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The first part of this paper gives the Lebesgue decomposition relative to a Radon 
measure ~ on IR of the occupation-time measure B--*m(x-l(B)) (m Lebesgue 
measure, B a Borel set) of a real function x(t) which satisfies a certain condi- 
tion on the size of its level sets. When x(t) has an approximate derivative 
kap(t ) for m-a.e, t the decomposition can be written explicitly in terms of 
ka~(t) and the multiplicity kernel v(y, A)=cardinality of {t~A: x(t)=y}. In the 
second part, we first give probabilistic conditions which allow the real-variable 
results to be applied to almost every trajectory of a stationary random process 
Xt(co ). We then exhibit various random times at which the process regenerates 
itself probabilistically: letting ~(co) be the first t > 0  at which Xt(co)=Xo(cO ) and 
the (approximate) derivative 2~(co) exists, we characterize the class of measures 
which are dominated by the law P of Xt(c0) and invariant under the random time 
shift which moves the origin to z(co); we also give a necessary and sufficient con- 
dition for a " random iterate" of this transformation to preserve P itself and 
describe the invariant a-fields for these transformations. 

w O. Introduction 

This paper extends our earlier work [8] on occupation-times for stationary 
random processes and investigates certain random shifts of the time origin 
which preserve the law of the process. Part I (w167 1-3) is concerned entirely with 
non-random functions of a real variable; the results are applied to processes in 
Part II (w167 4-9). 

Let ~ be a Radon measure (i.e. finite on compacts) on the Borel a-field N of 
the real line IR and x(t) a real-valued Borel function on IR. We consider (w 2) the 
Lebesgue decomposition relative to zc of the occupation-time measure #~(F)= 
m(x-l(F)~(O, t]), F ~ ,  m Lebesgue measure, when x(t) satisfies the condition 
(T~ G, ~r) of w 1 having to do with the size of the level sets. When re=m, (T 1 G, m) 
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lies between the classical conditions (T1) and (T2) of Banach. We also prove that 
Lusin's condition (N) implies (T 1 G, m), and proceed to identify the components 
of #t more explicitly for functions which have an approximate derivative a.e. 
Despite its purely analytical character, the occupation-time measure does not 
seem to be in the literature on functions of a real variable; of course, it is well- 
known in probability theory (see [10] and the references therein). Connections 
with related results in real variables (especially Sarkhel's [22]) are drawn in 8 3, 
and several open questions are indicated. 

In Part II the foregoing results are applied to the trajectories of random pro- 
cesses. We begin (8 4) by relating the present work to our earlier results [10] on 
local times and giving concrete illustrations of the abstract results in [10, 12]. 
Starting with 8 5 we concentrate on homogeneous stationary processes, i.e. those 
of the form X~ = X  o 0 t, X being a random variable over a dynamical system 
((2, .~-o, p, 0t). We restrict attention to trajectories which are (approximately) 
differentiable a.e.; Section 5 gives probabilistic conditions which imply this for 
almost every trajectory, and establishes the good measurability properties of the 
derivative process. There is also a short discussion which indicates that approxi- 
mate differentiability is a natural concept in the subject of random processes 
rather than an idle generalization. 

The main applications to processes are in 8w 7. Let -c(co) be the first t > 0  at 
which X~(co)= Xo(c0 ) and the (approximate) derivative Xt(co ) exists. We describe 
the class of measures on fl which are dominated by P and invariant under the 
random time shift qS(~o)=0~{~)(co), and give a necessary and sufficient condition 
for a "random iterate" of ~b to preserve P itself. In effect we are exhibiting random 
times at which the process "starts over" probabilistically-one such is the time 
of first return of the vector process (Xt, 12tL ) to its initial position. As by-products 
we obtain extensions of the formulae of Rice (mean number of level crossings) 
and Kac (mean return time) and of an observation of Neveu [19] which may be 
of interest on its own. 

Two examples are given in w 8, the second of which, involving the torus, shows 
how awkward it may be to deal directly with even a very simple process. Similar 
examples, having discontinuous but still relatively "smooth"  trajectories moti- 
vated the problem of extending the results in [8]. Finally, in 8 9, we briefly discuss 
a continuous-parameter flow which arises in place of 4) when the level sets of X t 
are no longer countable. 

I. Occupation-Times for Approximately Differentiable Functions 

w 1. Preliminaries 

Let x(t) be a real-valued Borel function on IR. We write m for Lebesgue measure 
on N, the Borel a-field on IR. For each real t (construed as '~time") we define the 
occupation-time measure 

#~(F) = ilr(x(s)) ds=m(x-l(F)c~(O, t]), F e ~ .  
o 



Occupation-Times for Functions 191 

Our primary interest is the Lebesgue decomposition 

~t( d y) = c~(y) ~( d y) + ~(  d y) 

of gt relative to a Radon measure ~ on N. When the /~-singular component fit 
vanishes, the density at(y ) of the ~z-absolutely continuous component is called 
local time (at y) and we say that x(t) satisfies the condition (LT) on [0, t]. It is 
easy to see that ,~(y) may always be "regularized" to be a non-decreasing, right- 
continuous function of t for every y, hence jointly (t, y)-measurable. We always 
assume this to be done and freely regard ,.(y) as a measure on N. 

The condition (LT) is a kind of obverse to the classical condition (N) of 
Lusin, viz. re(E)=0 implies m(x(E))=O for EeN. Intuitively, it means that a 
traveller whose position at time t is x(t) spends (Lebesgue measure) zero time in 
any ~-negligible set. 

The multiplicity kernel of x(t) is v(y,B)=card{teB: x(t)=y}, y e N ,  BeN.  
To justify the integrals below involving v we will need: 

(1) Proposition. For each y fixed, B-~ v(y, B) is a measure on N; for each B e N  
fixed, y--+ v(y, B) is universally measurable. 

Note. "Universal measurability" means measurability relative to the universal 
completion N* of N, defined as the intersection of all the a-fields N~ where/~ is a 
finite Borel measure and N u the/~-completion of N. 

Proof The first assertion is obvious. For the second, if x(t) is continuous and B 
is an interval, then a classical argument [11, p. 280] shows that yov(y ,B)  is 
actually N-measurable. In general, if BeN,  recall that x(B) is an analytic set since 
x(t) is Borel [17, p. 35] and every analytic set is in N* [17, p. 44]. From here the 
argument in [6, p. 176] concludes the proof. 

We will say that x(t) satisfies the condition (T,, re) (or simply "is (T~, ~)") on 
E e N  if~z {y: v(y, E)= c~} =0;  replacing "v(y, E)-- oo" by "x-1 (y) is uncountable" 
we arrive at the definition of (T2, re). Similarly (N, ~) means that ~(x(E))=0 
whenever re(E)=0, EeN,  noting that x(E)eN*. Finally we say x(t) is (T 1 G, ~) 
on E (G for "generalized") if there exists a countable partition of E into Borel 
sets on each of which x(t) is (7~, ~c). Clearly (T 1 G, To) implies (T2, rt), but we do not 
know whether the converse is true. When ~ = m, each of the above conditions (ex- 
cept T 1 G) reduces to a classical one, (T1) and (T2) being Banach's and (N) being 
Lusin's condition. Suppose F is any distribution function of ~, i.e. ~z(a, b] = 
F(b)-F(a) for every interval (a, b]. If ~ has no point masses, F is continuous and 
[21, p. 100] m(F(E))=rt(E), for EeN.  It follows, then, that x(t) is (T~,~)iff the 
function ~(t)= Fox(t) is (T~), and similarly for the others. 

Consider the set function ~: N--+ [0, oo] given by ~(B)= rc(x(B)) and the outer 
measure ~ obtained by Carath6odory's construction from ~; as in 2.10.10 of [6] 
we have 

(2) ~(B)=~v(y,B)~(dy), BeN.  

Notice that ~z(x(B))= 0 implies ~(B)= 0 -  this will be very useful later. 

(3) Proposition. The measure ~ on N is a-finite iffx(t) is (T 1 G, 7c) on IR. 
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Proof. It is clear that x(t) is (T 1 G, n) on any set of finite 0-measure. If, on the other 
hand, x(t) is (T 1 G, n), we have a Borel partition {E,} of IR with v(y, E,)<  0% 
n-a.e, for each n, thus the sets 

A~,m,k={y: [yt<=m,v(y,E,)=k-1}, n ,m,k>l ,  

and 

A={y :  v(y,E,)=oo for some n} 

form a partition of IR, and are in ~*.  Let B, B . . . .  k be Borel sets which enclose the 
corresponding A's and have the same n-measure. Then, by (2), 0 (x - I (B) )=0  
since n(A)=0, O(E,c~x-I(B .... k))=(k-- 1 ) h i - m ,  m] < 0% and the a-finiteness 
of 0 follows. 

The importance of (3) lies in the fact that we will want to use the Lebesgue 
decomposition of 0 when x(t) is a trajectory of a random process having locally 
finite level sets. 

It is known [7] that (N) implies (T2), whence (N, n) implies (T2, n) if n is con- 
tinuous; in fact, 

(4) Theorem. If  n is continuous, (N, n) implies (T 1 G, n). 

Because of our earlier remarks, this may or may not be a better result than 
what was already known; in any case it shows that ~ is a-finite when x(t) is (N, n). 
We will indicate below how (T~ G, n) is related to some of the other classical condi- 
tions such as VBG. 

Proof It suffices to deal with n --m and to restrict attention to x(t) for t s  U = [0, 1]. 
Thus suppose x(t) is (N) and choose a Lebesgue measurable set A~ ~ U such that 
x(AO=x(U ) and x(t) is univalent on A 1 - t h i s  is possible by [7]. Next, for each 
countable ordinal number ~>1,  let B~= ~A ~ .  If m(x(U\B~))>O, choose 

fl<e 
A c U\B~  such that A~ is measurable, x(A~)=x(U\B~), and x(t) is univalent 
on A~; by (N) we have m(A~)>0 in this case. On the other hand, ifm(x(U \B~)) -=0, 
take A~= U \B~:  Since the A~ are disjoint, the second case must occur for some 
countable ordinal 7, and then m(A~)=m(x(A.~))=O; x(t) is (T1) on each A~, c~<7, 
and the result follows. 

w 2. Main Results 

Write n = n c + n e, where n d is purely discrete and n c is continuous, i.e. nc({x})=0 
for all xslR. We can quickly dispose of rcd. Let A = {a 1, a2,...} be the set of atoms 
of ~z, with a, carrying mass n ,>0 .  Since #t(F)=#,(Fc~A)+#t(Fc~X), it is clear 
that we can treat n a and rc c separately. One easily checks that 

(m(x-l(a,) ~ [0, t?)t i{a~}(y)n(dy). 

So now we assume rc is continuous and t) is a-finite. Let 

(5) O(dt)= h(Om(dt ) + ~(dt) 
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be the Lebesgue decomposition of 0 relative to m. The function h(t) is a version 
of the Radon-Nikodym derivative dO~din (computed as in w 8.2 of [20] if 0 is 
Radon) and ~ is m-singular. The function h is an a.e. finite, non-negative Borel 
function and we may take h = 0% ~-a.e. Any version of dO~din having this last 
property will agree with h a.e. m and ~ and may be used in the results below. 

(6) Theorem. The Lebesgue decomposition #x(dy)=~t(y)~(dy)+fit(dy) is given by 
t 

(7) ~(y) = f I(o ' ~)(h(s))(h(s)) z v(y, ds) 
0 

~x(r)=m(x l(F)c~H0c~(0, t3), r e ~ ,  
where H 0 = {t: h(t)= 0}, and the interval of integration is (0, t]. The condition (LT) 
holds iff m(Ho) = O. 

Proof. We begin by showing that fit is indeed a ~-singular measure. Clearly fit 
lives on x(Ho); but 0(Ho)=0 and O(Ho)>~(x(Ho) ) by (2), so fit is singular. 

Next, by (2) and (5), we have 

~ f(s)v (y, ds)n(dy) = ~ h(s) f(s)ds + ~ f(s)~(ds) 

for any Borel function f >  0. Choosing f(s) = I(o ' tj(s) I(o ' oo)(h(s))(h(s)) -1 ir(X(S)) ' we 
obtain 

i Iu;(S) Ir(x(s))ds = ~ i I(o, ~)(h(s))(h(s)) -~ v(y, ds)~(dy), 
0 1 " 0  

and adding fit(F) to both sides gives the result. 
Notice that ~ has no point masses, and further, is m-absolutely continuous iff 

x(t) is (N, ~). This may be construed as a kind of dual to the statement that #t 
is ~-absolutely continuous iff (LT) holds. 

Theorem (6) will be useful in applications to the extent that we can more 
explicitly identify h(t) in terms of x(t) and 7c For example, when ~ =m and x(t) 
is continuous and of locally bounded variation, then g, is just the total variation 
measure ofx(t) and the de la Vallde Poisson decomposition [21, p. 127] shows that 
h(t) = 12(01, 2(t) being the ordinary derivative of x(t). We now proceed to identify 
h(t) for a much wider class of functions. 

The derivative of x(t) at t, denoted 2(t), is defined as the common va lue -  when 
such ex i s t s -o f  the four Dini derivates of x(t). Using approximate Dini derivates 
instead, one defines the approximate derivative Xav (t) [21]. All of the (approximate) 
Dini derivates inherit the Borel measurability of x(t) [1], consequently each of 
the following is a Borel set: 

C = {t: x is continuous at t}, 

D = {t: 2(t) exists, finite or not}, 

D O = { t e D :  2(t)=0}, 

D ~ = {teD: I• oG}, 

D* = {teD" 0 < I~(t)l < ~ } ,  

as well as D~p, D,~ etc. defined using 2ap above. 
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Let F be any distribution function for rc and ~(t)=Fox( O. The following 
results are indifferent to the particular choice of F. 

(8) Theorem. If ~(t) has an approximate derivative a.e., then (7) holds with 
h(t) = I~. (~)l. 

Before proving (8) we remark that, taking n = m =  1 in the Hausdorff area 
theorem ((3.2.3) and p. 241 of [6]), we find ~(B)~ ~ Ikap(t)ldt for any Borel set 

B 

B ~  {t: [2,;(~)1 < o9}, where ~ is given by (2) with ~ - m .  Because of the exceptional 
set of measure 0 where ~ap(t) may not exist, we must be somewhat circumspect 
in applying this theorem. In fact, we will give a slightly different proof which will 
render the result a little more accessible and allow us to keep track of the singular 
part ~. We also note that, being approximately differentiable a.e., ~(t) agrees 
a.e. with a function which is VBG, and any VBG function is easily seen to be 
(T 1 G, m) -  see [21, p. 279]. 

Proof of (8). We will show that the function h in (5) may be identified with r~apt, 
except that it need not be true that [~vl = ~ ,  ~-a.e. As will be clear from the proof 
this will not affect formula (7). The proof is broken into three steps. 

1% Assume ~ = m  and x(t) is of bounded variation. The de la Vall~e Poussin 
decomposition of the absolute variation measure V(dt) [21, p. 127] yields 

(9) V(B~C)=j)~(s)las+V(~nCr~D~), B ~ ,  
B 

while 2.10.4 (p. 177) of [6~ gives 

(10) V([a,b])=~v(y,[a,b])dy+ ~ )x ( t+) -x ( t ) I+  ~ Ix(t-)-x(t)[. 
�9 . t s [ a ,  b) rE(a, b] 

Since x(C ~) is countable, (9) and (10) imply 

(11) S ~ f(s)v(y, ds)dy= Sf(s)lSc(s)l ds+ ~ f(s)V(ds) 
�9 , ~ ,  ~. Cr~D ~ 

for any non-negative Bore1 function f Here ~ is just the continuous part of 
the measure V,, and h = r2[ satisfies the conditions at (5). Notice that whenever 
2 exists, 2~p also exists and coincides with 2. 

2 ~ Now assume that g = m  and 2~p exists a.e. The notation VBG, etc. are 
from [21], from which we know that x(t) is VBG on D~*. 

oo 

There is a partition of D,*, say D*~p=~K,, K,cN,  such that x(t) is 
1 

VB and 2~p is bounded and never zero on each K~. Using [21, p. 221] we 
find a function x~(0 of bounded variation such that 

(12) x,(t)=x(t) on K,. 

For each n, define v,, D,,, etc. for x,(t). Let L, be the set of density points of K,  in K,, 
so La ~ ~,  m(K,'-. L~) = 0. The true derivative 2, exists a.e., hence [21, p. 220] 

(13) 5%(t)=2~v(t ) for all teLnc~D .. 
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Now apply (11) to x. with f(s)=g(s)IL.~v;~(s), g a non-negative Borel function. 
Noting that D* c~ D~ = r m (L. \ D*)= 0, and using (12), (13), we obtain 

jg(s)l%(s)l ds= .[ j" ds)dy. 
Ln ~( Lnc~D*. 

Since rn(K,,'-.(L.c~O*))=O, we have m(x(K.\(L.c~O*)))=O [21, p. 292], hence 
both L. and L. c~ D* may be changed to K.. Summing the resulting equation on 
n gives 

(14) ~g(s)lX.p(s)lds= y ~g(s)v(y, ds)dy. 
D~p ]R D~p 

* 0 We may further change D.* to Oap L)Dap in (14) since m(x(D~ It follows that 

Sgd~ = ~ g(s)12,p(S)lds+ ~ gdt~ 
R D*p w D~ Da~puDCp 

or, since m(IR \(Da* p w D~ by hypothesis, 

(15)  gd ,=Sg(s)12ap(S)lds+ S gd ,. 
~, ~ Damp w DaClp 

This shows that [• will serve for h in (5), though it may not be infinite ~-a.e. 
Consider instead h =  ts flay being the approximate upper bilaterial Dini deri- 
vative (the corresponding lower derivative would do just as well). Putting this in 
for ]5%p[_does not affect the first right-hand term in (15). It remains only to show that 
h = ~ ,  r From (15) we find ~ to be the restriction of ~ to the (Lebesgue null) 
set Dap . . . .  k.)/.lap. Certainly [.~apl = oO on D ~ap since Xap=2ap when the latter exists. 
Now the analogue of the Denjoy-Saks-Young Theorem for approximate derivates 
[21, p. 295] tells us that, for a.e. t, 2,p(t) exists finite, or s oo = --_Xap(t ). Let B 
bethe  exceptional null set, so B=D~p~ {t: ffap(t)<O0 or _X,p(t)> -- Go}. Then 
[21, p. 292] x(t) is (N) on B, re(B)= 0, so m(x(B))=O, and we conclude ~is  supported 
by {t: s 09 = --Xap(t)} u D ~ .  

3 ~ Now let rc be arbitrary and assume ~,p exists a.e. We write (2) in terms of the 
distribution function F, 

(16) 0(B)= ~ v(y, B)dF(y), Be~, 
IR 

and make the change of variable y = F(z), where P is the right-continuous "inverse" 
of F (_P(z)= inf {y: F(y)> z}), which transforms (16) into 

r  ~ v(~(z), B)dz. 
IR 

Let n(z, ds) be the multiplicity kernel of the function ~(t). One may easily verify that, 
if z is not one of the co untably many flat levels on the graph of F, v (F(z), B) = n (z, B), 
whence O(B)=~ n(z, B)dz. Applying step 2 ~ we have 

O(B) = [. l a (s)l ds + 
B 

with ~ being the restriction of 0 to the set D_,~ u DaCp (now referring to ~(t)). Re- 
placing ~,p (as in 2 ~ we again get l~avl = OO, r but we note that in the local 
time formula (7) we may use h=  [~ap[ rather than t~,p[. Q.E.D. 
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Remark. Here is another approach to (8) when 7r =m. However, as above, care 
must be taken to keep track of various null sets whose images may not be null. 
Suppose B ~  {t: [2(01 exists finite}. Then [21, p. 227] m(x(B))< j 12(s)[ds, and it 

B 

is easy to conclude 0(B)< j I• and further h(s)< 12(s)1 a.e. where I~1 < oo. 
B 

Using a theorem of Hin~in (cf. w 3) we may extend the conclusion to h(s) <__ 12ap(S)t a.e. 
where 15Cap I exists and is finite. Next, let x(t) be continuous. It is then VBG on the 

.~. oo set D~p Dap, and by a theorem of Cesari [-2] one obtains 0(B)> j 12ap(s)Lds for 
B 

BcDav \D2,p whence h(s)>]2~v(S)l a.e. on D,p\D,~176 Using Lusin's theorem we 
could get rid of the continuity assumption, and so obtain h=  15C,p] a.e. where the 
latter exists. 

We conclude this section with a proposition relating the differentiability 
properties of 3, F, and x. 

(17) Proposition. If  the true derivative 2 (respectively ~) exists ~eO a.e. then 
(respectively 2) exists a.e. and the "chain rule" 4(s)=F'(x(s))2(s) holds a.e. (F' is 
the ordinary derivative of F). 

Proof. First, if2 exists ~=0 a.e. then x(t) has Lebesgue local time and so spends zero 
time outside {y: F'(y) exists finite}. It follows that ~ exists +0  a.e. and equals 
F'(x(s))2(s) a.e. (see also [23]). 

Now suppose ~ exists +0  a.e. and let Z =  {y" F'(y) does not exist, finite or 
infinite}, Z ~  F'(y)=O}. Since lr is continuous, n(Z~176 [21, 
p. t00, 226], and 7~(Z)=0 by [21, p. 125]. By (8), x has a local time relative to 7r; 
consequently, m(x -1 (Z u Z~ Let W= {t: x(t)i~Z ~ ZO, [~(t)L =~0, oo} so m(W c) 
=0. Fix t eW and suppose for some sequence s , ~ t  we had x(s,)=x(t). Then 
~(t)=0, contradicting teW. Consider the quotient (~(s)-~(t))/(x(s)-x(t)) for 
s ~ t. Clearly 

lim ~(s)- ~(t) _< .P(x(t)), lira ~(s) - ~(t) >_ F(x(t)) 
~-, x ( s ) -  x ( t )  - ~ x ( s )  - x ( t )  - -  

where F, g are the bilateral derivatives of F. But t s  W implies F'(x(t)) exists, 
0 < F'(x(t)) <= oo. We conclude 

lim ~(s)- ~(t) = F' (x(t)) 
~ - ,  x ( s ) -  x(t) 

and the rest is easy. 

w 3. Remarks 

(a) The following theorem is given in Serrin and Varberg [23]: if 2(0 exists a.e., 
and re(F)= 0, then 2(t)= 0 a.e. on x-1 (F). For absolutely continuous (A C) functions 
this is given in [16, p. 213]. 

The theorem is still true if • is replaced by 2ap. Indeed, it follows easily (as do 
several other theorems in the literature) from the AC case and Hin~in's theorem 
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[14]: 2ap exists a.e. iff for each e > 0  there is a compact K c [ a , b ]  and an AC 
function y(t) on [a, b] such that m([a, b] \ K) < e and x(t) = y(t) on K. 

We now can state a generalization of the Serrin-Varberg Theorem: re(F)=0 
implies h(t)=0 a.e. on x -~ (F) where h appears in (5). 

(b) The proof of the Serrin-Varberg Theorem actually shows that m(F)=0 
implies lim inf [x(s) - x(t)J/ls- tl = 0 a.e. on x -~ (F). In conjunction with the Denjoy- 

Saks-Young Theorem [21, p. 271] we then have: if re(F) =0, then at a.e. t ex  -1 (F) 
one of the four conditions below must hold: 

(i) 2(t) exists=0, 

(ii) ~(t)= + oo = -x( t ) ,  

(iii) ~+(t)=_x (t)=0, _x+(t)= - o% Z- ( t )=  + oo, 

( iv)  x § (O = ~ -  (t) = 0 ,  ~ + (~) = + 00,  x _  ( 0  = - ~ .  

Thus, if at a.e. t at least one Dini derivate is finite, (LT) holds (with z = m) iffthat 
derivate 3 0  a.e. (there is no ambiguity as to which derivate is finite, again by ~ 
Denjoy-Saks-Young). We note that almost every Brownian motion trajectory 
satisfies (ii) a.e. and satisfies (LT); on the other hand, Cesari [2] gives an example 
of a continuous function x(t) satisfying (ii) (in fact ff,v(t) = + oo = -_X,p (t)) a.e. on a 
set E of positive measure, and such that m(x(E))=O, hence (LT) fails. 

(c) An idea related to occupation-times appears in a paper [22] by Sarkhe l -  
to our knowledge the only one on real variables which deals with such matters. 
Sarkhel defines the "upper  right metric density" relative to a set B of an (arbitrary) 
function x(t) at t for y e n  as 

p+(t, y, B)= lim lim k -1 r~{seB: y<=x(s)<y+k, t - h < s < t + h } ,  
h ~ O  + k ~ O  + 

where n5 is Lebesgue outer measure. Three other densities p - ,  p_ ,  p+ are analog- 
ously defined, whose common v a l u e - i f  it exis ts - i s  called the metric density 
at (t, y), denoted p(t, y, B). For simplicity we assume B=IR and suppress it in the 
notation. The main results of [22] of interest here are: (i) p(t, y) exists (finite) for 
a.e. y (t fixed); (ii) if 2(t) exists ~0,  then p(t, x(t)) exists and equals 15c(t)i-1 (=0  if 
[2(t)[= oo); (iii) if 2(t) = 0, p § (t, x (t)) = p + (t, x(t)) = oo or p _ (t, x(t)) = p -  (t, x (t)) = oo. 
(These results extend to approximate derivatives as well.) 

In our notation, p+(t,y)= lira lira k - l [ # , + h ( y , y + k ) - # ~ _ h ( y , y + k ) ]  and 
h ~ O  + k ~ 0  + 

(i) follows from general theorems on differentiation of measures. More interesting 
is that p(t, y) (when it exists) is the jump of c~.(y) at t. Consequently, the identification 
of eft(y) in (8) for ~z = m can be derived from (i)-(iii), and conversely (though not 
trivially in either direction). One may therefore regard Sarkhel's work as a "local" 
study of the occupation-time measure when ~ = m. 

(d) The local time decomposition (7) will be valid when 7c(x(DCp))=0, where 
D~v refers to ~(t), if we change the singular component to 

[t~(F)= m(x-  l (r) ~ Ho c~ (O, t ]) + m(x- l  ( f  ) c-~ D~v c-~ (O, t]). 

(e) The comment in (d) applies to a continuous function x(t) which is (T1) 
on every interval and To=m; indeed, for x(t) continuous, we have (T 0 on every 
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interval iffm(x(DC))=O. Now a similar ren~ark applies to continuous functions 
which are (T 1 , ~r) on finite intervals. 

It would be interesting to identify h(t) explicitly, or to discover the occupation- 
time decomposition for Borel functions x(t), under any of the following condi- 
tions (assume ~r = m): 

(A) (T1) on finite intervals, but not necessarily continuous, 

(B) (N) functions, 

(C) (T2) functions. 

Each of (A) and (B) imply (C), which is essentially the weakest hypothesis 
under which results of the type considered here, namely those involving v(y, ds) 
and having only jumps in c~.(y), can be valid. 

II. Occupation-Times and Regeneration of Random Processes 

w 4. Local Times 

Let (f2, 2 ~ P) be a probability space, the superscript 0 indicating that the a-field 
~,~o is not assumed complete; the completion is denoted ~-. Further, let (X~), 
t E IR, be a real-valued measurable random process on (f2, j~o, p), meaning that 
the mapping (t, co)--,X~((o) is ~ | Y~ Every trajectory t-+X,(oo) 
is a Borel function and the occupation-time measure #t(F) is now also a function 
of coe~? (often suppressed from the notation). 

We are going to apply the results of Part I to individual trajectories but first 
wish to place the present work in the context of the general theory of local times 
for random processes (which we gave in [10]), leaving aside some technical details. 
Consider the Lebesgue decomposition #t(dy, oo)= at(y, o~)~r(dy)+ f~t (dy, co) of #~ 
relative to the Radon measure ~r on ~.  The condition (LT) is now interpreted to 
mean: for almost every coe~ the trajectory X.(co) has a local time relative to 7r. 

For simplicity we assume r~ = m, that each X s has a density p}x), and that 
almost every trajectory Xt(o~ ) has a derivative 2,(co) a.e. It will also be convenient 
to (temporarily) take IR+ = [0, 00) with its Borel sets ~ +  as our time set. We have, 
for t~lR+, F e ~ ,  

(18) S e-Se(X,~r,a)as= S e-*p~(x)P(A[X~=x)ds dx. 
t F L t  

Define a measure Q~ on ~ +  |  as follows: for sets of the form B=(t, ~)•  
(t~IR+, A ~ ~  Qx(B) is given by the expression in brackets in (18). Using the 
general theory of processes [3] and [10] one can show that (LT) holds iff for a.e. 
x, the measure Qx charges no "evanescent" set B (i.e. IB(S, C~)--0 for almost every 
~ ) .  Now, by the decomposition (7) we may rewrite (18) as 

co 

(19) 5 e-se(x~er, A)ds 
t 

=~r{E[fe-~de}x);A]+fe-~ps(x)P(2~=O, AlXs=X)ds}dx; 
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in short, for a.e. x, Qx(B) is given by the expression in curly brackets in (19) for 
B=(t, oo)xA. Again from the general theory of processes it is known that the 

[i ] measure Q'x on ~ +  x y o  determined by E e-=do:s(X); A charges no evanescent 

set. On the other hand, the measure Q~ determined by 

c o  

j e Ps(X)P(X==O, AlX==x)ds 
t 

is evidently supported by the set Nx = {(s, co): X s (co) = x, Xs(co ) = 0} which is evane- 
scent for a.e. x: for each co, the measure of the image of {s: X=(co)=0} under 
X.(co) is 0. Consequently, by Fubini, for almost every x, the set {s: X=(co)=x, 
Xs(co) =0  } is empty a.s., i.e. N x is evanescent. Thus condition (LT) is equivalent to 
the disappearance of the measure Qj for a.e.x. 

If. in addition, (Xt) is stationary, the entire analysis can be carried out on the 
space ~2 rather than IR+ x f2. The condition for (LT) becomes very simple: 
P{Xo=0}=0.  Instead of the decomposition Q~=Q'~+Q~ above we obtain 
Px(A)=P*(A)+Px(A, Xo=O), A ~  ~ where P~(A) is the (regular) conditional 
probability given X o = x, P* is a certain "Palm measure" (cf. w 6) and the measure 
A --*P=(A, 2 o =0) is carried by the "polar" set {Xo =x,  2 o =0}. (Anticipating the 
notation ofw 5, a set B cf2  is polar relative to a flow 0~ if, a.s., IB(O~co)=-O. ) The proof 
that {X o = x, 2 o = 0} is polar is similar to the proof that N~ above is evanescent. 
The decomposition of Px provides an explicit example of the type of results given 
in [12]: 

In what fc~llows we will apply the results of Part I to the case in which 7r = m 
and the approximate derivative X=p (t, co) exists at a.e. t, for almost every trajectory. 
The case of a general ~z is handled similarly using the process ~t = F(Xt) in analogy 
with Part I. Finally we recall that in (8) one may use the approximate upper 
bilateral derivative Xap(t) instead of 2ap(t); when working with processes it will 
sometimes be convenient to make a similar replacement of Xap (t, co) by X,p (t, co) 
without writing it explicitly, the advantage being that the latter is defined for every t. 

w 5. Existence and Measurability of Derivatives 

We now turn to stationary processes for the remainder of the paper. Assume that 
0t, t~IR, is a flow on the probability space (f2, y o ,  p), i.e. a one-parameter group 
(under composition) of measure-preserving bijections of f2 such that 0 o = identity 
and the mapping (t, o)--,0t(co ) is ~ |176176  Other terminology 
pertaining to flows and Palm measures is explained in [9, 12, 15]. For a real- 
valued random variable X on ((2, ~o)  we define a strictly stationary, measurable 
process Xt(co)=Xo Or(co), t~IR, co~f2. The results of this section will apply as 
well to the process it =F(Xt), F as in w 4. 

We begin by giving "local" probabilistic conditions on behavior of X t near 
t = 0  which imply the "global" property of (approximate) differentiability a.e. 
for almost every trajectory. Next we show that the approximate derivative process 
always has good measurability; and then conclude with some remarks on separa- 
bility and approximate differentiability for random processes. 
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Let the measurable process (Yt) be a "strictly separable" modification of (Xt), 
meaning that, for each t, X t = Y~ a.s., and, for some fixed countable set S c IR, 

(20) Yt(co)~(-) YI~s(co) for every t~lR, coEO, 
i 

the intersection being over all intervals I containing t, and Y~s(t~) being the 
closure in the extended reals of the image of Ices  under Y.(co). The existence of 
(Y~) is proven as in [-17, pp. 57-8] taking care to retain N' |176 
The process (Y~) is also stationary, but we can only affirm Yt = Y0 ~ 0t a.s. for each t. 

Next, for every cos O, let 

Jr(co) = lim sup Xt(co)- X~ (co) Y(co) = lira sup Yt(co)- Yo(co) 
t ~ 0  t ' t - , 0  t 

There is no harm in assuming 0 ~ S and X t -  Yt for t ~ S; by separability we then have 

IT(co) = lim sup Xt(co)- X~ 
t~O t 
teS 

whence Y< X. Notice that I7 is ~-~ but J( need not even be ~ -  
measurable. We will write J(t(co), ~(co) for the upper bilateral derivates at t for 
the trajectories X.(co), Y.(co), so that ) (=Xo ,  Y= Yo; we have also J~t=J~o0t, but 
the analogous statement for Y may not be valid. Similar remarks and results 
(see below) apply to the lower derivates. 

The following easily proven fact will be useful momentarily. 

(21) Lemma. I f  Z is an ~-measurable function, the mapping (t, co)--+ Z o Or(co ) is 
| ~-measurable ,  the bar signifying completion under m x P. 

(22) Theorem. Suppose g =  {J; < oe} (respectively L =  {I7< c~}) is full; then 
almost every trajectory X.(co) is (approximately) differentiable a.e. 

Recall that a set isfuU if its complement has measure zero. Notice that L~@ ~ 
automatically, but K need not be measurable. By Fubini and the Denjoy-Saks- 
Young theorem one can show P { X = -  oo}=0; another consequence is that if 
K e ~  and X.(co) is non-differentiable a.e. for almost all co, then X =  oo a.s. 

Proof If K is full (hence in ~,~), then by (21) and Fubini A={(t, co): J(t(co)< o e} 
is full under m x P. Hence, for almost every cos ~2, Ao~,= {t: 3rt(co) < oe} is full in IR, 
and X.(co) is differentiable a.e. on A~ by Denjoy-Saks-Young. 

Next, in view of [21, p. 220] and Fubini, it suffices to prove that if L is full, 
Y.(co) has a true derivative a.e. for almost every co. Because (Yt) is strictly separable 
and measurable, B={(t, co): I~(co)<oe} is in N |  Let Bt={co: ~(co)<oO}, 
noting B ~ =L.  For each t, 

s - l (Y~+t -Y t )=s-1 (Xs+t -X t )  for all s e S \ { 0 }  a.s., 

and the right member---s~-l(XsoOt-XooOt)=s-l(YsoOt-YooO,) on ~; in short, 
B t =  O; -1L a.s. Thus P(B ~) = 1 for every t, B is full, and the argument above yields 
the result. 
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(23) Theorem. The process Jfap(t, co) is measurable. 

This implies that the approximate derivative process J(ap (t, co) is measurable. 
Consider the measurable process (Z) with Z t = t  -~(Xt-Xo) for t=~0 and 

Z o any ~~ function. According to [-5] or [-24] (using their topology 
Te) the process Z* = ap - lim sup Z s is measurable, whence the ~~ 

of Jfap(0, co)=Z*. Since Jfap(t, co)= J(~p(0, 0tco), (23) follows. 
Suppose X t = X o 0 t as above and that Yt is a separable, measurable modification 

with the added property that, for almost every coe ~2, there exists for each t a Borel 
set Bt(co ) such that l i m f - l m ( ( t , t + f ) c ~ B t ( c o ) ) = l  and Yt(co)= lim Ys(co). Then 

6.LO s ~ t  
s~Bt(o)) 

there also exists a separable, measurable, homogeneous modification under 

very mild conditions, e.g. X d 2 .  To see this, define Z = l i m s u p 6  -1 ~XoOsds; 
&L0 o 

Z is Y~ and Z = X a . s .  (local ergodic theorem). Then, for almost 
6 

every co we will have Zo0t(co)=lim sup S-1 ~ Yt+s(co)ds= Yt(co) for all t, i.e. the 
~1o 0 

process ZoO t and Yt are indistinguishable, and ZoO t is the desired modification. It 
would be nice to know general conditions when such a (Ytt) process exists. 

We may apply this remark as follows: let (Xt) be a second order strictly sta- 
tionary process having a finite second spectral moment. Doob [-4, p. 536] shows 
that any separable, measurable modification must in fact have absolutely con- 
tinuous trajectories a.s. The above result now implies that there is a homogeneous 

modification with absolutely continuous trajectories. 
The reader may have noticed that the use of the separable modification Yt 

requires some care. For instance, in passing from X t to Yt, the homogeneity prop- 
erty X t - X  o o 0 t is los t - th i s  can be troublesome, e.g., in the next section. Other 
essential features of the original process may also be destroyed. Consider a con- 
tinuous process Z t subjected to random "impulses" represented by a "point 
process" A t which is zero except on a t-set having no finite accumulation point. 
The sum X t = Z t + A  t is not separable. If, as in the stationary case, P(At+0)=0 , 
Z t is the separable version obtained by the usual construction, but this erases 
the perturbations A t which may be the object of primary interest. Thus there may 
be theoretical or practical reasons for not replacing X t by a separable modification. 
As noted in the proof of (22), if the separable version Yt is differentiable a.e., then 
X t is approximately differentiable a.e. (in fact, X t is a.e. equal to an a.e. differentiable 
function), so approximate differentiability arises as a natural analytical property 
when we are constrained to the original process. The results of Part I and w167 6, 7 
then show that approximate differentiability serves almost as well as true differen- 
tiability for many purposes. 

In the following sections, we will assume the existence of X~p(t, co) at a.e. t, 
for almost every trajectory, but will usually drop the subscript "ap".  

w 6. Regeneration 

Throughout this section we take ~z=m and define D* =D*(co) as in Part I relative 
to the trajectory X.(co). The results remain valid for any ~ provided Jf is replaced 



202 D. Geman and J. Horowitz 

by ~, D* by D*(~), etc. For each coE~?, let M(co)={tED*(co): Xt(co)=Xo(co)}. 
We will consider the point transformation 0~(co)= 0~(~)(co) on f2, where z(co) is the 
first positive tEM(co) (a more precise definition is given below). This transforma, 
tion has the effect of shifting the time origin to z(co), and we are interested in the 
extent to which the process '~ starts over" probabilistically, i.e. we will study the 
class of measures dominated by P and preserved by 0~ or its (random) iterates. 
The basic results are (29), (31), (37), (41). 

Define v*(x, co, B)=v(x, co, B c~ D*(co)), BE~,  and let (~ | ~-0). denote, as in 
w 1, the universal completion of N | o ~~ 

(24) Lemma. For each BeN, the mappings (x,co)~v(x, co, B) and (x, co)~v*(x, co, B) 
are (~ | ~~ 

Proof. Consider the N | (N | @~ process Z~(x, co)= X,(co)-x (the 
first N refers to "time"). Let z,(x, co) be the "n-debut" [-3] of the subset {(t, x, co): 
Z~(x, co)=0, tEB} of IR x (IR x ~2). For any probability measure Q on ~ | y o ,  the 
set {% < oo } is in the Q-completion of N | ~ 0  [3, p. 51], and one checks {% < oo } = 
{v(. , . ,B)>n}. The same proof works for v* if one uses {(t,x, co): Zt(x, co)=O, 
t~B ch D* (co)}. 

For each x, v(x, co, ds) and v*(x, co, ds) are homogeneous random measures, 
meaning, e.g. v(x, Otco, B)=v(x, co, B+t  ) for every coE~2, t~lR, and BE~.  (This 
would no longer be true without the homogeneity discussed in w 5.) We denote 
the Palm measure of v*(x, co, ds) by P* and integration relative to P* by E*. 

Let u(s, co) be a non-negative, measurable process. Since the map s ~ u(s, co) 
is Borel (coEf2 fixed), (8) and especially (14) imply, for FeN,  

t t 

(25) Slr(X,(co))12~(co)l u(s, co)ds= [. ~ u(s, co)v*(x, co, ds) dx. 
0 F O  

Taking t=  1, u(s, co)--Z o Os(co ) (Z an ~,~~ function) and integrating 
with P, we obtain (writing 2 for 20) 

(26) E(Zl2l;XEr)=~E*(Z)dx.  
F 

Putting Z = !{1'1 ~,/, we reach the conclusion that P* is ~-finite for a.e.x. 
Before considering the regeneration properties of our process, we pause to 

remark several consequences of (26). 

(a) A similar equation holds with ~ and ~ replacing respectively m, X. 
(b) Let rc(dx)= P(Xsdx). For this choice of the measure rc we have 

g( z  I@l l X =  x)= E*(Z) 

for ~-a.e. x, and with Z = 1 this becomes 

(27) Ev*(x,(O, 13)=E(1411X=x) rc-a.e. 

This is a general version of Rice's formula (as we observed in [-8] under additional 
assumptions). In the standard version, one has a continuous second order pro- 
cess Xt, v* is replaced by v, and 4 by the quadratic mean derivative at t=0 ;  in 
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the Gaussian case or under still further assumptions the formula is valid for 
every x. 

We now impose a requirement which will be referred to as (TI*): v*(x, co, B)< 
for every bounded set B(m x P)-a.e. This seems to be the weakest condition which 
allows the use of the mass-preservation properties of certain random time shifts. 
In general we have v* <v;  if, for every B E 2  and m x P-a.e. pair (x, co), 

(28) v*(x, co, B)=v(x, co, B), 

then we may take D*(co)=lR in what follows. For  co~? fixed, (28) will hold iff 
x is not in the image of (D*(co))Cc~B under X.(co). Recall that 

(D* (co))~ = D O (co) w D ~ (co) w De(co); 

of these, D ~ and D ~ are Lebesgue null, the first by Denjoy-Saks-Young, and the 
second by assumption, while the image of D~ is always Lebesgue null. A 
sufficient condition for (28) is, therefore, that X.(co) be an (N)-function a.s. On 
the other hand, if X.(co) is VBG, [21] or is continuous, locally (T 0 and has a 
true derivative a.e., then the image of De(co) will be null, but this may not be true 
of D ~ (co). 

Let V be the set of coe~ for which M(co), defined above, is unbounded in both 
directions and has no finite accumulation point, i.e. 

v= {co: v*(x(co), co, [0, o9)) 

= v*(X(co), co, ( -  0% 0))= 0% v*(X(co), co, I - n ,  hi )<  ~ for all n>  1}. 

By (24), Ve(Y~ *. Next, define z(co)= Iv(co ) �9 inf (m(co)c~ (0, oo)) and q5:s ~ s by 
q~(co) = 0r Evidently v is (~-~ ~b is invertible, and q5 is ( y o ) , / y o _  
measurable. 

Theorem. The set V is full for the measure d#=]X]  dP and ~ preserves #. 

Proof We recall first that the Palm measure P* lives on the set 

~ =  {co: v*(x, co, {0})= 1}. 

Define, for each x ~ IR, 

A~ ={co: v*(x, co, [0, ~))=v*(x, co, ( -  oo, 0))= oo}, 

Bx ={co: v*(x, co, IR)>0}, 

Cx= {co: v*(x, co, B)< oo for every bounded B}. 

Each of these sets is invariant under 0 t and is (~,~~ (For the latter 
assertion, use (21) and consider the completion of N | ~ o  by measure of the 
form 6 x x Q, where 6~ is unit mass on x and Q any probability law on ~o.)  It is 
standard that P(B x \  A~)= 0 and by assumption P (C , )=  1 a.e. Under the measure 
Px* we have Vc= A~ w C~ P*-a.e. But P* charges no invariant null set so Px*(C~)= 0 
(for a.e. x) and P*(B~\A~)=O, whence P*(A~)=P*(Ox', .Ax)<Px*(B\Ax)=O , 
i.e. P*(VC) = 0  a.e. By (26) we then get #(VC)=0. 
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Next, let %(0)) = inf {t > 0: v* (x, co, (0, t]) > 0} (=  0 if the indicated set is empty). 
It is again standard that 0~x preserves P* for every x such that P(Cx)= 1. The 
result now follows quickly from (26). 

We can now state a few more consequences of (26): 

(c) The formula ~ z d#= ~P(B~)dx, Fs~ ,  may be construed as a "con- 
(X~F) F 

tinuous" version of Kac's formula for the mean return time to a set of positive 
measure. 

(d) Consider a stationary, ergodic, Gaussian process having continuous tra- 
jectories, in which case P(B~)-1. The formula in (c) gives us E(z t21)= oe which 
implies 

(30) E(~l+~)=oo forevery 8>0.  

(Use H61der's inequality and the existence of all moments of 2.)  
In general, q~ does not preserve P itself-(29) suggests that IX o q~l = [2[ would 

be necessary (also see w Let a: f2--. [0, ~ )  be such that a(co)sM(co) for each 
cos V and a(co)=0 for co~ V; also let a be (~~ 

(31) Theorem. The mapping 0~: ~2 ~(2 preserves dD=!~l~ I >o~dP iff Oo is almost 
invertible and leaves [21 invariant on the set {IxI >0}. 

Before proving (31) we need an auxiliary result. Suppose (W, ~,, Q) is a a-finite 
measure space equipped with a measure-preserving bijection s: W ~  W and a 
random variable K: W ~ Z (Z denoting the integers). For any 0 < ~ s L 1 (Q): 

(32) Theorem. The function sK: W ~  W given by sK(o)=sK(o)(CO) preserves the 
measure ~ dQ iff s K is almost invertible and ~ o s K = ~ a.s. 

The meaning of "almost invertible" is that there exists a random variable 
L = K  a.s. such that s L is bijective. This is equivalent to 

(33) ~I~Ko~-~=k~=l a.s., 
keT/ 

which says that the sets Ak= {K o s -k= k} partition Wup to a null set (cf. Prop. 1 
of [19]). Equation (33) is also equivalent to 

(34) s K preserves Q. 

This makes clear that s K preserves ~ dQ when it is almost invertible and (almost) 
preserves ~. Now we assume that s K preserves ~ dQ; we will first show (33) holds. 

Let Z >-0 be a random variable on W. Then 

~Z~ ~ Zosk~dQ 
k~7/ {K=k} 

=E 
At: 

=~Z.rldQ,  

where t l = ~ ( o s - k l A .  Since s K preserves ~dQ we conclude ~=r/, and then 
~ I A >  1 because (>0 .  Write G for the set on which EIA~> 1. If Q(G)=0, then 
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f i  preserves both Q (take ~= 1 above) and ~dQ; consequently, for Z as above: 

~Z~ dQ=SZosK ~dQ=~ZosL ~dQ=~Z~o(sL)-l dQ. 

Hence ~=~osL=~oS K a.s. Now suppose Q(G)>0. Since (>0 ,  we have 
Q((sK) -1 G)> 0 as well. This also follows from 

Q((fi)-i B)= • ~ IBo s ~: I~K: k~ d Q 
k 

=SZIA~dQ>=Q(B), 
B k 

which holds for any B ~ ~##. If Q happens to be a finite measure, the same inequality 
applied to B ~ shows that in fact Q((sK) -~ B)=Q(B), so that (33) holds. In the 
general case, choose w ~ ( f i ) - i  G and let s~:w = v ~ G. Now v6AK(w), hence there is 
some k~:K(w) such that wAg as well, since v~G. We then have 

(35) ((V)=~I(V)>(oS-K~)(V)+~os-k(v)>(oS-~(w)(v), i.e. 

~(sKw)>~(w), w~(s") -~ G. 

For ws(SK) -1 G ~ we have a unique k such that skw~Ak, namely k=K(w), and so 
((s r w)= tl(fi w)= v(s-I~(~) sK(W) w), i.e. 

(36) ((sKw)=~(w), we(fi) -10  c. 

But ~ and ~ o s K have the same distribution under (dQ, and this is incompatible 
with (35) and (36) unless Q((fi) 1 G)=0. 

Note. The step involving the equidistribution of ( and (o s ~ fails without the 
assumption that (~/2 (Q): take, e.g. Q = m on IR and f(x) = x, g (x) = x + 1 to obtain 
two equi-distributed functions with g > f  everywhere. 

Proof of (31). There exists a random variable K: ~ T L  such that 0~=~b K. We 
can then apply (32) to the system (f2, ~o,  St, ~b) with ( =  IX- t -~ I~1:~ I >0). Q.E.D. 

Let H_~ s be the event IX ~ 4)"[= I)~1 infinitely often for n > 1 and for n < - 1 ,  
and define N(~o)=I~(~o) (inf {n> 1: IX o ~b"(co)l = IX(co)J). Clearly ~b ~ is invertible 
and has suitable measurability for 

(37) Corollary. q~U.preserves [~. 

Some examples which illustrate this behavior are given in w 8. We found it 
surprising that, even for processes with higher derivatives, mass-preservation 
depends only on the first derivative. 

w 7. Ergodic Properties 

We now describe the invariant o--field of q~ and the class of P-equivalent invariant 
measures. The invariant o--field for the original flow (0t) is denoted d and con- 
sists of those A ~  -~ for which 0 t A =A for every t~lR. Similarly, the @invariant 
a-field is denoted d o  and A ~ ~ iff A ~Wo and q~ -1 A = A. In what follows d v X 
denotes the a-field generated by X and ~4; ~r v X u means the a-field generated 
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by X v d together With all #-null sets (similarly for sJg etc.). We will assume ~ 0  
is separable (i.e. generated by a countable subfamily) and contains a "compact 
family". These conditions guarantee the existence of regular versions of con- 
ditional probabilities relative to any sub-a-field of j~o (see [18]). 

(38) Theorem. Suppose #x(F)= #(X ~ F) is a a-finite measure; then 

Proof. First observe that d v X c d4  without any completion, so we need only 
prove ~Td ~ d v X ". Next, since X is de-measurable and #X is a-finite, by re- 
strictingto a set of the form {X E F} we may and do assume that #x is in fact finite, 
and, for convenience, even a probability measure. 

Let d '  be a separable sub-a-field of d such that ~7, = ~7, the bar now signifying 
completion by all P-null sets. It is standard that there exists a Markov kernel 
Q(e), A), co~f2, A ~  -~ such that 

(39) (a) Q(e), A) is a (regular) conditional probability of A given d ' ,  
(b) for almost every co~?, Q(e), .) is preserved by the flow (0t), 
(c) for almost every e)~?, Q(e), .) is ergodic, i.e., Q(co, A)=0 or 1 if A e d .  

This is the ergodic decomposition of the measure P. 
We write #~o(A)= S IX(e)')L Q(e), de)'). Then, with the obvious notation, 

A 
1 ~ J~"~=s@ ~ for almost every e)~(2. 

To prove this, consider the dynamical system (0, ~o, Q(co, .), Or) for a fixed e)~f2. 
This system has all the properties of our original system (f2, i f0 p t~" , , vt), at least 
for e) satisfying (39). In particular, (26) becomes 

(40) ~ Zd#,~ = ~ E:,* o~(Z)dx 
(XeF) s 

in which the subscripts co indicate that the basic measure is Q(co, .). Now with 
Q(e), .) ergodic, it follows (see e.g. E9]) that P~*~ is ergodic relative to ~- -0~  
for a.e. x (i.e. those x's for which P*(V~) = 0). 

Let e)~2 be fixed with (39) in force, and put Z=IA, A~d~. Since Zo(~-Z,  
we have Z o q~ = Z, P~*o~-a.e. and so Z = z~ (a constant = 0 or 1) P~*~-a.e. for a.e.x. 
Let g~(x) be the indicator of {x: z~=l}. We will show that Z=g~(X)#~-a.s. 
A monotone class argument applied to (40) shows 

E~(f(X, .)121)= ~ E*,of(x, ")dx 

for any N x ff~ function f > 0 .  Taking f(x, e)')=I{z+go}(x,e)') im- 
mediately yields the result, and we conclude Z = EUo,(ZIX ). 

2 ~ Let Z = I  a as  in 1 ~ Then 

E(ZY I X v d )=  ZE(Y [ X v d )  #-a.s., 

where Y= IJ~l. 
We begin by observing 

Eo~(ZY] X)= E~(Y] X) Eu~(ZIX) Q(e), -)-a.e. 
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(hence #o,-a.e.), which follows from the relation #~(dco')= Y(co')Q(co, do)'). Next, 
arguing as in [13], we find 

E o ( Y I X ) = E ( Y I X v d ) ,  E ~ ( Z Y t X ) = E ( Z Y I X v s d )  

Q(co, .)-a.e. (~-a.e.) for almost every coef2. From 1 ~ we find 

E ( Z Y I X v ~ d ) = Z E ( Y I X v ~ 4 )  /G-a.e. 

for P-a.e. co, and so #-a.s. 

3 ~ Let Z be as in 1 ~ and U=E(YJ  Xvsd) .  Then 

#(U=0)=E(Y; ~=0)=E(U; U=0)=0. 

Thus Z = E ( Z Y  I X v cd)/E(YI X v d )  #-a.s. and the theorem is proven. Q.E.D. 

Theorem (38) is similar to Theorem (11) of [13], which deals with the discrete- 
parameter case but requires a supplementary hypothesis which is avoided in the 
present case because the theory of Palm measures allows the conclusion in 1 ~ 
that Px*~ is ergodic. 

An immediate consequence of (38) is obtained under the additional assumption 
that 24=0 a.s. 

(41) Theorem. A a-finite measure Q on ~,~o is absolutely continuous relative to P 
and invariant under c~ iff it is of the form dQ = ~ IXI dP for some sd v X-measurable 
function ~ >__ O. 

Remark. Suppose X is the true derivative, still+0 a.s. For any ~, (17) applies to 
almost every X.(co) so that ~(co) exists and F'(X~(co)) Xs(co ) a.e. (m x P). By sta- 
tionarity, ~(co) exists and F'(X(co))J((co) a.s. Suppose 4 and X induce the same 
transformation ~b, which then must preserve both IX IdP and I~ldP. (This will be 
true, e.g., when (Xt) is very smooth.) In this case, (4) is satisfied for dQ= I~l dP by 
choosing ~ = F' o X. 

w 8. Examples 

Example 1. This is simply to illustrate the general results, particularly (37) and 
(38). Consider ' the process X t = A  cos t+B sint, where A,B are independent, 
standard normal random variables. By using a suitable function space represen- 
tation, we may assume our probability space is endowed with a flow (03 such 
that X t = X  o o 0t, for all t, co. The trajectories t-*Xt(co ) are sinusoidal, with in- 
dependent phase and amplitude, the former uniform on [0, 2r~] and the latter 
with density xe -x2/z on [0, oe). Taking re=m, ~ = J f o = B  and a picture shows 
that Jf~= - X  o. According to (37), P is preserved by 0~; in particular, (Xt+~) has 
the same law as (X~). By (38), we have ~ e  = ~4 v A (the bar may refer to # or P 
indifferently). Since IBl~d~, there must be a function f (x ,  co) which is ~ x~C- 
measurable and such that IB(co)l =f(A(co), co) a.s. Indeed, the function f (x ,  co)= 
(A2(co) +B2(co)-x2) 1/2 has these properties since (A 2 +B2) 1/2 is the amplitude of 
the sinusoid, and hence invariant under shifts of the time origin. More interesting 
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examples are easily generated by superimposing independent copies of (Xt) of 
varying (non-random) frequencies, although we shall not pursue these. 

Suppose now that (Xt) is any ergodic, separable stationary Gaussian process 
with a finite second spectral moment. (Almost every trajectory is then absolutely 
continuous.) It is then impossible for ~b = 0~ to preserve P itself: if it did, then 
12~l = 120[ a.s. by (31) so that 1201 would be ~-measurable .  But then (38) would 
imply 12ol is measurable over the (r-field generated by X 0 and the null se t s -  which 
is impossible in view of the independence of X 0 and 2 0 . This does not preclude 
the repetition of (2t) later in the time set M; it would be interesting to know if 
this could indeed occur. 

Example 2. Let (2 be the torus, conceived as the unit square with properly pasted 
boundaries, ~ o  its Borel (r-field, and P Lebesgue measure. For (x,y)ef2, let 
Or(x, y)= (x + t, y + 7 t), the addition being mod 1, ? a fixed number. This is well- 
known to be a flow which is ergodic iff 7 is irrational. The flow lines are straight 
lines moving "diagonally" across the square with slope y. A random variable 
X=X(x ,  y) on f2 induces a family of "level curves" on the square: z(x, y) is then 
the first time that the flow moves back into the level curve from which it started. 
It was an attempt to work with such examples which led to the extension of the 
results in [-8] to the more general situation treated in this paper. 

We will show directly that q~ preserves 12[ dP in the special case where 7 = 1 
and X is the restriction to the square of a smooth (continuous first partials) 

0x  
function on IR 2. Obviously X(x, y)= + ~ ~-y, except possibly at the boundary. 

Define G:~2--, IR 2 by G(x, y)= (X(x, y), y -x ) .  One verifies easily that 121 is the 
absolute value of the Jacobian determinant of G. Since G is smooth along with 
X, we have from [6] 

(42) ~[21dP=~v(u,v,A)dudv 
A F. 

where A c ~2 is Borel, and v(u, v, A) = cardinality {(x, y) e A: G(x, y) = (u, v)}. Since 
v(u, v, A)=0 whenever Iv] > 1, we have for the right member of (42) 

1 0 

S , 
-co -i -oe -i 

To prove our assertion, it will suffice to show 

(43) v(u,v,A)+v(u, l+v,A)=v(u,v,(o--i A)+v(u, l+v ,q~- iA)  

for every u e ]R and v ~ ( -  1, 0). 
Consider the orbit 0(v) through the point (0, 1 + v): it consists of two diagonal 

segments joining the pairs (0, l+v),  ( - v ,  1) and ( -v ,  0), (1, l+v )  respectively. 
The left member of (43) is easily seen to be card [O(v)~X-l(u)c~A]. Next, one 
can check that the map q5 is one-to-one and onto on each orbit. Hence 

card [0(v) c~ X-l(u) c~A] -- card [q~-l(0(v)) c~ q~-i(X-l(u)) c~ ~b-l(A)] 

-- card [0(v) c~X-i(u) c~ ~b-i(A)] 
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and (43) is proven. (Essentially the same proof works for any rational 7.) Assuming 
r(x, y) is suitably smooth, yet another way to prove [Xl dP is invariant under 0~ 
is via a straightforward change-of-variable argument for transformations from 
IN 2 to IR 2. 

Now let 7 be irrational, i.e. the flow is ergodic. Then ~ 7 = j ~  since the in- 
variant o--field d is trivial, and we can ask for conditions on X(x ,  y) which imply 
0~ preserves P, equivalently, that 13?l be equal a.s. to a function of X. We are 
seeking functions X(x,  y) which satisfy 

= (44) Ox h(X(x,  3;)) a.s. (P) 

for some Borel function h. As an example the function X(x, y )=e  -(x+y~ satisfies 
(44) with h(u) = u(1 + 7). More generally, let X be of the form 

X(x ,  y) = O(x + f ( y  - 7 x)), 

with G f  smooth, ~ '>0 .  In this case, 

OX ~X , 
+ = 4, + f ( y -  

and we may take h = ~' o ~ in (44) where ~ is the inverse of ~. 

w 9. Continuous Local Times 

With (~, Z ~ P, Or) as before, suppose now that X t = X o 0 t satisfies (LT) and that 
t ~ at(x, co) is continuous a.e. (7c x P). Except in degenerate cases, the paths t ~ X~(co) 
are no longer even approximately differentiable; indeed, the level sets are un- 
countable. The connection with previous sections is this. We have seen in (29) 
that, under the assumptions there, # is invariant under a (random) shift of the 
time origin by an amount necessary to accumulate positive local time mass in 
"state X(co)." Of course, {qS"}n~z then defines a discrete-parameter flow over 
(O, Z ~ #). Here, we shall see that, for any taN,  P is preserved by shifting the 
time origin to accumulate t units of local time mass in "state X(co)", and cor- 
responding to {~b"} is a continuous-parameter flow over (f2, ~ o  p). 

We can and do assume we have a version of the local time ~(x, co) which, 
aside from good measurability, is a continuous additive functional with support 
in {t: Xt(co)=x } for every x, co. Let &t(x, co) be the associated time-change; the 
equation 

(45) ~t+s(x, co)=~t(x, co)+~(x,O~ttx,~)(co)) forevery s , t ,x ,  co 

is then standard. Now set ~t(co)= ~t(X(co), co) and ~ = 0r t~IR. 

(46) Theorem. (~)  is a f low over (0, j~o, p). 

Proof  That (~)  is a group (under composition) of transformations is immediate 
from (45) and the (~t)-invariance of X. (However, we can only assert that~oo(co)= 
co a.s.) 
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N o w  the a s s u m p t i o n  tha t  (Xt) has  a local  t ime  impl ies  tha t  

- - c o  - - c o  - - o o  

for any  f > 0  a n d  N x N x o~~  A c c o r d i n g  to [11],  for each t fixed, 
will preserve P iff for a lmos t  every co, 

(48) S g(s+;,oO,)ds= S g(s)ds 
- - c o  - -CO 

for every Borel  f unc t i on  g(s) > 0. F ix  g a n d  ~o a n d  choosef(s, x, co) = g(s + ~,(x, 0 s co)) 
in (47). T h e n  the left m e m b e r s  of (47) a n d  (48) coincide.  The  r ight  m e m b e r  of (47) 
becomes  

- - o 0  - - c o  

- - c o  - - c o  

- - o 0  - - c o  - - c o  - - c o  - - c o  

us ing  the change  of va r i ab le  ~,(x) ~ s a n d  (45). Q.E.D.  

A p p r o p r i a t e l y  recast,  mos t  of the resul ts  in Sec t ions  6, 7 have  " c o n t i n u o u s "  
ana logues ,  bu t  the  m a i n  one  is (46) a n d  we will leave it at that .  
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Note Added in Proof 

With the notat ion from w 1, we have now shown that (T2) is equivalent to (TiG), settling a question 
raised in w 1. Here is a simple proof that ( 7 ; ) ~ ( T  1G): 

For any Borel measurable g > 0  we have 

~g(s) Ir(x(s)) 0(ds) = ~ Ig(s) V(y, ds) dy, F e N .  
r 

This extends immediately to 

v (s, x (s)) ~ (ds) = I ~ ~ (s, y) v (y, as) dy 

for any N |  function v>0.  Now let %(y), n= 1, 2 . . . .  be a "measurable enumerat ion" 
of the level set {t: x(t)= y}, y ~]R: since x (.) is (T2) , this exists for a.e. y, either by a direct construction 
or using the material in [3] concerning graphs of stopping times. Let 0 < VsI2(m) and put v(s, y)= 
2 -"  V(y) i f s=z , (y) ,  v(s, y)= 1 ifs4~z,,(y) for the countable levels y, and v(s, y)-~ 1 for the rest. Then 

Iv(s, x(s)) 0(as)= 5 v(y) Y.2-"dy < oo. 
n 

Since v(s, x(s))> 0 for all s, the measure 0 is a-finite and so x(O is (TiG) by (3). 


