_{n}^{\prime \prime}=S_{n}-S_{n}^{\prime}$. By symmetry, $\left(X_{n}^{\prime}, X_{n}^{\prime \prime}\right)$ and $\left(X_{n}^{\prime},-X_{n}^{\prime \prime}\right)$ have the same distribution. Hence by independence, $\left(S_{n}^{\prime}, S_{n}^{\prime \prime}\right)$ and $\left(S_{n}^{\prime},-S_{n}^{\prime \prime}\right)$ have the same distribution. Therefore

$$
\begin{aligned}
P\left[S_{n}^{\prime} \geqq \varepsilon\right] & \leqq P\left[S_{n}^{\prime} \geqq \varepsilon, S_{n}^{\prime \prime} \geqq 0\right]+P\left[S_{n}^{\prime} \geqq \varepsilon, S_{n}^{\prime \prime} \leqq 0\right] \\
& =2 P\left[S_{n}^{\prime} \geqq \varepsilon, S_{n}^{\prime \prime} \geqq 0\right] \leqq 2 P\left[S_{n} \geqq \varepsilon\right] .
\end{aligned}
$$

3. Proof of Theorems

Proof of Theorem 1. Under the assumptions $E X_{1}=0, E\left|X_{1}\right|^{a}$ for some $1 \leqq q \leqq 2$ and $\alpha>1 / q$, it follows from the corollary to Theorem 1 of [2] (see also Theorem 5 of that paper) that the following statements are equivalent:

$$
\begin{align*}
& E\left(X_{1}^{+}\right)^{(r+1) / \alpha}<\infty \tag{3.1}\\
& E L^{r}\left(\varepsilon n^{\alpha}\right)<\infty \quad \text { for all } \varepsilon>0 \tag{3.2}\\
& \sum n^{r-1} P\left[S_{n} \geqq \varepsilon n^{\alpha}\right]<\infty \quad \text { for some } \varepsilon>0 \tag{3.3}
\end{align*}
$$

We shall now show that these statements are equivalent to each of the following statements:

$$
\begin{array}{ll}
E N^{r}\left(\varepsilon n^{\alpha}\right)<\infty & \text { for all } \varepsilon>0 \\
E N^{r}\left(\varepsilon n^{\alpha}\right)<\infty & \text { for some } \varepsilon>0 \tag{3.5}
\end{array}
$$

Since $N\left(\varepsilon n^{\alpha}\right) \leqq L\left(\varepsilon n^{\alpha}\right)$, (3.2) implies (3.4). Clearly (3.4) implies (3.5). Since $q \alpha>1$, it follows from Lemma 3 that (3.5) implies (3.3). The proof of Theorem 1 is complete.

Proof of Theorem 2. By Theorem 4 of [2], (1.13) is equivalent to each of the following statements:

$$
\begin{align*}
& \sum n^{r-1} P\left[\sup _{k \geqq n}(k \log k)^{-1 / 2} S_{k} \geqq \varepsilon\right]<\infty \quad \text { for all } \varepsilon>(2 r)^{1 / 2} \sigma ; \tag{3.6}\\
& \sum n^{r-1} P\left[S_{n} \geqq \varepsilon(n \log n)^{1 / 2}\right]<\infty \quad \text { for some } \varepsilon>0 . \tag{3.7}
\end{align*}
$$

Clearly $(3.6) \Leftrightarrow(1.14) \Rightarrow(1.17) \Rightarrow(3.7)$. It is obvious from (1.8) that $(1.14) \Rightarrow(1.15)$. Since $(1.15) \Rightarrow(1.16)$, it remains to prove $(1.16) \Rightarrow(3.7)$. This implication follows from Lemma 3 since $\varepsilon^{2} n \log n>n$ for all large n.

Proof of Theorem 4. To prove (i), since $0<\varepsilon<\left(2 r E X_{1}^{2}\right)^{1 / 2}$, we can choose $\alpha>1$ and c such that

$$
\begin{equation*}
\alpha \varepsilon<\left(2 r \operatorname{Var} X_{1} I_{\left[\left|X_{i}\right| \equiv c\right.}\right)^{1 / 2} \tag{3.8}
\end{equation*}
$$

Define

$$
\begin{equation*}
X_{n}^{\prime}=X_{n} I_{\left[\left|X_{n}\right| \leqq c\right]}, S_{n}^{\prime}=X_{1}^{\prime}+\cdots+X_{n}^{\prime}, \tau^{2}=E\left(X_{1}^{\prime}\right)^{2} \tag{3.9}
\end{equation*}
$$

Since X_{1} is symmetric, $E X_{1}^{\prime}=0$ and we obtain by Lemma 4 that

$$
\begin{equation*}
P\left[S_{n} \geqq \alpha \varepsilon(n \log n)^{1 / 2}\right] \geqq \frac{1}{2} P\left[S_{n}^{\prime} \geqq \alpha \varepsilon(n \log n)^{1 / 2}\right] . \tag{3.10}
\end{equation*}
$$

Choose $k \geqq 6$ such that $\alpha \varepsilon / \tau<(k-2)^{1 / 2}$. Then by an inequality due to Esseen [4, p. 75-76],

$$
\begin{align*}
P\left[S_{n}^{\prime} /\left(\tau n^{1 / 2}\right) \geqq\right. & \left.(\alpha \varepsilon / \tau)(\log n)^{1 / 2}\right] \\
\geqq & 1-\Phi\left((\alpha \varepsilon / \tau)(\log n)^{1 / 2}\right)-c_{1} n^{-1 / 2}\left\{1+(\alpha \varepsilon / \tau)^{3}(\log n)^{3 / 2}\right\} \\
& \cdot \exp \left(-\alpha^{2} \varepsilon^{2} \log n /\left(2 \tau^{2}\right)\right)-c_{2} n^{-(k-2) / 2} \\
= & (c+o(1))(\log n)^{-1 / 2} \exp \left(-\alpha^{2} \varepsilon^{2} \log n /\left(2 \tau^{2}\right)\right), \tag{3.11}
\end{align*}
$$

where c, c_{1}, c_{2} are positive constants and Φ is the distribution function of the standard normal distribution. From (3.8) and (3.11), we obtain that

$$
\sum n^{r-1} P\left[S_{n}^{\prime} \geqq \alpha \varepsilon(n \log n)^{1 / 2}\right]=\infty
$$

so by (3.10),

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{n} \geqq \alpha \varepsilon(n \log n)^{1 / 2}\right]=\infty . \tag{3.12}
\end{equation*}
$$

If $0<r<1$, then by Lemma 3, (3.12) implies that $E N^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)=\infty$. Now
assume $r \geqq 1$ and take $1<\beta<\alpha$. It is easy to see that (3.12) implies that

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{[\beta-2 n]} \geqq \varepsilon(n \log n)^{1 / 2}\right]=\infty . \tag{3.13}
\end{equation*}
$$

Therefore by Lemma 3 (iii), $E N^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)=\infty$. Hence we have proved part (i) of Theorem 4.

To prove part (ii) of the theorem, since X_{1} need not be symmetric, instead of defining X_{n}^{\prime} by (3.9), we define

$$
\begin{align*}
& X_{n}^{\prime}=X_{n} I_{\left[\left|X_{n}\right| \leqq c\right]}-E X_{1} I_{\left[\left|X_{1}\right| \leqq c\right]}, \quad \tau^{2}=E\left(X_{1}^{\prime}\right)^{2}, \\
& X_{n}^{\prime \prime}=X_{n}-X_{n}^{\prime}, \quad S_{n}^{\prime}=X_{1}^{\prime}+\cdots+X_{n}^{\prime}, \quad S_{n}^{\prime \prime}=X_{1}^{\prime \prime}+\cdots+X_{n}^{\prime \prime} \tag{3.14}
\end{align*}
$$

where we choose $\alpha>1$ and c so large that (3.8) is satisfied and

$$
\begin{equation*}
2 r E\left(X_{1}^{\prime \prime}\right)^{2}<(\theta \varepsilon)^{2} \quad \text { with } 1<1+\theta<\alpha \tag{3.15}
\end{equation*}
$$

Take $\beta>1$ such that $\beta+\theta<\alpha$. Then

$$
\begin{align*}
& \sum n^{r-1} P\left[S_{n} \geqq \beta \varepsilon(n \log n)^{1 / 2}\right]+\sum n^{r-1} P\left[\left|S_{n}^{\prime \prime}\right| \geqq \theta \varepsilon(n \log n)^{1 / 2}\right] \\
& \geqq \sum n^{r-1} P\left[S_{n}^{\prime} \geqq \alpha \varepsilon(n \log n)^{1 / 2}\right] . \tag{3.16}
\end{align*}
$$

As before, making use of Esseen's inequality as in (3.11), we obtain that

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{n}^{\prime} \geqq \alpha \varepsilon(n \log n)^{1 / 2}\right]=\infty . \tag{3.17}
\end{equation*}
$$

In view of (3.15), it follows from Theorem 3 of [8] that

$$
\begin{equation*}
\sum n^{r-1} P\left[\left|S_{n}^{\prime \prime}\right| \geqq \theta \varepsilon(n \log n)^{1 / 2}\right]<\infty . \tag{3.18}
\end{equation*}
$$

From (3.16), (3.17) and (3.18), it follows that

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{n} \geqq \beta \varepsilon(n \log n)^{1 / 2}\right]=\infty \tag{3.19}
\end{equation*}
$$

Take $0<\delta<1$ such that $(1-\delta)^{-1 / 2}\{(r+1) \delta+1\}<\beta$. It is easy to see from (3.19) that for all α with $1-\delta<\alpha<1$,

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{[\alpha n]} \geqq((r+1) \delta+1) \varepsilon(n \log n)^{1 / 2}\right]=\infty \tag{3.20}
\end{equation*}
$$

Since $\varepsilon^{2}(n \log n)>n$ for all large n, it follows from Lemma 3(i) that

$$
\begin{equation*}
E N^{r}\left(\varepsilon(n \log n)^{1 / 2}\right)=\infty \tag{3.21}
\end{equation*}
$$

when $r \geqq 1$. When $0<r<1$, (3.19) implies (3.21) by Lemma 3.

4. General Upper-Class Boundaries and the Convergence Rate of Tail Probabilities for Sample Sums

In [13, pp. 339-340], Strassen has proved the following theorem: If $S_{n}=X_{1}+\cdots+X_{n}$, where X_{1}, X_{2}, \ldots are i.i.d. with $E X_{1}=0, E X_{1}^{2}=\sigma^{2}$ and and $E\left|X_{1}\right|^{p}<\infty$ for some $p>2(r+1)$, and if $t^{-1 / 2} b(t) \uparrow \infty$ while $t^{-q} b(t) \downarrow 0$ as $t \uparrow \infty$
for some $q>1 / 2$, then the following two statements are equivalent:

$$
\begin{align*}
& \int_{1}^{\infty} t^{r-3 / 2} b(t) \exp \left(-b^{2}(t) / 2 \sigma^{2} t\right) d t<\infty ; \tag{4.1}\\
& E \tilde{L}^{r}(b(n))<\infty . \tag{4.2}
\end{align*}
$$

In particular, if for all large t,

$$
b(t)=\left\{2 \sigma^{2} t\left(r \log t+\frac{3}{2} \log _{2} t+\log _{3} t+\cdots+\log _{k-1} t+\delta \log _{k} t\right)\right\}^{1 / 2}
$$

where $\log _{2} t=\log \log t$, etc., then

$$
\begin{equation*}
E \tilde{L}^{r}(b(n))=\infty \quad \text { or }<\infty \quad \text { according as } \delta \leqq 1 \text { or } \delta>1 \tag{4.3}
\end{equation*}
$$

In what follows, we shall assume $E X_{1}=0$ and consider boundaries $b(t)$ which satisfy (4.1). We have seen in (1.6) that if $b(t)=t^{\alpha}\left(\alpha>\frac{1}{2}\right)$, then (4.2) holds if and only if $E\left|X_{1}\right|^{(r+1) / \alpha}<\infty$, i.e., $E\left(\Psi\left(\left|X_{1}\right|\right)\right)^{r+1}<\infty$, where $\Psi(t)=t^{1 / \alpha}$ is the inverse function of $b(t)$. Likewise Theorem 3 asserts that if $b(t)=\varepsilon(t \log t)^{1 / 2}, t \geqq 1$, where $\varepsilon>(2 r)^{1 / 2} \sigma$, then (4.2) holds if and only if $E\left(\Psi\left(\left|X_{1}\right|\right)\right)^{r+1}<\infty$, where

$$
\Psi(t) \sim t^{2} /\left(2 \varepsilon^{2} \log t\right)
$$

is the inverse function of $b(t)$. This observation suggests the general analogue in Theorems 5 and 6 below for the last exit time of the region bounded by general boundaries $b(t)$ and $-b(t)$.

In the proof of Theorems 1, 2 and 4 in Section 3, we have seen that the relation (4.2) is closely related to the convergence of a certain type of series. In [1], Baum and Katz studied some series of this type and proved that for $\alpha>\frac{1}{2}$ and $r>0$, the following three statements are equivalent:

$$
\begin{align*}
& E\left|X_{1}\right|^{(r+1) / \alpha}<\infty \quad \text { and in the case } \alpha \leqq 1, E X_{1}=0 ; \tag{4.4}\\
& \sum n^{r-1} P\left[\sup _{k \geqq n} k^{-\alpha}\left|S_{k}\right| \geqq \varepsilon\right]<\infty \quad \text { for all } \varepsilon>0 ; \tag{4.5}\\
& \sum n^{r-1} P\left[\left|S_{n}\right| \geqq \varepsilon n^{\alpha}\right]<\infty \quad \text { for some } \varepsilon>0 . \tag{4.6}
\end{align*}
$$

This result generalizes an earlier theorem of Hsu and Robbins [6] and Erdös [3] who consider the special case $\alpha=r=1$, and the proof given by Baum and Katz follows closely that of Erdös. In [2], by using a different approach, Chow and Lai have obtained inequalities, called Paley-type inequalities, which relate the series in (4.5) or (4.6) with $E\left|X_{1}\right|^{(r+1) / \alpha}$ and thereby give another proof of the result of Baum and Katz. By an extension of the method of [2], we can prove the following generalization of the Hsu-Robbins-Erdös-Baum-Katz theorem.

Theorem 5. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $E X_{1}=0$ and $E\left|X_{1}\right|^{q}<\infty$ for some $1 \leqq q \leqq 2$, and let $S_{n}=X_{1}+\cdots+X_{n}$. Let b be a real-valued function on $[1, \infty)$ satisfying the following condition:
$b(t)$ is ultimately nondecreasing, $\liminf _{t \rightarrow \infty} b(\delta t) / b(t)>1$ for all large δ, and
there exists $\beta>1 / q$ such that $\lim _{t \rightarrow \infty} t^{-\beta} b(t)=\infty$.

Define $\Psi(x)=\inf \{t: b(t)>x\}$ for $x \geqq 0$. Then for any $r>0$, the following statements are equivalent:

$$
\begin{array}{ll}
E\left(\Psi\left(X_{1}^{+}\right)\right)^{r+1}<\infty ; & \\
\sum n^{r-1} P\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n)\right]<\infty & \text { for all } \varepsilon>0 \\
\sum n^{r-1} P\left[S_{n} \geqq \varepsilon b(\varepsilon n)\right]<\infty & \text { for some } \varepsilon>0 \\
E L^{r}(b(n))<\infty \\
E N^{r}(b(n))<\infty & \tag{4.12}
\end{array}
$$

Proof. We shall prove $(4.8) \Rightarrow(4.9) \Rightarrow(4.11) \Rightarrow(4.12) \Rightarrow(4.10) \Rightarrow(4.8)$. To prove $(4.8) \Rightarrow(4.9)$, without loss of generality, we can assume that $E\left|X_{1}\right| \neq 0$. Let k be a positive integer such that $k(q \beta-1)>r$. We note that

$$
\begin{align*}
P\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n)\right] \leqq & P\left[\max _{j \leqq n} X_{j} \geqq b(\varepsilon n) / 2 k\right] \\
& +P\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n), \max _{j \leqq n} X_{j} \leqq b(\varepsilon n) / 2 k\right] \tag{4.13}
\end{align*}
$$

For large $t, x \geqq b(t)$ implies that $\Psi(x) \geqq t$. Therefore for all large n,

$$
\begin{equation*}
P\left[\max _{j \leqq n} X_{j} \geqq b(\varepsilon n) / 2 k\right] \leqq n P\left[X_{1} \geqq b(\varepsilon n) / 2 k\right] \leqq n P\left[\Psi\left(2 k X_{1}^{+}\right) \geqq \varepsilon n\right] . \tag{4.14}
\end{equation*}
$$

Define $\tau_{1}^{(n)}=\inf \left\{j \geqq 1: S_{j} \geqq b(\varepsilon n) / 2 k\right\}, \tau_{2}^{(n)}=\inf \left\{j \geqq 1: S_{\tau_{1}^{(n)}+j}-S_{\tau_{1}^{(n)}} \geqq b(\varepsilon n) / 2 k\right\}$, etc. Then

$$
\begin{align*}
& P\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n), \max _{j \leqq n} X_{j} \leqq b(\varepsilon n) / 2 k\right] \leqq P\left[\tau_{i}^{(n)} \leqq n \text { for } i=1, \ldots, k\right] \\
& \quad=P^{k}\left[\tau_{1}^{(n)} \leqq n\right]=P^{k}\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n) / 2 k\right] \\
& \quad \leqq\left\{(2 k / b(\varepsilon n))^{q} E\left|S_{n}\right|^{q}\right\}^{k}, \quad \text { by the submartingale inequality } \\
& \quad \leqq\left\{(4 k / b(\varepsilon n))^{q} n E\left|X_{1}\right|^{q}\right\}^{k}, \quad \text { by the Esseen-von Bahr inequality [5] } \\
& \quad=o\left(n^{-k(q \beta-1)}\right) . \tag{4.15}
\end{align*}
$$

The last relation above follows from the assumption that $\lim _{n \rightarrow \infty} n^{-\beta} b(n)=\infty$. It is easy to see from (4.7) that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \Psi(\eta x) / \Psi(x)<\infty \quad \text { for any } \eta>1 \tag{4.16}
\end{equation*}
$$

Hence (4.8) implies that $E\left(\Psi\left(2 k X_{1}^{+}\right)\right)^{r+1}<\infty$, and therefore

$$
\begin{equation*}
\sum n^{r} P\left[\Psi\left(2 k X_{1}^{+}\right) \geqq \varepsilon n\right]<\infty \tag{4.17}
\end{equation*}
$$

Since $k(q \beta-1)>r$, it follows from (4.15) that

$$
\begin{equation*}
\sum n^{r-1} P\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n), \max _{j \leqq n} X_{j} \leqq b(\varepsilon n) / 2 k\right]<\infty \tag{4.18}
\end{equation*}
$$

From (4.13), (4.14), (4.17) and (4.18), we obtain (4.9).
We shall now prove that $(4.9) \Rightarrow(4.11)$. Without loss of generality, we can
assume that $b(t)$ is nondecreasing for $t \geqq 1$. We need only note that

$$
\begin{aligned}
& \sum_{i=1}^{\infty} 2^{r i} P\left[S_{n} \geqq b(n) \text { for some } n \geqq 2^{i}\right] \leqq \sum_{i=1}^{\infty} 2^{r^{i}} \sum_{j=i}^{\infty} P\left[\max _{n \leqq 2^{j+1}} S_{n} \geqq b\left(2^{j}\right)\right] \\
& \quad \leqq c \sum_{j=1}^{\infty} 2^{r j} P\left[\max _{n \leqq 2^{j+1}} S_{n} \geqq b\left(2^{j}\right)\right] \\
& \quad \leqq c_{1} \sum_{j=0}^{\infty} \sum_{2^{j+1} \leqq m<2^{j+2}} m^{r-1} P\left[\max _{n \leqq m} S_{n} \geqq b(m / 4)\right] \\
& \quad=c_{1} \sum_{m=2}^{\infty} m^{r-1} P\left[\max _{n \leqq m} S_{n} \geqq b(m / 4)\right]
\end{aligned}
$$

It is obvious from (1.8) that $(4.11) \Rightarrow(4.12)$. To prove $(4.12) \Rightarrow(4.10)$, we apply Lemma 3. If $0<r<1$, then the desired result is immediate from Lemma 3. Now assume that $r \geqq 1$. By (4.7), $b^{q}(n)>n$ for all large n. Therefore if (4.12) holds, then by Lemma 3, there exists $\frac{1}{2}<\alpha<1$ such that

$$
\begin{equation*}
\sum n^{r-1} P\left[S_{[\alpha n]} \geqq\left(\frac{1}{2}(r+1)+1\right) b(n)\right]<\infty . \tag{4.19}
\end{equation*}
$$

It is obvious that $(4.19) \Rightarrow(4.10)$.
To prove $(4.10) \Rightarrow(4.8)$, we follow the argument due to Erdös [3]. For $k=1, \ldots, n$, let $A_{k}^{(n)}=\left[X_{k} \geqq 2 \varepsilon b(\varepsilon n)\right], B_{k}^{(n)}=\left[\left|\sum_{1 \leqq j \leqq n, j \neq k} X_{j}\right| \leqq \varepsilon b(\varepsilon n)\right]$. Since $\beta>1 / q$ and $E\left|X_{1}\right|^{q}<\infty, n^{-\beta} S_{n-1} \rightarrow 0$ a.s. by the Marcinkiewicz-Zygmund strong law of large numbers. Therefore by (4.7), $\lim _{n \rightarrow \infty} P\left(B_{1}^{(n)}\right)=1$. Also for all large $n, P\left(A_{1}^{(n)}\right)$ $\leqq P\left[X_{1} \geqq n^{1 / q}\right]=o(1 / n)$ since $E\left|X_{1}\right|^{q}<\infty$. Therefore we can choose n_{0} such that for $n \geqq n_{0}, P\left(B_{1}^{(n)}-n P\left(A^{(n)}\right) \leqq 1 / 2\right.$. Hence for $n \geqq n_{0}$,

$$
\begin{aligned}
P\left[S_{n} \geqq \varepsilon b(\varepsilon n)\right] & \geqq \sum_{k=1}^{n}\left\{P\left(A_{k}^{(n)} \cap B_{k}^{(n)}\right)-P\left(A_{k}^{(n)} \cap\left(A_{1}^{(n)} \cup \cdots \cup A_{k-1}^{(n)}\right)\right)\right\} \\
& \geqq \sum_{k=1}^{n} P\left(A_{k}^{(n)}\right)\left(P\left(B_{1}^{(n)}\right)-n P\left(A_{1}^{(n)}\right)\right) \geqq \frac{1}{2} n P\left(A_{1}^{(n)}\right) .
\end{aligned}
$$

Hence (4.10) implies that

$$
\begin{equation*}
\sum n^{\prime} P\left[X_{1} \geqq 2 \varepsilon b(\varepsilon n)\right]<\infty \tag{4.20}
\end{equation*}
$$

Since $\Psi(x)>t$ implies $x \geqq b(t)$ for all large t, it is easy to see using (4.16) that (4.20) implies (4.8).

By a modification of the proof of Theorem 5, we obtain the following theorem which considers boundaries $b(t)$ satisfying weaker growth conditions than (4.7) but under stronger two-sided moment conditions on X_{1}.

Theorem 6. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $E X_{1}=0$ and $E\left|X_{1}\right|^{2+\theta}<\infty$ for some $\theta>0$. Let $S_{n}=X_{1}+\cdots+X_{n}$, and let b be a real-valued function on $[1, \infty)$ satisfying the following condition:
$b(t)$ is ultimately nondecreasing, $\liminf _{t \rightarrow \infty} b(\delta t) / b(t)>1$
for all large δ and $\lim _{t \rightarrow \infty}(t \log t)^{-1 / 2} b(t)=\infty$.

Define $\Psi(x)=\inf \{t: b(t)>x\}$ for $x \geqq 0$. Then for any $r>0$, the statements (4.8), (4.9), (4.10), (4.11) and (4.12) are equivalent.

Proof. We first prove (4.8) \Rightarrow (4.9). Without loss of generality, we can assume that $0<\theta<1$. Choose a positive integer k such that $k \theta / 2>r$. Letting $\sigma^{2}=E X_{1}^{2}$, we can without loss of generality assume that $\sigma \neq 0$. As in the proof of Theorem 5 , we obtain that

$$
\begin{equation*}
P\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n), \max _{j \leqq n} X_{j} \leqq b(\varepsilon n) / 2 k\right] \leqq P^{k}\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n) / 2 k\right] . \tag{4.22}
\end{equation*}
$$

By the Lévy inequality (cf. [10, p. 248]),

$$
\begin{align*}
P\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n) / 2 k\right] & \leqq 2 P\left[S_{n} \geqq b(\varepsilon n) / 2 k-\left(2 n \sigma^{2}\right)^{1 / 2}\right] \\
& \leqq 2 P\left[S_{n} \geqq b(\varepsilon n) / 3 k\right] . \tag{4.23}
\end{align*}
$$

Using (1.11), we obtain that for all large n

$$
\begin{align*}
P^{k}\left[S_{n} \geqq b(\varepsilon n) / 3 k\right] & \leqq\left\{1-\Phi\left(b(\varepsilon n) /\left(3 k \sigma n^{1 / 2}\right)\right)+c n^{-\theta / 2}\right\}^{k} \\
& \leqq c_{1} \exp \left(-b^{2}(\varepsilon n) /\left(18 k \sigma^{2} n\right)\right)+c_{2} n^{-k \theta / 2} \tag{4.24}
\end{align*}
$$

where c, c_{1} and c_{2} are positive constants. Since $\lim _{n \rightarrow \infty} b^{2}(\varepsilon n) /(n \log n)=\infty$ and $k \theta / 2>r$, it follows from (4.23) and (4.24) that

$$
\begin{equation*}
\sum n^{r-1} P^{k}\left[\max _{j \leqq n} S_{j} \geqq b(\varepsilon n) / 2 k\right]<\infty \tag{4.25}
\end{equation*}
$$

Using (4.22) and (4.25), we can prove the implication (4.8) \Rightarrow (4.9) as in Theorem 5.
The proof of $(4.9) \Rightarrow(4.11)$ in Theorem 5 carries over and since $\lim _{n \rightarrow \infty} b^{2}(n) / n=\infty$, so does the proof of $(4.12) \Rightarrow(4.10)$. Since $E X_{1}^{2}<\infty,(n \log n)^{-1 / 2} S_{n} \rightarrow 0$ a.s. and $P\left[X_{1} \geqq n^{1 / 2}\right]=o(1 / n)$. Therefore we can again apply the argument due to Erdös as in Theorem 5 to prove $(4.10) \Rightarrow(4.8)$.

Acknowledgment. The authors wish to thank Professor Y.S. Chow for his encouragement and suggestions.

References

1. Baum, L., Katz, M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120, 108-123 (1965)
2. Chow, Y. S., Lai, T. L.: Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings. Trans. Amer. Math. Soc. 208, 51-72 (1975)
3. Erdös, P.: On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286-291 (1949)
4. Esseen, C. G.: Fourier analysis of distributions of functions. A mathematical study of the LaplaceGaussian law. Acta Math. 11, 1-125 (1945)
5. Esseen, C. G., von Bahr, B.: Inequalities for the r th absolute moment of a sum of random variables, $1<r<2$. Ann. Math. Statist. 36, 299-303 (1965)
6. Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33, 25-31 (1947)
7. Katz, M.: The probability in the tail of a distribution. Ann. Math. Statist. 34, 312-318 (1963)
8. Lai, T. L.: Limit theorems for delayed sums. Ann. Probability 2, 432-440 (1974)
9. Lai, T. L.: On r-quick convergence and a conjecture of Strassen. To appear in Ann. Probability 4 (1976)
10. Loève, M.: Probability Theory. Princeton: Van Nostrand (1963)
11. Slivka, J.: On the law of the iterated logarithm. Proc. Nat. Acad. Sci. U.S.A. 63, 289-291 (1969)
12. Slivka, J., Severo, N. C.: On the strong law of large numbers. Proc. Amer. Math. Soc. 24, 729-734 (1970)
13. Strassen, V.: Almost sure behavior of sums of independent random variables and martingales. Proc. 6th Berkeley Sympos. Math. Statist. Probab. Univ. Calif., 2, 315-343 (1967)
14. Stratton, H.: Moments of oscillations and ruled sums. Ann. Math. Statist. 43, 1012-1016 (1972)

Received June 11, 1975

