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Summary. For a family of semi-Markov processes where the transition 
matrices for the embedded Markov chains and the mean sojourn times 
depend continuously on a parameter, we give equivalent as well as suf- 
ficient conditions for the continuity of the mean recurrence times. The 
results will be used in a subsequent paper on average costs in a dynamic 
programming model. 

1. Introduction and Summary 

Our object of study is a family of semi-Markov processes on a denumerable 
state space depending on a parameter coming from a metric space. We analyse 
the dependence of the mean recurrence times on the parameter. Under the 
general assumption that the mean sojourn times and the transition matrices of 
the embedded Markov chains are continuous functions of the parameter, we 
develop some conditions equivalent to the continuity of the mean recurrence 
times. They give rise to a number of sufficient conditions suitable for practical 
applications. 

Our analysis is motivated by the study of average cost criteria in dynamic 
programming models. For  stationary strategies, the average costs can be de- 
scribed by means of stationary or equilibrium measures, provided the latter 
exist. Asking for the existence of a cost minimizing stationary strategy it is 
only natural to demand the continuity of these equilibrium measures. They are 
essentially given by the mean recurrence times #u- Thus, the conditions for the 
continuity of the/~u'S appearing in this paper are intimately related to known 
conditions for the existence of average cost optimal strategies in dynamic 
programming models, see e.g. Hordijk [8,9], Federgruen, Hordijk and Tijms 
1-6], Wijngaard [15, 16]. In fact our conditions generalize all of them, cf. Deppe 
[5]. 

* This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 
72 at the University of Bonn 
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It is essential for our analysis that the underlying family of Markov chains 
is what we call quasi-finite. This means that there is a finite subset K of the 
state space such that K can be reached from any starting state with probability 
one, for all parameters. This property allows us to exploit properties of the 
Markov chains induced on the finite state space K to infer that the number of 
recurrent classes is always upper semi-continuous, just as in the finite case. The 
quasi-finiteness also arises as a natural condition when we look at the relation 
of the continuity of the mean recurrence times to certain tightness conditions 
for the family of equilibrium measures. For (unichained) Markov chains such a 
tightness condition is known to be equivalent to the continuity of the sta- 
tionary measures; see Hordijk [9] and Federgruen and Tijms [7]. We prove a 
similar result for semi-Markov processes. Whereas most papers in the literature 
on dynamic programming assume unichainedness, the quasi-finiteness assump- 
tion allows us to handle the multichain case without additional effort. 

Our analysis leads to two sufficient criteria for practical applications. The 
one uses the tightness condition mentioned above, which was first introduced 
by Hordijk [8] for Markov chains. Generalizing a result by Sch/il [13] we 
obtain a condition especially useful for applications in queuing control theory. 
The other sufficient criterion is of Liapunov function type. Such a condition 
was first used by Hordijk [9] in the context of dynamic programming. Re- 
cently, it has been extended by Federgruen et al. [6]. Our result is proved by 
using properties of the mean recurrence times #i~v to a fixed finite subset K of 
the state space. 

2. Notations 

We consider a Markov renewal process (Y,,S,) where Yo, Y, . . . .  denote the 
sequence of states in a denumerable state space I, and 0 = S  0 <S  1 < . . .  denote 
the sequence of jump times. We write n( t )=sup {nlS,<t} for the index of the 
last jump before time t. The semi-Markov process Y,(t) develops according to 
the transition law given by the semi-Markov kernel Qij(t)=P~{Yl=j, Sl<t }. 
Here, P~ is the probability measure for the process if at time S o = 0 the process 
starts in state Y0 =i- The corresponding expectation operator will be denoted 
by E i. 

For the embedded Markov chain (Y,) we adopt the notation from Chung 
[1]. Thus, Pij=Pi{Yl=j}=Qij(oo) gives us the transition matrix, pl~)=Pi{Yn=j} 
are the n-step transition probabilities, and ,,(") is the (taboo) probability for KFij 
jumping to j at the n-th step starting in i and not visiting K during the steps 

inbetween. Further, KP~= ~ Krij'~(~) is the expected number of visits to j before 
n = l  

any visit to K, starting in i. Especially, f i*= jp*  and f*(i, K )=  ~, KPi* are the 
jeK 

probabilities for reaching j or K, resp., starting in i. The expeeted number of 
visits to j between two visits to i is denoted by e~j=ip~*. The Cesaro limits 

l imn-1 ~, ,!~.) are denoted by ~j .  For  the step numbers of the n-th visit to K 
r l J  

m = l  

and to i (not counting Yo) we write zK, and ~i~, resp. 
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The corresponding time points of the semi-Markov process are TK,=S~,:, 
and T~,=S~,o. The expected sojourn times will be denoted by th=EiS 1 and will 
assumed to be finite. The mean recurrence times, in both discrete and con- 
tinuous time, are miK=EIzK1, mii=Eizil, and #iK=EiTK1, #ii:Eiril, resp. The 
set of recurrent states, characterized by the property f~* = 1, will be denoted by 
D. Further, D+={ilm~<oo} and D={ i [#~<oe}  are the sets of positive re- 
current states and states with finite mean recurrence time, resp. Any of these 
sets splits into classes; for the number of classes in D,D+, and /} we write 
v, v+, and ~, resp. Finally, D i = {Jl f/* > 0 and f 7  > 0} u {i} is the class of state i. 

We assume that no explosions may occur, i.e. P /{ l imS,< oe} = 0  (ieI). Then 
we have a stationary probability measure P for every class D~ in/ ) ,  characterized 
by the property that P{Y,(,)=j} is independent of t > 0  and zero for j(~D i. It 
satisfies P {Yn(t)=J} =t / J# j j  for j~D i (cf. Pyke and Schaufele [11-]). Provided that 
/5 can be reached with probability one from every starting state i, the semi- 
Markov  process will tend to an equilibrium given by a convex combination of 
these stationary measures according to the probabilities for reaching the dif- 
ferent classes in D. Thus the equilibrium measure on the state space, corre- 
sponding to starting state i, is j--+f~*tl/#j j. (Here, we set aloe = 0  for any real 
number  a.) 

We analyze the dependence of these equilibrium measures on a parameter  
if the original data of the process depend on this parameter. To that end, we 
assume that the semi-Markov kernel Qij(t), and hence all other quantities 
introduced above, depend on a parameter  f coming from a metric space F: 
Q~(t), P/, Pij(f), tlj(f), D(f), v(f) ..... If statements are valid for all f ~F, we 
will simply omit the f Our general assumption is that the transition matrix 
(p~j(f)) and the expected sojourn times qi(f) depend continuously on f We 
then ask for conditions guaranteeing the continuity of the above equilibrium 
measures. As we will see in Lemma 5.4, this is equivalent to the continuity of 
the mean recurrence times #i~ (isI) considered as functions to IR~ {oo}. 

3. General Assumptions 

We now summarize the general assumptions introduced in the preceding 
section. 

Assumption 1. For all i~1, f*(i, [))= 1 and P/{lim S , =  oe} = 1. 

Assumption2. For all i,j~I, f ~ P i j ( f )  and f-- , t l i(f)<oe are continuous func- 
tions on F. 

The first part  of Assumption 1 implies D c / ) .  In fact, for every ieD there 
exists a j~Dic~D, hence i~Djcb.  Assuming the first part  of Assumption 1, its 
second part  is equivalent to both " / ) c D "  and "f*(i,D)= 1 (i~I)". For, under 
this last property, it follows from Corollary 10.3.17 in ~inlar [3] that no 
explosions may occur; and the other two implications are easy. Thus under 
Assumption i we have /}  = D and, accordingly, ~ = v. 
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4. Some Formulas for Mean Recurrence Times 

Lemma 4.1. Let ir O # K c J c I ,  nr Then 

(1) # ~ = # ~ j +  F, * KPij#jJ 
j eJ \K  

(2) Z 
j~K 

(3) + Z Kl/ij 'lj 
m -  1 jCK 
n-1 

(4) =I~i-~'- Z 2 KPlT)~]j -{- 2 KPlJ)#jK 
m = 1 jCK jCK 

(5) Vii : Z eijl~J" 
J 

Proof. Since K c J we have 

#IK=EiTKI=EiTjI+ ~ ~ EI(['Csm<ZKa, Y~,r =j]'(Ts, m+l-Tsm)). 
m=l j~J\K 

The last integral can be evaluated by conditioning on zs, ~ which gives 
P/{Zj~<ZK1, Y~=j}.EjTsl .  Thus formula (1) holds. Setting J=I  we im- 
mediately obtain (2) and (3). Formula (4) can be proved by substituting the 
expression from (3) for #sK in the last sum in (4). Finally, (5) is a special case of 
(2). [] 

Within a class we have 

(6) #ii = els #ss" 

This follows from (5) and the multiplicative property eisejh=elh (i~D, jcDi, 
hE1), see Chung [1], Corollary 1 to Theorem 1.9.5. By (5), (6), and els= 1/esl, the 
numbers rh/#, sum to 1 within each class of D. Therefore, and as a con- 
sequence of Assumption 1, the following two formulas hold: 

(7) v = ~, rh/#u 
i 

(S) ~ f/* t/j/#js= 1 (ieI). 
jel 

5. Continuity of Taboo Probabilities 

Lemma 5.1. (Royden [123, Prop. 11.18; Hordijk [9], Lemma 4.12). For real 
functions an, b,,a,b on I, satisfying Ib,(i)l<=an(i) (n~N), and a,(i)--,a(i), 
b,(i) ~ b(i) (i~I), ~ a,(i)~ 2 a(i)< o% we have ~ b,(i)~ ~ b(i). [] 

i i i i 
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We are now in a position to prove the following generalization of 
Theorem 1 (b) in Federgruen et al. [6]. 

Theorem 5.2. Let i , j~I,  J ~ I ,  fo~F, heN.  Then 
(a) The function jpl~ ) is continuous. 
(b) The functions JPi*, fi*, f*( i ,J) ,  and eij are lower semicontinuous (l.s.c.). 
(c) I f  f * ( i , J ) ( f o ) = l  and either jEJ  of  f * ( j , J ) ( f o ) = l  , then at the point fo, 

the function JPi* is finite and continuous. 
(d) For i~D(fo) and jeDi(fo), eij is continuous at fo. 

Proof. (a) follows by induction from the recursive definition of jpl~ ) and Lemma 
5,1. 

(b) is a consequence of (a) by Fatou's lemma. 

(c) Let first be j eJ .  We show for a given e>0  that there exist a natural 
number N~IN and a neighbourhood U(fo) of f0 such that 

(9) ~ jpl~)(f)<e (f~U(fo)),  
n = N + l  

which proves the result by part (a). The sum in (9) is less or equal to 
~(N)(f), which is continuous by part (a) and Lemma 5.1. PYi {zj1 > N } =  E JV,h ,J  

h4Y 
For f=fo this expression is smaller than 5/2 for a sufficiently large N, 

since P[~ < oo} = 1. Then (9) holds for a certain neighbourhood U(fo). For 
j~d  the result follows from jpi3-j, jpU(1-;,jpj~) (see Chung [1], (I.9.4.)) and 
the preceding argument. 

(d) is a special case of (c). [] 

Lemma 5.3. For arbitrary i~I, J c I ,  [xij is l.s.c. 

The proof follows from Eq. (2) and Theorem 5.2(b). [] 

Lemma 5.4. The functions f i i j /Pj j  are continuous for all i, j e I ,  i f  and only if  the 
functions ktu are continuous for all i~I. 

Proof. The if-part. Lower semi-continuity of f~j//zjj follows from Theorem 
5.2 (b). Upper semi-continuity then is a consequence of Eq, (8) and the general 
observation that continuity and finiteness of a sum of 1.s.c. functions imply the 
continuity of all terms in the sum. 

For the only if-part let ieI  and fo~F. Upper semicontinuity of /~ii at fo 
follows either from Lemma 5.3 (if pu(fo)= oQ) or from fi* <1 and ieD(fo) (if 
a.(fo)< o 9 ) [ ]  

Lemma 5.4 shows that we may restrict ourselves to the analysis of the 
continuity of the gu's. 

6. Tightness Conditions and Quasi-Finiteness 

For Markov chains having only one irreducible set of states it is known that 
the continuity of the stationary probabilities 7cj is equivalent to the tightness of 
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the family {rcj( f ) l f~F } of probability measures, see Hordijk [9], Lemma 10.2, 
and Federgruen and Tijms [7], Theorem 2.1. In this section we show for our 
more general case, how the continuity of the #1~'s is related to similar tightness 
conditions. 

Theorem 6.1. For the following statements we have the implications (10)~ (11) 
and, assuming F to be compact, (11)~ (12). 

(10) v is l.s.c., and 

(10a) for all 8>0 there exists a finite set K c I satisfying 

r h ( f ) / # u ( f ) > v ( f ) - e  ( f~F) ;  
i eK 

(11) #ii is continuous (iEI); 

(12) v is 1.s.c., and for all heI  

(12 a) the family {i ~ f *  ( f )  tli(f)/#i i( f)  l f ~ f }  of probability measures is tight. 

Proof ( i 0 ) ~  (11): Let (f,) be a sequence in F converging to an foeF. Choose a 
subsequence (f,,) such that yi=limtli(f,,)/llli(f,,) exists for all i~I. By Lemma 

n '  

5.3 we have O<=7i<=~li(fo)/#u(fo). For any e>0  let K be as in (10a). Then 

V(fo) < lim v(f~,) < lim v(f~,) 

< l im ~ ~,(L')/~,(L,)+~ 
i~K 

iEK ie I  

<= Y, + 
i~I 

where the last equality follows from (7). Thus we have ~Yi 
i 

=Y~nYo)/u.(fo)<~, hence v~=ni(fo)/~.(fo) for all i~I. Since (s can be 
i 

chosen as a subsequence of an arbitrary subsequence of (f,), this shows the 
continuity of the #~ s. 

(11)~ (12), if F is compact. In fact, lower semicontinuity of v follows from 
(7), and (12a)is a consequence of Lemma 5.4 and (8) (apply Dini's Theorem on 
uniform convergence of a monotone sequence of continuous functions). [] 

The gap between (10) and (12) can be closed in a natural way by introduc- 
ing the condition: there exists a finite set K satisfying 

(13) f*(i ,  K ) ( f ) =  1 ( f~F,  i6l). 

Theorem 6.2. Condition (10a) is equivalent to any of the following conditions: 

(14) there exists a finite set K satisfying both (13) and, for all h~K, (12a); 

t ~ F tight family of probability measures (15) {" f~hi(f)rli(f)/#u(f)lf~ ,h~I} is a 
on I. 
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Proof. Equivalence of (10a) and (15) is easy (use Assumption 1). (14) implies 
(15), since K intersects every class in D(f)  for all f e F .  For the converse 

direction choose K such that for all f~F,  h~l ~ f~(f)th(f)/l~ii(f)>O. [] 
iEK  

Condition (13) implies that no class in D(f) may "drift to infinity" as a 
whole. Therefore, (13) is equivalent to f*( i ,K)( f )>O ( feF,  iel). The real 
importance of (13), however, is that it allows us to consider the processes 
induced on the finite set K. Thus in Sect. 8-10 we can tackle the problem of 
finding equivalent conditions for the continuity of the g~'s by looking at the 
(finite) Markov chains induced on K. 

If there exists a finite set K satisfying (13), we will call the family of 
Markov chains {p~j(f)lfeF} quasi-finite with respect to K. It can be shown 
that quasi-finiteness follows from the finiteness of v, if F is compact and if the 
"product  property" (Hordijk [9]) or "completeness" (Wijngaard [16]) can be 
assumed. For the remainder of the paper we assume quasi-finiteness. 

Assumption 3. The family of Markov chains {p~(f) l feF} is quasi-finite with 
respect to a fixed finite set K ~ I. 

The following corollary is immediate from the above discussion. It general- 
izes a remark in Hordijk I-9], p. 84. 

Corollary6.3. I f  v is l.s.c, and for all i~K the family {j ~ * f,j (f) 
.rlj(f)/l~jj(f)lf eF } of probability measures on I is tight, then #n is continuous 
for all ieI. I f  F is compact, these conditions are also necessary for the continuity 
of the #n'S. [] 

7. Markov Chains 

The condition in Corollary 6.3 is difficult to check. Therefore, we show in this 
section how the problem can be reduced to one of the underlying Markov 
chains. Generalizing a result by Schiil [13], we will give a sufficient criterion in 
terms of the transition probabilities p~(f). This can be done since for Markov 
chains the stationary probabilities can be gained as a limit: ~ j  

= lira n 1 ~ pl~.). The criterion obtained is especially useful for applications in 
m = l  

queuing control theory. 

Theorem 7.1. I f  there exist finite positive constants 6 and M such that 

(16) 6<=th(f)<=M (ieI, TeF), 

then the continuity of l~zz (isI) is equivalent to the continuity of m u (id). 

Proof This follows from 

2 e, nj= <-  t.Z e,j= M.mi, 
J J J 

(see Eq. (5)) by Lemma 5.1 and Lemma 5.3. [] 
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Note that we do not need Assumptions 1 and 3 for the following result. 

Theorem 7.2. Assume I = N .  Let v be l.s.c, and f ~F a parameter satisfying 

(17) P~:{Y~<k}<PS{Y~<=k } (k, ieI, f~F)  

(18) i ---, Pi: { I:1 < k} is non-increasing (keI) 

(19) v(f)  is finite, and the Markov chain {Pij(f) is non-dissipative. 

Then {Pij(f)} is non-dissipative for all f e F ,  the familiy of Markov chains 
{pij(f)[f  ~F} is quasi-finite, {j ~ rcij(f)[f ~F } is tight (i~l), and m u is continuous 
(ieI). I f  in addition (16) holds, then #ii is also continuous (i~I). 

Proof (a) P~:{Y,<=k} is non-increasing in i (n~N, k~I). For, if n = l ,  this is (18). 
By induction, Pi f{Y ,+l<k}=y 'p i i ( f )Pi :{Y ,<k}  is also non-increasing in i. 

J 
This follows since (18) implies that ~pij( f )h( j )  is non-increasing in i for all 
non-increasing functions h >0. J 

(b) P~f{Y,<k}<Pi:{Y,<k } (n~N,i ,k~I,  feF) .  This can be proved by in- 
duction, using (17): 

Piif {Y,+l <=k}=~pij(f)Pjf {Yn<=k} 
J 

> ~ pij(f)PJ { Y, <= k} 
J 

> ~ Pij(f)P7 { Y, <-- k} 
J 

=P~:{Y,+I <k}. 

Here, the second inequality is a consequence of (17) and part (a). 
k k 

(c) ~ ~ij(f)>= ~ rcij(f ) (i, keI,  feF) .  This is an immediate consequence of 
j = l  j ~ l  

(b), since uij(f) can be gained as a limit from the quantities Pif{ Yn = k}. 
Now, the first statement of the theorem follows from (19) and (c) by letting 

k tend to infinity. Moreover, we can conclude that the family { j~u~ j ( f ) l f eF ,  
ieI} is tight. By Theorem 6.2 (specialized to the Markov case) this implies the 
second and the third assertion. The rest follows from Corollary 6.3 and Theo- 
rem 7.1. [] 

The meaning of the conditions in Theorem 7.2 can be best understood if 
they are applied to a queuing model. Let Y, denote the number of customers 
awaiting service at period n. Assume that the system can be controlled by 
certain (stationary) strategies f, e.g. by choosing different types of service, 
switching servers on or off, or by not allowing customers to enter the queue. 
Then (17) states that I:1 is stochastically greater under P7 than under Pf,  i.e. f 
can be interpreted as the slowest kind of service. By (18), the event that at the 
next step not more than k customers are waiting for service is (under strategy 
f )  the more unlikely the more customers are waiting at the current period. 
Finally, (19) says that with probability one we will come to a positive recurrent 
state: even for the slowest strategy the queue length must shrink to a limited 
size, no matter how big it is at the current period. 
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8. The Embedded Processes on K 

As already mentioned, under Assumption 3 we can define embedded processes 
on the finite set K (cf. ~inlar [2], Lemma (2.7)). All quantities for these 
processes will be marked by a ..... . We have Oi=#iK and f t ,=#  u for i~K. Since 
two states i , j eK  communicate with respect to the embedded process, if and 
only if they communicate with respect to the original one, we have f =  v. Thus 
formula (7) may be rewritten as 

( 2 0 )  V = ~ #iK/fti i .  
ieK 

Here, we define oo/oe =0.  
A ^ 

Applying (7) to the Markov chains on K we have (since D=D+ by the 
finiteness of K): 

= % = 2 y 1 / 2  e,;. 
i~K ieK jeK 

Hence we can use Theorem 5.2 (b) to infer: 

(21) v is upper semi-continuous on F. 

Moreover, a result by Schweitzer for finite Markov chains (cf. Schweitzer [14], 
Theorem 5) is valid for quasi-finite systems of Markov chains as well: con- 
tinuity of v implies that for small changes of the parameter the different 
recurrent classes do not vary within K. Note that /~j=Kp* is continuous for 
i, j e K ,  by Theorem 5.2 (c). 

9. Equivalent Conditions Using P~K 

Formula (20) suggests that there is a relation between the continuity of #iK, # ,  
(i~K), and v. In fact, we have the following central result. 

Theorem 9.1. The following two conditions are equivalent: 

(22) gii is continuous ( i t I ) ;  

(23) Y foeF , i~D(fo), J c I  such that Jc~Di(fo):t=O: 
~tij is continuous and finite at fo. 

A sufficient condition for (22) and (23) is 

(24) v is l.s.c., and 

(24a) #ir iS continuous at fo (fo eF, i~Kc~D(fo)), 

(24b) #jK is bounded (jEK). 

(24a) is also necessary for (22) and (23). 

Proof. (22) ~(23) :  Let foEF, ieD(fo), J c I ,  and assume i~J. By (1) we have/~iJ 
= # u -  ~ eij#j J. Hence #ij is continuous at f0 by Lemma 5.2 (b) and 

j~J, jeci 
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Lemma 5.3. For i~J, we have (using (1)) 

#iJ = #i, J ~ ~i/' (1 + JPi*). 

Thus the continuity of #iJ at fo follows from the continuity of #i,J~i~, which 
was proved in the first part, and from Theorem 5.2 (c). 

(23) ~ (22) is obvious. 
(24) ~ (22): First note that #1~;/#, is upper semi-continuous for all i sK (use 

(24a) for ieD(fo) and (24b) and Lemma 5.3 for i~D(fo) ). Since v is continuous 
by (21), this implies continuity of #ii(/#u (i~K), see (20). Again using (24a), we 
conclude that # ,  is continuous for all i~K. 

For arbitrary i~I satisfying #ii(f0)< oe (w.l.o.g. by Lemma 5.3), there exists 
a j eK~Di ( fo  ) (Assumption3). By Theorem5.2 (d) eij is continuous at f0. 
Especially, for all f in a neighbourhood of fo we have 0 < e ~ j ( f ) <  oo. Thus 
j~Di(f)  and hence #u=elj#jj on this neighbourhood (see formula (6)). This 
implies the continuity of #ii at Jo. 

(22) ~ (24a) can be proved by similar arguments, using (7), (21), Lemma 5.3, 
and (20). [] 

An example can be given to show that (24b) cannot be dispensed with. 
Also, (22) and (23) do not imply the continuity of #it( for all ieK. 

10. A Liapunov Condition 

The following theorem is valid without Assumption 3, which is implied by the 
conditions of the theorem. 

Theorem 10.1. Let F be locally compact and v l.s.c. Assume that there is a finite 
set K c I and a function y: I --* IR + satisfying 

(25) sup {r/i(f)+ ~ plj(f)y(j)[f~F}<y(i) (ieI) 
j(~K 

(26) f ~ ~ Pij(f)Y(J') is continuous (i~I) 
jCK 

(27) lim ~ rpl~)(f)y(j)=O (i~K, f ~F). 
n ~  o~ j C K  

Then the underlying family of Markov chains is quasi-finite with respect to K, 
and #ii is continuous for all i~I. Furthermore, 

y(i)>=u*(i)=sup {#iK(f)lf ~F} (gel) 

and u* also satisfies (25)-(27). 
n - - 1  

Proof. Relation (25) implies for all nelN y(i)>~h(f)+ ~ ~ ~pl~)(f)rl~(f) 
m =  1 j C K  

+ ~ Kpl~)(f)y(j). By (3) this yields #1K(f)<y(i)< o% hence f*(i ,  K ) ( f ) =  1 and 
j r  

the family of Markov chains is quasi-finite. We will show 
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(28) for fo~F, i eKaD( fo )  we have 

(28a) y ~  ~ Kpl~)(f)ttj(f) is finite and continuous at f0 (heN), 
jcK 

(28b) y~ ~") i~Pij ttjK j,O uniformly on a neighbourhood of fo; 
j~K 

this implies (24a) by formula (4), and hence the continuity of /~u (ieI) by 
Theorem 9.1. We have 

y(i) > y~(i, f ) =  ~ rpl~)(f)y(j) 
jCK 

= ~:Pij (J) ~ Pjh(f)Y(h) 
j4-K h~K 

= y ~  ~ .+1~ - ( i ,  ~Pih ( f)y(h)-y,+~ f). 
h~K 

By (26), Lemma5.1,  and Theorem5.2 (a), this implies the continuity of y,(i,.) 
(neN). Since y(i)>l~iK(f)>rli(f), (28a) follows (Lemma 5.1). By Dini's theorem, 
the convergence in (27) is uniform on compact  subsets of F. This implies (28b). 

It  has already been shown that y(i)>u*(i). Therefore (27) as well as (26) (by 
Lemma 5.1) are valid for u* substituted for y. Relation (25) holds with equality 
for u*, as follows from the optimality equation in a suitable dynamic pro- 
gramming model;  see Federgruen et al. [6], Theorem 3. [] 

The conditions (25)-(27) were first introduced by Hordijk [9], Theorem 5.1, 
where K contains only one element (which implies unichainedness). They were 
generalized to the present form (with y replaced by u*) in Federgruen et al. 
[6]. However, these authors demand (27) for all i6l, and, what is more 
important,  they assume unichainedness of the underlying Markov  chains. 

A condition similar to (28) was introduced in Wijngaard [15, 16]. It  can be 
shown that (28) is also necessary for (24a), if F is locally compact  and v(.)  is 
1.s.c. 

In Kolonko [10] the conditions (25)-(27) are modified so that y may 
depend on f~F.  It is assumed that y f(i) is continuous with respect to f for all 
i~I. This generalization is also valid for the first part  of our Theorem 10.1; in 
fact, the proof goes through without change. 
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