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Summary. Let X, X 1 , X  2,... be i.i.d, d-dimensional r a n d o m  vectors with 
partial sums S,. We identify the collection of r a n d o m  vectors X for which 
there exist non-singular  linear operators  T~ and vectors v,~IR a such that  
{~Cr is tight and has only full weak subsequential limits. 
The p roof  is constructive, providing a specific sequence {T~}. The r andom 
vector X is said to be in the generalized domain  of  at t ract ion ( G D O A )  of a 
necessarily operator-s table law 7 if there exist {T,} and {v,} such that  
~(T~(S~-v~))~7. We characterize the G D O A  of every operator-stable law, 
thereby extending previous results of H a h n  and Klass; Hudson,  Mason,  
and Veeh; and Jurek. The characterizat ion assumes a particularly nice form 
in the case of a stable limit. When 7 is symmetr ic  stable, all marginals of X 
must  be in the domain  of at t ract ion of a stable law. However,  if V is a non- 
symmetric  stable law then X may be in the G D O A  of 7 even if no marginal  
is in the domain  of at t ract ion of any law. 

w 1. Introduction 

Let X, X t , X 2  ..... be i.i.d, r a n d o m  vectors with values in IR a, d >  1. ~ ( X )  is 
assumed to be full, i.e. the support  of  2 ' (X)  is not  contained in any d - 1  
dimensional  hyperplane.  Let Sn = ~ Xj. 

j<=n 
Classically, one is interested in the distribution of S n. One way this distribution 

can be approximated  is via a weak limit theorem of the form ~f( fn(Sn-v , ) )~7 
provided fn is invertible, v~IR a and 7 is full. Traditionally,  this is accomplished 
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and MCS-83-01793 
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only for X-distributions for which f ,  can be chosen to be a scalar transfor- 
mation f , ( x )=x /a ,  with a ,>0 .  In this case, X is said to be in the domain of 
attraction (DOA) of 7- Fullness of the limit is essential for conveying infor- 
mation about the joint distribution of the components of S,. But scalar 
norming is needlessly restrictive. The partial sums from a strictly larger class of 
distributions can be approximated by allowing f ,  to be linear. See Hahn and 
Klass (1980a, 1981a,b). 

In principle, an approximation is possible if 5Y(f , (S , -v , ) )  is close to some 
family of full laws whose distributions can be considered known and ap- 
proximable. Of course, the elements of this family should be closed with 
respect to weak limits. A tight family of laws on IRe will be called f-tight if all 
of its weak subsequential limits are full. 

We are naturally led to the following two basic problems: 

Problem 1. When do there exist linear transformations T, and centering vectors 
v, such that the sequence {.LN(T,(S n - -  Vn)), n > 1} is f-tight? 

Problem 2. When do there exist linear transformations T, and centerings v, 
such that 5q(T~(Sn-v,)) tends to a limit? Here the limit can be left unspecified 
or it can be specified. 

Problem 1 will be treated first, in Sect. 2. Let Se-I={x~IRa: llxll =1} be the 
unit sphere in IR a and let X s = X - J ( ,  with )~ an independent copy of X, 
denote the symmetrization of X. The X-distributions solving Problem 1 are 
characterized by the condition 

(1.1) lim lim sup tZP(I(Xs 'O)l>ct)  0 
~ t ~  o~s~-~ E((XS, O)z/xt  2) = " 

Our proof gives an explicit method of constructing the norming operators T,. 
Because convergence to a single law is not required, the norming operators so 
constructed need not be sensitive to any such limit law. Therefore, they can be 
determined from the X-distribution itself in the following manner: Define the 
canonical 1-dimensional norming constants 

(1.2) a,(O) = sup {a > 0: nE((X,  0) 2 A a 2 )  => aZ}. 

They induce a minimal preferred orthonormal basis (minimal PONB) 0,1, ..., O,a 
on IRe by 

(1.3) a,(O,1)= inf{a,(O): O~S a-1 } 

a,(O,j) = inf{a,(0): O~S a- 1, (0, 0,i ) = 0 for i = 1,... ,j - 1} 

for j = 2  . . . .  ,d. 

The existence of 0,~. follows from the continuity of O~a,(O) for n sufficiently 
large (cf. Hahn-Klass (1980b) or (1981a)). Now T, may be chosen to be 

k 

(1.4) T~x= Y, ((x, %)/a,(0,~))0,~. 
j = l  
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This is exactly the technique used in Hahn and Klass (1980a, 1980b) for 
operator-norming partial sums which converge to a spherically symmetric 
stable law. 

The limit taws 7 which can arise in Problem 2 are called operator-stable 
laws. M. Sharpe (1969) characterized them as the full laws for which there 
exists a nonsingular linear operator B on l (  d, and vectors b( t )~ l (  ~ such that ?.t  
= tB7 * 6b(t) where t B = exp(B In t) and t B ~(E) = 7(t- RE). The collection of random 
vectors X for which there exist norming operators T, and centering vectors vn 
such that 

~(~( s . -  v.))-, 
ve 

is called the generalized domain of  attraction (GDOA) of  7. 
Unfortunately, the T~ in (1.4) are sometimes inappropriate for operator 

norming to a limit law 7 which is not spherically symmetric stable. In fact, 
even if some T, normalizes S~,, it may not normalize S n - v ,  (for any vn) for 
convergence to any law. See Examples 4.1, 4.13, and 4.14. 

Section 3 tackles the problem of selecting linear operators to achieve weak 
convergence of the partial sums to a limit law. Theorem 3.13 provides a 
characterization of GDOA(7), for any operator-stable law ?. Three conditions 
on the projections (X,  0) are required to hold uniformly in 0. Condition (I) is 
a tail condition, Condition (II) involves the behavior of the 1-dimensional 
norming constants an(O) relative to the limit law and Condition (III) governs 
centerings by truncated first moments. Uniformity is essential. The proof is 
constructive, providing the norming linear operators. 

Remark 3.19 shows that for stable limits Condition (I) can be replaced (in 
the presence of Condition (II)) by two more familiar looking conditions. 
Finally, Remark 3.25 discusses the independence of Conditions (I)-(III). Such 
independence is governed by the limit law ?. 

Convergence to a symmetric stable law requires the most regularity from 
the 1-dimensional projections of X. In fact, if X ~ G D O A  of a symmetric stable 
law then (X,  0) is in the DOA of a symmetric stable law for each 0. However, 
each operator-stable law ~ which is not symmetric stable has a random vector 
X in its G D O A  for which ( X , O )  is not in the DOA of any law for any 
OeS d-~. See Example 4.1. Consequently GDOA(7 ) is substantially larger than 
DOA(7) in a perhaps unexpected way. 

w 2. F-tightness of Affinely Normed Partial Sums 

Let X, X1, X2,. . .  be i.i.d, full random vectors on l (  d and let S n = X  1 +. . .  + X n. 

By 1-dimensional results, for each fixed OeS d-l ,  

(i) {(Sn, O)/an(O)} is shift-f-tight 

iff 

(ii) lim lim sup t 2 P([ (X,  0)1 > c t ) /E( (X ,  0) 2 A t 2) = 0,  
c ~ c o  t ~ o 0  
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(Here an(O) is defined in (1.2).) Extending this result, Theorem 2.1 below will 
show that (i) holds uniformly in 0 iff (ii) does also. 

The main objective is to determine when there exist linear operators Tn and 
vectors vn in p d such that {~(T,(Sn-vn)),n>l} is f-tight. Passing to marginal 
distributions, {L~(Tn(S,-vn)),n>l} is f-tight iff for every ~/,,eS d-l, {~q~ 
-v.),~n)),n> 1} is f-tight (in IR~) .  Letting Ones d-~ satisfy ~, 
= T*-IO,/[[ T*-lOn[[ and noting that (T,(S,-vn), ~n) =(Sn-vn,  0,)/[/T~*-10n[[, 
{s is f-tight iff for all O, eS d-1 , { s176 
- vn, 0n)/[[ T,* -10n [[), n > 1} is f-tight. In view of (i), this can occur only if 

0 < l i m i n f  inf Ilr~*-~Oll/an(O) 
n ~ oo  o E s d  - l 

<l imsup  sup [ITn*-lOll/an(O)<oo. 
n ~ c o  o ~ s d -  1 

Observe that {0]]T~*-10[[: O~S d-l} describes an ellipsoid in R e. Hence 
{Oa,(O): O~S d-~} must also be roughly ellipsoidal. There is a natural set of 
principal axes determined by a,(0); namely. O, t a,(O,1),...,O,da,(Ond) where the 

d 

0.~ are defined as in (1.3). This suggests using A*-~x= ~ (x, Onj)Onja,(Onj) for 
j = l  

n > 1 as a sequence of linear operators to make Sn-v .  f-tight (whenever f- 
tightness is possible). Indeed, this is the case. Less obvious is the fact that the 
uniformized version of (ii) is sufficient by itself to make {Oan(O): OsS d-l} 
ellipsoidal and hence insure that {~(An(Sn-vn)),n>l} is f-tight for some 

v,elR d. The vectors vn= ~ OnjnE(X, O,~)I(](X, O,j)[ <an(Onj)) will do. 
j = l  

Condition (ii) is not the only condition on the X-distribution which is 
equivalent to (i). Le Cam (1965) uses the condition 

(iii) lim l imsupnEt  ((X'O)]2A } . . . . . .  ~ \ca,(O) ! 1 =0  

for tightness. In fact, (iii) gives f-tightness. It is also possible to use 

(iv) lim lim nP(](X, 0}] > ca,(O))=0. 
r  n 

Uniformized versions of the these statements are equivalent. Before so 
proving, we make a simple reduction: If {~(T,S~),n>I} is f-tight there must 
exist v , e ~  ~ such that {~e(T~(S," v,)), n>  1} is f-tight, and conversely (cf. Araujo 
and Gin6 (1980)). Hence it suffices to prove the result for X symmetric. 
Moreover, since P([(Xs, O)]>2t)<2P(](X,O)]>t) for t > 0  and 
P(] (X s, 0)] > t) > P(] (X, 0)] > 2 t) for t > ]med(X, 0)], the uniformized version of 
(ii) holds for X iff it holds for X s. Therefore, (1.1) is an immediate consequence 
of the following theorem. 

(2.1) Theorem. Let X, X1, X2,... be i.i.d, full symmetric random vectors on IR d. 
Put S,=X1 + ... +X,.  Define a,(O) as in (112). The following are equivalent: 
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t2p( l (X ,O) l>c t )  
(A) lim limsup sup =0;  

c ~  t~oo o~sd ~ E( (X ,O)  z /x t  2) 

l mlimsup } . . . . . .  o~s~-~ t \ca . (  0 ) /  /xl =0 ;  

(C) For any sequence O,~S d-l, {Se((S,, O,)/a,(O,)), n> 1} is f-tight (in ~ ) ;  
d 

(D) If A , x =  ~" ((x,O,j)/a,(O,j))O, s with 0.j defined as in (1.3), then 
j=a 

{2 ' (A ,S . ) ,n> 1} is f-tight; 
(E) There exist linear operators {T. ,n> 1} such that {~ (T ,S , ) , n>  1} is f- 

tight. 

Proof (A)=>(B). Assume (A). Let g(O)=E((X,  0)2A 1). g(') is a strictly positive, 
continuous function on S d-~. Hence there exists OoeS d-1 at which g(00) 
achieves its minimal value. Clearly, for n>l/g(Oo), a , (0 )> l  for all O~S d-1. In 
particular this means that for all such n and 0, 

/7 -1  = E ( ( ( X ,  0)2 /a2(0) )  A 1) 

> (1/a2(O)) g(O) > g(Oo)/a2(O) 

so that a , ( O ) > ] / ~ .  As a result, inf a.(O)~oo. Consequently, for any 
On~S d- 1, OeS a- l 

nP(I( X, 0>1 > ca,(O,)) 
O=l im limsup sup [ (X ,O)  2 \ 

c~oo n ~  oesa-1 nE W A 1  
t a.(O.) ) 

=> lim lim supnP(l(X, 0.)1> ca.(O.)). 

Invoking (A.3) of Lemma A.1 from the Appendix, (B) holds. 

(B)~(C). Assume (B) and take any O.ES e-1. Part (A.2) of Lemma A.1 of the 
Appendix implies that {~((S . ,O. ) /a . (O. ) ) ,n>l}  is tight. To obtain non-con- 
stancy of the weak subsequential limits, we appeal to the Kolmogorov-Rogo- 
zin-Esseen inequality, using a bound obtained by Le Cam (1965): 

P(](S9,, 0,)] > 2-1a.(0,)) > 1 - 3-1 ] /2n.  

Writing ($9,,  0,) as the sum of 9 (nine) i.i.d, random variables, each having 
law &~ 0.)), it follows that 

(2.2) P(I(S,, 0,)l >(18)-~a,(0.))>9 1 ( 1 - 3 - 1 ] / ~ ) .  

As a consequence of (2.2), no subsequential weak limit of (S.,  O,)/a,(On) is 
identically zero. Thus, by symmetry, each must be non-constant. Hence (B) 
~(C). 

(C)~(D). Tightness of {~q~(A,S,),n>I} follows immediately from the or- 
thonormality of 0,j and the fact that for each 1 < j  < d, { s O.j)), n > 1} is 
clearly tight. Fullness of the subsequential weak limits remains. 
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We will proceed by constructing an auxiliary tight sequence 
{5~(A.S..),n>I}. Fullness of subsequential limits of this sequence will imply 
fullness of all subsequential limits for {~(A.S.),  n >  1}. It will be shown that if 
2#(A., S.,.,)--+ s then both 

E(An, S.,.,, O)Z~E((Z, 0)) z 
and 

l iminf inf E(A.S.. ,O)2>O. 
n~c , z  o ~ s d - 1  

By condition (C), there exists Co > 1 such that 

(2.3) nP(](X,O)[>coa.(O))<(2d) -1 for all OeS d-~. 

To see this, suppose (2.3) fails. Then there exist O.eS d-l, c.---,oc, and an infinite 
(sub)set Q of positive integers such that 

nP(l(X,O.)[>c.a.(O.))>(2d) -1 for n~Q. 

By symmetry together with a conditioning argument, 

2 lim infP(I (Sn, 0.)1 > C.a.(O.)) 
n ~ o o  

> lim infP( max [(Xj, 0.)1 > c.a.(O.)) > O. 
n ~ o o  l <_j<n 

Therefore {~((S,,O,)/an(O,)),n~Q} is not tight, which contradicts (C). Hence 
(2.3) must hold. 

Let X . i = ~ O . j ( X i ,  O.j)I(l(X~,O.j)[<coa.(O.j)) and S . . =  X.~. Con- 
j = l  i = 1  

ditional on X,1, ..., X, , ,  S , - S , ,  is symmetric. Hence not only is 
{~f(A,S,n), n>= 1} tight, but if all its subsequential weak limits are full, the same 
must be true of {s Suppose .La(Z)= lim s Since Z is 

symmetric, fullness will follow if 0 < E (Z,  O): < ~ for all 0 e S d- 1. Observe that 

d 

E(A.S . . ,  O)4<d a ~ (0, O.j)4E(A.S.. ,  O.j) 4 
j=l 

<=d Z 

Since (X.1, O.j) 2 < cZo((X.1, 0.~) a/x aa.(O.j)), 

j = l  a.(O.j)  , 

< 4d4 c4 o. 

By uniform integrability, for all O~S e-l, 

(2.4) E(Z,  O) z = lim E(A.,S.,. , ,  0) 2. 
n, ~ o o  

A 
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It now suffices to show that the second moments of (A,S,., O) are uniform- 
ly bounded away from zero. We construct another operator B. for which this is 
guaranteed and then relate A, and B.. 

First define an ONB 7.i . . . .  , Ynd by 

E ( S n n ,  7 n l )  2 --inf{E(S,, ,  0)2: O E S  d - l }  

E(S,., y,j)2 = inf{E(S,, ,  0)2: O~S d-l, (0, Y,i) = 0 for 1 < i < j -  1}, 

for j = 2 ,  ...,d. 

It follows by Hahn-Klass (1980a), p. 271 that for i4=j, 

(2.5) E(S,,, 7.,) (S,,, y,j) =0. 

Now let Bn be the linear operators defined by 

(2.6) B.y.j = 7,/1/2E(S,., Y n j )  2 �9 

d 

Upon writing Snn= ~ (S. . ,  7.j)Y.j, (2.6) and (2.5) imply for all OeS d- 1 
j=i 

e ( ~ . s . . ,  0) 2 = ~  (2.7) 

and 

(2.8) 

(2.9) 

then 

IIB210112=2E(S.., 0) 2. 

If we can establish the existence of K < oe with 

IIA*-101I <KHB;IOII for all OeS a-l, 

inf 
OeS a 1 

E(A,S,,,  0) 2= inf 
O~S a - i 

= inf 
OeSa- i  

= inf 
OeSd- i  

E(A,S,,,,, A*-I 0/HA*-1011>2 

E(< S.. ,  O)/llh*~ -1 011)2 

2 -1 I[BnlOII2/I[A*-IOII2>O. 

Consequently, the subsequential limits of ~(A,S,,) and hence of ~(A,S,) will 
be full, thereby completing the proof of (C)~(D). 

The following properties of B, together with Lemma 2.15 below yield (2.9) 

with K = (Col//~)- i (1 + c 0 l / ~ )  d. 

(2.10) Properties of B, (0eS d-i) 

(i) I[B2~OII >a.(O) 
(ii) IIB2iO[I <=Col/~dllA*-lOLI 

(iii) IIB~-10[I > IIA*-10.jI[ for all 000,1,  ...,0,~_ r 
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Proof (i) Let 
Hence 

Thus (i) holds. 

(ii) 

Hence 

d 

F = ~ {[(X, 0.j) l < coa.(0.a)}. Observe that riP(U) <�89 by (2.3). 
j = l  

a2(O) = nE((X,  0) 2/x a2(O)) 

< naZ.(O) P(F ~) + nE(X,,1, O) z 

< a2(0)2-1 + E(S,,,,, O) 2 

=(a2(O)+lle21011z)2 - 1  by (2.8). 

lIB210.jll = 2nE ( X.1, On j )  2 

<2nEc~{(X ,  O.j) z /x aZ(0.j)} 
2 2 =2coa.(O.j) 

=2c~]lA*-aO . 

IIB2101F2= j=~a (O'O"j>B210"J 2 

d 

~ d  2 (0, Onj> 2 IlBn 10njll 2 
j=l 

d 
< , _ 2 c J  Z (0,  Onj) 2 II1"--10.jll 2 

1=1 
= 2 c ~ d r l A * - a O I I  2 

which yields (ii). 
(iii) Using (i) and (1.3), 

lIB;- 17.1 ][ => a.(7.1) => an(O.1) = ][A*- 10.1 II- 

Moreover, for 2 < j  < d and 0 2_ 0nl .... ,0. i -  1 

[1B2101[ > a.(O)> a.(Gj)= [[A*~ -aOnj[I, 

which is precisely (iii). 

(D)~(E). This is trivial. 

(E)~(A). Assume {s 1} is f-tight. In particular, T.S. is stochasti- 
cally bounded and hence so is max [] TnXj[[. Thus 

l < j < n  

Consequently, 

0 = l i m  lim sup P ( m a x  I(T, Xj, O)I>c) 
c ~  n ~ o o  O~S a - I  l <=j<n 

=li ra  lira sup 
C~oO n ~ o O  OES d - I  

F1 - (1  - P(I < T~Xa, O) l > c))']. 

(2.11) lira lira sup nP(J(X,O)]>c[[T*-IOH)=O. 
C~O9 n ~ o G  o E S d - 1  
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The following fact allows II T* -1 0[I to be replaced by a,/~(O) in (2.11). 

(2.12) Fact. There exists e>0  such that I lr*-lOll<a,, /~(O) for all 0 and n 
sufficiently large. 

Proof If not, there exist O, eS d-l, en"~O and (n')~_(n) such that 

Ilrn '*-10.'ll >an,/~.,(O,,). 

Take a subsequence (n")=(n') such that q),,,=T*,-IO,-/IIT*,-IO,,,II~O* for 
some 0* and ~(Tn,,Sn,,)~L~(Z) for some full Z. Hence, considering 
(T.-s. , , ,  ~o.,,), 

2e((Sn-, 0n")/ll T. *'-10n" II)--' ~e((Z,  0"}). 

Note that ac,,>-_]/-~a,, for c_->_1. Utilizing this fact together with Lemma A.1 of 
the Appendix, 

p(l<Sn.,On,,>l>el/,~liT.,, ~On. ll)<=p(l<Sn,,,O.,,>l> 1/. en.. an"/~,,,(On")) 
< P([ (S,,,, 0n,, }1 > a,,,(~,,,) ,/,(0 n,,)) 

an(O) . 
since ~ increases in n 

<= n"E(((X, On,,} Z/a2,,(~,,,)-~/~(On,,)) A 1) 

by (A.2) 

=/V-,0. 
Hence, (Sn-,O,,,}/IIT,*,-IO,,,N--~O, which contradicts the assumption that 
(Z, 0*} is non-constant. [] 

Now to prove that (A) holds, suppose the contrary. Thus there exists 2>0,  
t,.-*oo, O,~S a-1 and cn--*c~ such that 

t~P(l(X, On}[>cntn) > 2" 
E ( ( x ,  On> ~ A t. 2) (2,13) 

Let n' satisfy 

(2.14) a../~(O.) < t. < al +../~(0.). 

Now (2.14) together with (3.13) and the monotonicity of E(YZt 2A 1) in t (for 
any Y) entail 

,~<(1 + n'/e)P(l( X, O,)l > Cntn) 

< (1 + n'/e)P(I (X, 0.}[> c.a.,/~(On)) 
---,0 as n'-.oo by (2.11) and Fact 2.12. 

This contradiction establishes (A). [] 

The proof of Theorem 2.1 is now complete, modulo the following lemma. 
The lemma is needed to establish (2.9). 
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(2.15) Lemma. Let 4 and /~ be linear operators on Na. Let 01, ..., 0a be an 
ONB for Na and 0 < al -< a2 < . . .  < an. Suppose 

d 
(i) IIA0[12= ~ @, 0j)2a~; 

j = l  

(ii) II~OIl<__cl/-clll4011 for all O~S a-1 and some l__<c<oe; 

(iii) 1140111 < II/~01l for all OeS a- ~; 
(iv) 1[40jll < II/~011 for all OsS a-1 with 010x,  ..., 0j_l.  

Then 

114011 < (c l /d) -  1(1 + el/d) d lIB011. 

Proof There exist reals 0 < b l  < ... <be and an ONB 71, ..-, 7a such that II/~0/I 2 
d 

= ~ (0, 7j) z b~. The b/s are the principal axes of the ellipse determined by 
j = l  

H/~01I. We first assert that these axes dominate the principle axes al,  .. aa 
determined by A, i.e. 

(2.16) al  < bb ..., an<be. 

This is true if j =  1 by (iii). Suppose it is true for 1 < i < j - 1 .  By a dimension- 
ality argument, there exists a unit vector qSj in the span of ~1 . . . .  , ?j which is 
perpendicular to 01, ..., 0j_~. Since ~bj is in the span of 71 . . . .  , ?j, bj> II/%~jll. 
By property (iv), IrBq~jlr >aj. Hence bj>aj and (2.16) holds by induction. 

Now let U be the unitary operator satisfying UOj=Tj. 

d 

If40ll 2< Z (0, Oj)2b~. (since a)<-_bj) 
j = l  

d 

= Z ( g o ,  ~j)2 ii/~jll2 
j = l  

= r l / ~ U 0 t l  2 

We need to upper-bound I[/~U01r in terms of I[/~011. Surprisingly, we first derive 
a reverse bound. 

[l~OII2 < c2 d ll40ll 2 
<c2 dl[~U Oll z. 

Hence 

and so by iteration 
lINg -2 0ll < c l / d  IFNu -~ 011 

l ieu  -~ 011 ~ (c ~ d) (k- 1)12 l i eu-  ~ 011. 
d 

Let p(x)= ~ 2k Xk denote the (monic) characteristic polynomial of U -1 Thus 
k=O 

2 d= l  and (--1)d--k2k=SUm of all products of collections of d - k  of the eigen- 
values of U -1  Since these eigenvalues all have modulus 1, 

and j ol 1--1 
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d 

Using l = - 2 f f  1 ~ 2k U -k, 
k = l  

d 

-<_ Y~ [,~,~[l[eg-~Oll 
k = l  

~ (dk)(cZd)(k-1)/2Hj~U 10l] 
k = l  

__< (c I /d)-  ~(1 + cl/d) d ]I/~U -~ 0 II. 
Replacing 0 by U 0, 

Thus for all O~S d- 1, 
II~UOll ~ (c ~2)- ~(1 + c]/d) a II/~ 0 II. 

IkAOll~(cl/d)-~(l +cl/d)dl[~OLI. [] 

w 3. Characterization of GDOA(?) 

Our objective is to characterize the set of X-distributions for which there exist 
linear operators T, and vectors v, ER d such that ~(T,(S,-v,)) converges weak- 
ly to a given operator-stable law 7. Of course, such X-distributions must satisfy 
(1.1). It may seem natural to first consider symmetric random vectors directly 
and then prove a desymmetrization lemma. This is not feasible because 
A~ does not imply the existence of b . e ~  d such that 5f(T~S,+b,)~7 
(see Example 4.14). Consequently, our approach will be to consider the partial 
sums S. directly and identify the quantities that should be utilized for normal- 
ization. GDOA(y) will then be identified in terms of the tail behavior relative 
to the pertinent quantities together with several regularity constraints. 

Throughout  we assume that E(X, O)=0 whenever El(X, 0)[ < oo. 1 To iden- 
tify the appropriate norming method, several equivalent formulations of the 
desired weak convergence are useful. We require the following notation'  

(3.0) (1) p(#, v) is the Prohorov distance between # and v. 

(2) An infinitely divisible law t/ has Levy representation t /~ [a, ~b, #] where 
aeF,  d, ~b is a covariance operator, and g is a Levy measure (i.e. 

(1/x Ilxll 2) d#(x) < o9 and #({0}) = 0). 
(3) Let t/0 be defined for each Borel set A of 1t by rto(A)=tl({xeNd: 

(,x,O)sA}). If t /~[a ,  (b, #], then the projections rlo~[bo, r are again in- 
finitely divisible with 

1 With this assumption 

lim sup (E(X, 2 2 O)I(l<x,o>l<=O ) /E(X,O) I(l<x,o>l<=o=O 
t ~ o z  O e 8  a 1 

where Sa-~={xeRe: Ilxll = 1}. Therefore truncated variances and truncated second moments of 
(X, 0) are uniformly asymptotically equivalent. 
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bo = (a, O) + ~ (u, O) ((1 + (u, 0) 2) - ~ _ (1 + [1 u [[ 2)- 1)/,(d u); 

�9 o(t, s)=~b(tO, sO) for s, t e N ;  and #o(B)=--#{xe~,a: (x, 0)eB\{0}}. 

(4) For any random vector X and ~>0,  let (X)~ denote the truncated 
random vector (X)~ = XI(II x II =< ~). 

(3.1) Definition. X satisfies 

(i) the uniform (d,, o, #,, o)-tail condition if for every y > 0, 

lim sup InP((X,O) > d,,oy)-#~,o([y, oo))[=O; 
n ~  co 0 E N  d -  1 

(ii) the uniform (d., o, (bn, o)-variance condition if 

lim limsup sup InVar((X, O)/d..o)~-q~..o(1 , 1)l=0; 
~+0 n ~ c o  OeS a - t  

(iii) the uniform (d,,, o, #,, o, v., b,, o)-centering condition if 

lim sup InE((X, O)/d. ,o) l - (v . ,  O)/d.,o-al(#.,o,b..o)[=O 
n ~  o 3 0 E S  d -  1 

where 
U 3 U 

al(# . ,o ,b .o)=b.o  , t.1~=1S l + u  2 d#.,o(U)+l.l>l ~ l~uu~d#"'~ 

If X satisfies (i)-(iii), then we say X satisfies the uniform (d.. o, #., o, q~.. o, 
v., b., o)-central convergence criterion. 

(3.2) Proposition. Let y be a full operator-stable law on Rd with L6vy repre- 
sentation [a, ~b, #]. Assume X, X1, X2 . . . .  are i.i.d, with S. = ~ Xj. The follow- 

j < n  

ing four conditions are equivalent to XeGDOA(7):  There exist linear oper- 
ators T. and vectors v.elR d such that if 4.(0)."--T*- 10/l[ T.*-1011 , then 

(A) lira ~ (T . (S . -v . ) ) - -y ;  
n ~ o o  

(B) lira sup p(Z~((T.(S.-v.) ,  0)), 70)--0; 
n ~  oo O ~ S  d - 1  

(C) lira sup p ( S e ( ( S . - v . ,  O)/HT *-aOP1), 7r 
n ~  co O ~ S  a - 1  

(D) X satisfies the uniform (pIT. *-~ 011, /~r ~r v., br con- 
vergence criterion, where the relevant quantities are defined in (3.0)(3). 

Proof (A)-**-(B). By the Cramer-Wald device, (A) is equivalent to 

(3.3) lira p ( ~ ( ( T . ( S . . v . ) ,  0)), 70)=0 for all OeS "-I  
n ~ o o  

Lemma 1 of Hahn-Klass (1980b) states that (3.3) is equivalent to the seemingly 
stronger condition (B), by utilizing a Lemma of Rao. 

(B)~-(C). Since y is full; T. may be assumed to be invertible for all n. For 
(B) ~(C)  replace 0 by ~,(0):= T,*- 10/]]T*- 1 01[ and isolate ( S , -  v,, 0). For (C) 
~(B)  replace 0 by T*O/HT*OII: 

(C)~:>(D). Due to a theorem of M. sharpe (see Hudson (1980); Theorem 1), 
a full operator-stable law ~ is absolutely continuous. Therefore each 7o is a 
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continuous probability law on R. The desired result follows immediately from 
considering subsequences OneS a- 1, using the tightness of {7~.(0n), n>  1} and the 
i-dimensional central convergence criterion for triangular arrays. [] 

(3.4) Remark. In view of the equivalence of (B) and (3.3), one might expect (C) 
to be equivalent to the same condition with the uniformity in 0 omitted. 
Example 4 of Hahn-Klass (1980a) shows this is not the case; the uniformity is 
essential. Similarly, the uniformity is essential in (D). 

Notice that the conditions provided by (D) for XeGDOA(7) involve 
HT* 1011 and ~,(0) which are not determined by X and 7 in any obvious 
manner. To eliminate this dependence upon T~, the role of liT* 10[I must be 
clarified. 

Specialize momentarily to 7 spherically symmetric, so that all 7~,(0) are 
equal to the same law on IR which is necessarily stable. Condition (D) then 
says that the 1-dimensional central convergence criterion must hold in each 
direction 0 at a uniform rate. Moreover, IJT,*-10][ must behave like a 1- 
dimensional norming constant for (X, 0). Our next lemma establishes that 
l[ T*-~Oll generally behaves like a "l-dimensional norming constant for (X, 0) 
tailored to Yr 

The quantity a,(O) defined in (1.2) is a canonical norming constant for 
(X, 0) which disregards any specificity of limit law or limiting sequence. 
Define 

(3.5) Wo'. = sup {w > 0: ~bo(1, 1) + ~ (y2/x w 2) d~o(y) >= w:Z}. 

Since 7 is full, either inf{~b0(1, 1) :0eSa-1}>0 or #~(Ra)=oo. Consequently, 
inf{w0: 0eSe-~}>0. The quantity we,(0) relates to the multiple by which an(O) 
must be adjusted to be compatible with 7r as indicated by the following 
lemma. 

(3.6) Lemma. If XeGDOA(7) with norming linear operators T, then 

lim sup l a~(O)/(we,(o ) II T,* - 1 0 [1) - i 1 = 0 .  
n ~ o o  O~S  d - 1  

Proof. By Proposition 3.2, (D) holds. The uniform ([IT.*-a011,#~.(o))-tail  con- 
dition and uniform (liT* 1 01[, 4~,(0))-variance condition together with footnote 
(1) imply 

lira sup InP((X, O)>yllT*-lO[l)-#e.(o)([y,  oo))1=0 for all yelR + 
I ' l~cO O@S d - 1  

(3.7) 

and 

(3.8) 2 lim limsup sup ]nE((X,  O) I(l<x,o>l<=e, ltw,-,,oll))/llT,;*- l O]12-~e~(o)(1 , 1)1=0. 
6 5 0  n ~  O e S  a t 

Let 0n be an arbitrary sequence in S e- 1. Take 0 < a < 1 and define 

U~= {n" a.(O.)/II T*  - 1 0.  HI > (1 + 0 w~.(0.)} 

U~ = {n" a.(O)/II T # -  1 0.  LI < (1 - 8) w~.~oJ. 



492 M.G. Hahn and M.J. Klass 

We will show that  U ~ and U~ each have only finitely many points. Suppose that 
U ~ has infinitely many  points {n'}. There  is a subsequence (n")~(n') for which 
~.,,(0.,,) converges to say ~*~S a-1. Then  

1 = n " E ( ( ( X ,  O . , , ) /a . , , (O . , , ) )  2 /x  1) 

= lim n"E(((X, O.,,)/a.,,(O.,,)) 2/x 1) 
. " ~  oo 

oo 

= lim n"~ ((y/a,,,(O,,,)) z/x 1) dP(I~X, O,,,)]<-_y) 

oo 

= lim n" ~ ((y N T.*,- ~ 0.,, II/a.,,(O.,,)) 2/x 1) dP(l{X, O.,,)l <y Ir T.*,- ~ On,, H) 
n "  ~ o~3 0 

09 

tt 2 < lim n ~ ((y/((1 + e) w~.,,(o,,,))) /x 1) dP([ (X ,  0,,,)1 _-< y IIT,*,- ~ 0,,, II) 
n "  ~ oo 0 

= l i m  lim n" + ((y/((l+~)w~.,,(o.,,)))NA1)dP(l<X,O.,,)l<yllZ~*,-~O.,,ll) 
6 1 , 0  n "  ~ o o  L 0 

< lira lira sup [(1 + e) w~.,,(o.,,)] - z n"E(((X, 0.,,)/]17",*,- 1 0,,, II)~) 2 
6 , ~ 0  n " ~  oo 

+ S ((y/((1 + e) w~.)) 2/x 1) d#~.(y) 
- - c o  

by Billingsley ((1968) Theorem 5.5), (3.7), and the fact that w~.=t=0 

= [ ( l + e ) w ~ . ] - 2 ~ , ( 1 ,  1)+ ] ((y/((l+e)w~.))2A1)d#~.(y) by (3.8) 
- -o '3  

< 1 by the definition of w~. (3.5). 

This is impossible, which verifies that  U ~ has only finitely many points. A 
similar argument  works for U~. Consequently,  we may conclude that  

lim [a.,, (0.. ,)/(we.,,  <o.,,) I[ T.*, - 1 0. , ,  II) - I I = 0. 

By the subsequence principle, the lemma follows. [ ]  

(3.9) Proposition. Let  X ~ G D O A ( 7 )  with nonsingular  norming linear oper- 
ators {T., n >  1}. Let  7.1 . . . .  ,7.a denote  a basis of unit vectors for which 

T, * -1  ? , j =  H z * - I  7hill ej. 

If linear operators  R,  are defined by R * -  1 7,j = (a,(Tnj)/Wej) ej, then 

�9 lim II T.R2 1 - I l l  - -0 .  
n ~ c o  

Consequently,  

l i m  ~ ( R , ( S ,  - v.)) = lira ~c,~ R2 1 R,(Sn - vn)) = lim ~C~ (S, - v,)) = 7. 

Proof. By L e m m a  3.6 

IIT.* - 1 7hill ~ a,~(7,q)/wr a.(7,,j)/wej = lie* - i ~nj II- 
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To complete the proof, apply the following general lemma with An = R* -  ~ and 
B n = T  * - 1  

(3.10) Lemma. Let An and B. be invertible linear operators on IRe. Let 
ea, ..., ed be the standard orthonormal basis and let 7nl, ..., 7nd be d linearly 
independent unit vectors. Suppose for each 1 < j < d  and n >  1 that 

(a) An ynj/llA. ?.ill-- e~ = B, ynj[[B. 7.~][ 

and 

(b) lim [IAn ~.jlI/IIB. ~njll : 1. 
? 1 ~ o o  

Then 

and 

lim IIA, B ;  ~ - I I I=O,  
n ~ c o  

limllB* ~A*-I I I=0 .  
1 1 ~ o o  

Proof  Assume (a) and (b). 

lim [IA, B2 ~ - I l l  = lim 

_< lim 
n--* oo 

= lim 
n ~ 0 o  

=0  

sup I I (A.B;1-I )O[I  
O e S  a - l 

d 

Z I[(AnB2 a - I )  eft 
j=l 

d 

I IIAn~njlI/IlBnT,/I- II 
j=l 
by (b). 

by (a) 

The final assertion follows from the facts that ql(A,B21--I)*!I=HA, B21--III  
and that I is self-adjoint so (A, By i _ I)* = B* 1 A* - I. [] 

The fact that {R,, n>  1} is a suitable sequence of norming linear operators 
suggests a characterization theorem which improves upon Proposition 3.2(D) 
by specifying the tail, variance and centering behavior of X through normaliza- 
tion via the quantities a,(O) and Wo. To state the theorem, we first introduce 
the following terminology. 

(3.11) Definition. Let mn, l.(0)(0):=nE(X, O) I(l<x,o>l<=a.(o)/~z~(o)) and h.,z.(0)(0): 
=mn, z.(o)(O)-al(l~l.(o),bl.(o))an(O)/w~.(o) with a l ( ' , ' )  defined in Definition 3.1. 
The truncated means m.,t.(0) are said to be vector-like with respect to ortho- 
normal bases {~.1 . . . .  , (.d} if 

(3.12) lim sup h., l.(0)(0)- ~ h., t.(~.j)(~.j)(~, ~.j) /a.(O)=O. 
n ~ m  O ~ S  a -  t j =  l 

(3.13) Theorem. Let X1, X2, ... be i.i.d, random vectors on IR e with S, ,=X1 
+ . . . + X , .  Assume E ( X , O ) = O  if E I ( X , O ) I < c ~ .  Let 7~[a ,q~ ,#]  be a full 
operator-stable law on IRa. There exist affine transformations (T,, v,) such that 
s iff there exist bases of unit vectors {Tnj, J =  1 . . . .  , d},>_l such 
that with . - 1  Rn 7,,j '=  (a,(?nj)/We) ej and g,(0): = R* - 10/I[R* - 10 II. 
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(I) X satisfies a uniform (a,(O)/wg~(o), gn(0))-tail condition; 
(II) lim sup ]a,(O)/(Wg,(O)Iri*- 10]p)- 1[=0; 

n ~ o o  O~S d - 1  

and 
(III) the truncated means 

m.(O), = m.. ~o~(0) 

are vector-like with respect to the orthonormal basis {(,1 . . . . .  (,d} determined 
by the polar decomposition of R*-1 in the form 

d 
R * - l x =  ~, (x, ( , j ) I IR*-I  (,jll 0,;, 

j = i  

where {•.1 . . . .  ,0,d} is also an ONB. 

Note. This theorem remains valid if n is restricted to an infinite subset of the 
positive integers. 

Proof (Necessity). Assume X e G D O A ( 7  ). By Proposition 3.9, there exists a 
basis {7,1 . . . . .  7,e} and R, defined through it (as above) such that oW(R,(S, 
-v,))---, 7. Replacing T, by R, in Proposition 3.2 and Lemma 3.6 yields (I) and 
(II) respectively. Moreover, Proposition 3.2(D) says that 

(3.14) lim sup ](m,(O)-(v,, O))/(a,(O)/wg.(O))-al(#g.(o), bg.(o))l=O. 
n ~ 05 O~S d - 1 

Let h,(O)'.=h,, gn(0)(0). Since wz,(o ) is bounded away from 0 and 0% the linearity 
of (v,, -) permits the equivalence of (3.14) and (III). To see this note that (3.14) 
can be expressed as 

d d 
h,(0)= Z h,((,j)(~.j, 0 )+~(a , (0 ) )+  Z ((,J, 0)~(a,((, j))  

j= l  j= l  

d 
uniformly in 0. Now since JIR*- 1 0]12= ~ (0, (,j)2 HR*- 1 (njH2, by Cauchy- 
Schwarz we have j= i 

j~--1 ( ~ n j ' O )  p ( a n ( ( n J ) ) : z ~  (~ j=~l  ((nj'O)2a2(~nJ)) 
=~(IIR*-ION) 
= ~(a,(0)). 

Hence, (III) holds if (3.14) holds (and conversely, by trivial argument). Thus the 
proof of necessity is complete. [] 

Before giving the proof of sufficiency we isolate a lemma which allows the 
uniform tail condition to be taken uniformly over y in a compact subset of 
(0, oo) as well as uniformly in 0. 

(3.15) Lemma. If condition (I) holds, then for any e>0,  

(3.16) lim sup sup [nP((X, O)~yan(O)/wg,(o))-#g,(O)([y, oo))l=0. 
n ~ o o  e < y ~ l / e  OeS d ~ l  
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Proof Take 0 < e <  1. Let y.~[e, l/e] and O.eS a-1 be arbitrary sequences. Take 
any (n')c(n). By compactness there exist 0* and g* in S a-~, y*e[e, 1/el, and a 
snbsequence (n")c(n') such that 0 . , ,~0" ,  g.,.(0.,,)~g* and y.,,--+y*. Let 
0 < 6 < e .  Then 

lim n" P((  X,  0.,,) > y.,, a.,,(O.-)/wg.,,(o.,,)) 
n , ,  ~ o o  

< lira n" P ( ( X ,  0.,,) > (y* - 6) a.,,(O.,,)/wg..(o.,,)) 
t~ '  " ~ ec3 

= #g.([y* - 6, oo)) by (I). 
Similarly, 

lim n" P ( ( X ,  0.,,) > y.,, a.,,(O.,,)/wg.,,~o.,,)) > #g.([-y* + 6, oo)). 
.,,~oo 

Letting 6 ~ 0  and using the facts that t/--*#, is continuous and each #, is a 
continuous o--finite measure (Lemma A.4 in the Appendix) yields the result. [] 

Proof (Sufficiency). Assume the existence of bases {y.j, j = l ,  ..., d} of unit 
vectors which satisfy (I)-(III), We show that 2 ' ( R . ( S . - v . ) ) ~  7 by verifying (D) 
of Proposition 3.2 with T . = R . .  (I) and (II) imply the required tail condition 
while (III), which is equivalent to (3.14), and (II) imply the required centering 
condition. It only remains to verify that X satisfies the uniform 
([[ R* - 1 0 ][, ~g.(0))-variance condition. 

Let 
A. o ~ : = n E ( X ,  O)2Io<x, 2 2 

, , 0>l_-<aa.(0)/wg.(0))/(a. (O)lwg.(o)) 
B., o, a: = n E ( ( X ,  0) 2 A a 2 (0)) I(l<x ' 0>1_-> a..(o)/wg.(o))/( a2 (O)/wg2(O)) 

C., o. o: = E ( X,  O) I(l<x, o>1<= aa.(o)/wg.~o))/(a.(O)/wg.(O)) 

D., 0" = S (y2 A wg2(o)) d#g.(o)(y). 
- - 0 3  

The quantity 6o:= inf w, is strictly positive. Thus, for 6<6o/X 1, the de- 
r/eS a 1 

finitions of wg~(o) , Jo and a~(O) imply that 

~ g . ( 0 ) ( 1  ' 2 1) = wg.(o) - ~ (y2 2 /x wg.(o)) d#g.(o)(y) 
_ 2 n E ( ( X ,  0 )  2 A a2.(O)) 
- -  Wg~(O)  a~ (0) ~ (y2 /x wg2(o)) d #g.(o)(y) 

=Bn, o, o+An, o, a-Dn, o. 

Denote by Ou(1) a quantity which goes to 0 uniformly in OeS d 1. Utilizing 
Lemma 3.15, 

B.. 0, a = n6 2 P(I (X, 0)1> 6 a.(O)/wg.(o)) 
rl an(O) 

§ 2 2 ~ 2 y P ( l ( S , O > l > y ) d y  
a. (O)/wg~ a~.<o)/~g.(o) 

Wg~(O) 

=o.(1)+62 #g.~O)([6, ~ ) ) §  ~ 2 y P ( l ( X ,  O)]> yan(O)/wg.~o))dy 
8 

Wg~(O) 

= o~,(1) + 62#g.(O)([6, ~)) + 2 ~ Y#g.(O)([Y, ~))  dy 
6 

2 = o,,(1) + ~ (y2/x Wg,,(o)) I(ly I > a) d#g.~o)(Y). 
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Consequently, 

Therefore 

IB. ,o,~_D. 0[<lo.(1)l+~ 2 , y I(lyl<~) d#g.(o)(y) 

=< ]o.(1)1 + j" (llxll ~ A ,~)  d~(x). 

(3.17) lim lira sup IA.,o,~-a~g.(o)(1, 1)[<lim S(]lxJIZA(5=)d~(x)=O 
5 . [ 0  n ~ o ~  O~S a - ~  6 5 0  IRa 

by the dominated convergence theorem and the fact that # is a L6vy measure. 
This is precisely the uniform (]]R*- 1 0N, ~bg.(0))-variance condition of Propo- 

sition 3.2(D) since either E (X, 0) -- 0 or E l ( X ,  0)[2 = ~ so n C2., o, o = o.(A., o, ~) 
(see footnote 1). Therefore, all the hypotheses of Proposition 3.2(D) are satis- 
fied, so s  v.))--* 7. [] 

(3.18) Remark (on construction of the bases {7.1 . . . .  ,7.a})- The above proof 
shows that {R., n > l }  is a suitable sequence of norming operators. The bases 
on which R. depends can be constructed from 1-dimensional information as 
follows: Let N denote the collection of all bases 2={21 . . . .  ,2a} for p d. For 
each basis 2 e ~  define 

R *  - 1 ~2  ~ - e , , , a  O/IIR*,.~IOll . .,~ t j j=(a.(2j)/wej)ej and g. ,x(O)-  . - 1  
Let 

e.(2, v)= sup la.(O)/(Wg.,~(o)I[R*2 1 0N)- 1[ 
OeS  a - 1 

+ ~ sup {[nP((X,  O)>ya.(O)/wg.,4(o)) 
0 0 ~ S a -  1 

-#g.,4(o)([Y, oo))] A 1} e - ' d y  

+ sup [(m., g.,~(0)(0)- (v, O))/(a.(O)/wg.,~(o)) 
O~S a -  1 

- -  a l  ( # g . ,  4(0) ,  bg., 4(o))l- 

Then we claim that XeGDOA(?)  iff 

(IV) lira inf inf e.(2, v) = 0, 
n ~ o o  3 . ~  v ~  n 

in which case a suitable basis is obtained by choosing any 7" = {7"1, -.., ~*a} eN 
and v * e N  a such that e.(7*, v*)~0. 

Indeed, (I)-(III) and (3.14) clearly imply (IV). Moreover, if (IV) is satisfied, 
then (II) and (3.14), hence (III) are immediate. For (I), rewrite the integral in 
the definition of e.(2, v) as 

oo 

h.(y) e-Y dy. 
0 

Condition (IV) says that h,(y)---,O in measure (relative to e-Ydy).  If (n') is any 
subsequence of (n) then there exists a subsubsequence (n")c(n') with h,,,(y)---, 0 
a.e. (relative to e-Ydy),  and so a.e. with respect to Lebesgue measure. Since in 
actuality it suffices to verify condition (I) for all y in a dense subset of IR +, we 
have convergence to 7 along this subsequence. By the subsequence principle 
the entire sequence converges. 
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(3.20) 

and 

(3.19) Remark (on stable limits). In the case of a stable non-normal limit, 
condition (I) can be replaced by two more familiar looking conditions. Recall 
that an infinitely divisible law ~ is stable of index ~, 0<c~<2, iff all its 
projections are stable of index c~. Thus, 7~ I-a, 0, #] iff 70~ [ao, O, #o], ~/O~S d- 1. 
The form of #0 is 

#o([Y, o o ) ) = ~  c~(O)y -~ for y > 0  
Z 

Let 

2 - - 0 ~  
#o((-~, -y] )=-5--  e ~ ( - O ) y  -~ for y>0. 

(3.21) c(O)=c~(O)+c~(-  o). 

Then c(O) is related to wo as follows: 

w 2 = ~(y2 A w 2) dUo(Y ) 

Since Wo and c(O) are positive, 

wo 

= S 2y#o(X: [x]>y) dy 
0 

wo 

= ( Z - a )  c(0) I y ' - ~ d y  
0 

= c(O) w~- ~. 

(3.22) Wo = cl/~(0). 

In the presence of (II), (I) can be replaced by 

tEP(l(X,O)[>t)  2--~ = 
(I') lim sup ~ - 7 ~  ~-}5 ~ )  2 O, 

t ~  O~S a - 1  

(I") lim sup P ( ( X ,  O)>ya.(O)) c~(g.(O)) =0. 
, ~  o~sd-i P(](X, O}[> ya,(O)) c(g,(0)) 

(For justification, see below.) 
If 7 is symmetric stable the conditions (I') and (II') obviously can be 

replaced by the single condition 

t 2 p ( ( x , o )  >t) 2Z4~ 
(I'") lim sup ~ ~-}5 ~ = 0. 

t ~  O~S d - t  

Moreover, h,(O) in (III') is asymptotic to rh,(O)=nE(X, O) I(l(x,o>lNa,,(O)). (For 7 
spherically symmetric, this was shown in Hahn-Klass (1980b).) 

If 7 is the standard multivariate normal, condition (I') is necessary and 
sufficient for XeGDOA(7  ) (cf. Hahn-Klass (1980a)). 

For any spherically symmetric limit ~, (7 is necessarily stable), {~,1, ..., V,d} 
may be chosen to be the minimal PONB constructed in (1.3). In particular, this 
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means that R, assumes the form given in (1.4). Thus, for a spherically sym- 
metric limit law, the same linear operators constructed to solve Problem 1 in 
Sect. 2 actually give convergence (c.f. Hahn-Klass (1980b), (1981a)). 

Justification that (I) can be replaced by (I') and (I") if 7 = s is stable of 
index ~, 0 < ~ < 2 .  

First assume (I)-(III). Then s and consequently, 
~(R,S~,)~Ts--Lz(Z s) where Z s = Z - Z  ' with Z and Z' i.i.d. Since Z s is sym- 
metric stable, the form of the Levy measure implies that 5Y((ZS, O)) 
= 5g(cl/~(O)(Z, el)/cl/~(ex)). Thus, (B) of Proposition 3.2 and properties of the 
Prohorov distance (Fact 4.4 of Hahn-Klass (1981a)) imply that 

(3.23) lim sup p(LZ(<S s, O>/(cX/~(g,(O))IIR* 1 0[I)), s176 el)/cl/~(el)))=O. 
n ~ o o  O ~ S  d 1 

As in Hahn-Klass ((1980b), pp. 64-70), this leads to 

t2e(<x ,o>>t) 
lim sup E((X s,O) 2At 2) =0. 
t ~  0o O s S  d -  t 

Condition (I') now follows immediately from the observation that uniformly in 
0 

P((X s, O) >t )~P((X,  O) >t)+ P ( ( - X ,  O) >t)=P(I(X, 0)l > t). 

To obtain condition (I"), apply condition (I) with y replaced by ycl/~(g,(O)) 
(which is legitimate by Lemma 3.15) to obtain 

(3.24) ,~lim o~s~SUp ~ nP((X, O)>ya,(O))-y -~ 2-cr c~(g,(O))c(g,(O)) =0. 

Now replacing (X, 0) by I(X, 0)[ in (3.24) replaces c1(.) by c(.). Since c(O) is 
bounded away from 0 and 0% (I') together with (3.24) imply (I"). 

For the converse, assume (I') and (I"). On page 72 of Hahn-Klass (1980b), it 
is shown that (I') implies 

lira sup nP([(X, 0)[ 2-cr Y-~ =0. 
, ~  o~s,-~ > y a , ( O ) ) - ~ -  

Lemma 3.15 together with (I") yield (I) as desired. [] 

(3.25) Remark. The independence of conditions (I)~III) is governed by the 
limit law 7. If ~ is the standard multivariate normal, condition (I) implies both 
(II) and (III) (cf. Hahn-Klass (1980a)). If 7 is spherically symmetric stable of 
index c~:t: 1, (I) and (II) imply (III). This implication fails when cr 1 (Theorem 
4.6 of Hahn-Hahn-Klass (1983)). More generally, any X satisfying (I) and (II) 
will automatically satisfy (III) if 7 has the property P T P ( J )  defined in Hahn- 
Hahn-Klass (1983). 

(3.26) Definition. y has PTP(J) if whenever there exists an infinitely divisible 
law t /and a function r: S e- ~ ~ ]R with 

7o = rio * (~(o) 
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then there also exists a vector b e n  e with 

y=~/*6b. 

(3.27) Corollary. Any random vector on lRa satisfying (I) and (II) also satisfies 
(III) if 7 has P T P ( J ) .  

Proof Assume first that 7~[a ,  r #] has PTP(~r Let X satisfy (I) and (II). 
Now 

(3.28) lim sup InP((R,X, O>>y)-#o([y, oo))[ 
~ o 0  OES d 1 

= lim sup InP((X, O> >y [IR*- 1 0ll)-#g,(o)([y, oo))1 
n ~  O e S  d 1 

=0  by (I). 

Conditions (I) and (II) imply (3.17), so 

(3.29) lim lim sup lnVar(R,X,O) I(l<R,X,o>l<=~)-cb(O,O)l 
~ 0  n ~ o c  O e S  a - a  

= lim lim sup ]n Var ((X, 0> I(I (x, O>l_< o II~*-~ o II ))/II R* - 1 0 [1 
6 4 0  n ~ c ~  O ~ S  a i 

-~g,(O)(1, 1)1 

=0  by (3.17) and (II). 

Thus conditions (I),(0) and (II)e(0) of Hahn-Hahn-Klass (1983) hold uniformly 
in 0. Hence, by Theorem 2.12 of that paper, the fact that 7 has PTP(J) implies 
the existence of centering vectors v,~lR a such that 5f(R,(S,-v,)) converges 
weakly to 7- Consequently, Theorem 3.13(I)-(III) must hold, from which we 
deduce the conclusion that (I) and (II) imply (III). [] 

Theorem 3.5 and Proposition 3.6 of Hahn-Hahn-Klass (1983) can be used 
to determine whether 7 has PTP(J). 

w 4. Examples 

Let Z be any full non-symmetric stable law on IRa. We will construct in 
Example 4.1 an X e G D O A ( Z )  with the property that (X,O> is not in the 
DOA of any law for any OeS d-1. This example will then be modified to 
establish two additional points. First, there exist Z and X e G D O A ( Z )  such 
that the PB need not be orthogonal no matter which affine modification of Z 
attracts the normalized partial sums. Second, if s converges weakly, 
where S~ is the symmetrization of S,, then there need not exist b,eN a such that 
s converges weakly (see Example 4.14). Consequently, a proof of 
Theorem 3.13 based first on symmetric random vectors cannot easily be de- 
symmetrized. 

The construction of our first example is based on the observation that for 
any non-symmetric stable law Z there exist two directions 01 and 02 with 
genuinely different Levy measures. In fact, 01 and 02 can be chosen so that 
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(Z , 01 )  is not symmetric and (Z,  02) is symmetric. Indeed, 0, exists since Z is 
not symmetric. For  notational simplicity assume 0~ =e~. Then if # is the Levy 
measure for Z, #e~([-l, oO))=[=#_e~([1, O0)). Moreover, the function 

f(Y) = #  . . . . .  y + e z s i n y ( [ - 1 ,  O 0 ) ) - - # _ e ~ e o s y _ e z s i n y ( [ 1  , 0(3)) 

is continuous with f ( 0 ) f ( 7 0 < 0 .  Hence, there exists 0 < y * < r c  such that f(y*) 
=0. Let 02=e~ cos y* + e z sin y*. 

The idea is to construct an X-distribution all of whose marginals are in the 
domain of partial attraction of  both (Z,  0~} and (Z,  02}. The fact that X must 
also be in the G D O A  of Z suggests constructing X directly from Z using 
various operators and truncations. 

(4.1) Example. Let Z be a stable, non-symmetric law of index ~, 0 < a < 2 .  Let 
01 and 02 be two unit vectors with (Z,  01) non-symmetric and (Z,02} sym- 
metric. Choose sequences of integers 0 = Co < Cl < c2 < ... and unitary operators 
Aj with the following three properties: 

(i) lim ilA)-I A;_~ - Itl + [IAf l Aj+ I - I I I  = 0  
j ~ o v  

(ii) lim cj+l/cj= 
j ~ o o  

(iii) there exists a subsequence Jk such that Aj~O~ and Aj~02 are both dense 
in S a-1. 

Then 

(4.2) 
3 ' 3 j = 0  

is in the G D O A  of Z while for each OeS a-~, (X, O) is in the domain of partial 
attraction (DOPA) of (Z,  0~) and (Z,  02). Hence (X,  O) is in no DOA. 

Proof Let X1,X2, ... be i.i.d. s176 and S,=X1 + . . .+X, .  For c~<n<cj+~ let 

Tn=n-t /~Afl  and v,=nEXI(llZll<=,,/~ ). 

We first show that there exists v e R  a such that 

(4.3) L#( T, (S , -  v,))~ L,e(Z + v). 

Since there exists v~R a for which 

( n ) 
(4.4) 5s n -1/~ ~ (Zi--EZI(Hzll <,1/~)) ~ ( Z + v ) ,  

\ i = 1  

it suffices to compare T.XI and n-1/~Zi. 
To avoid double subscripts think of n~[cj, cj+l). If V~ is any sequence of 

real numbers increasing to o% then lim nP(][ Z i[ > (n ~i) 1/~) = 0. Hence 
j ~ o v  

(4.5) n - 1 / ~  X i ----r Z i ~ 0  and T,,_, 0 /...a 
i = 1  i = 1  
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where for Yi equal  to Zi or  Xi let Y['-YJOlz~II>(,~,)I/~). 
thus restrict our  compar i son  to T,X~ and n-l isZt .  

To do this there are four relevant  sets to consider:  

B i =  {/IZdl =< c)21} 

Di-.= f ~l/a < C}/~I ~ j - ,  < I I / i L I  _ ~ . 

Fi = {c)/~ < II/il[ - ~j+ls 

- -  / t ' j + l  ~ "  II/~ll <(n~j)  ~/~ v ~ j+~ .  

(4.6) Restricting Zi to Fi: T, XiI(z,~v,)=n-1/~ZiI(z,~Fo. 
To treat  the remaining sets, define 

R = sup n 1 - 2/~E II Nil 2I(, z ,~ ~,,~)+ riP( II Z II > n 1/~) < 09. 
n 

(4.7) Restricting Z~ to B~: 

n 2 

E T, ~ (XiI(z,~BO -EXi I ( z ,~o)  <-_ nE II T.XiI(z,~B~)[I 2 
i =1 

= n 1 - Z/~E II ZlI(z~B,)ll 2 

<= C) - 2/~ E ]l Z l I(Z,sB,)[I 2 

< R ( c / h _ l ) l - 2 / ~ O  as n--,oo 

Similarly, by (ii). 

E n -a/~ ~ -EZiI(z~BO) 2-*0. (ZiI (z ieBl)  
i = l  

(4.8) Restr ict ing Zi to Di: 

E EZiI(z,~D~))) 2 ~,  ( Tn(XiI (z ieDd - E X I I ( z , e D d  ) --  n-  l /a(ZiI (z leDd -- 
i = 1  

= nl-Z/c~E ]I(Aj-IAi_ 1 - I ) ( Z a I ( z  ~DI)--EZ~I(zl~9,))]I z 
1 - -  2/~r - -1  < c  s IIA s Aj-l-IllZEl[ZlI(z.i~D1)[[ 2 

NR[[A71Aj_l - I[[2-- ,O by (i). 

At  this point  we take ?0~oe  so slowly that  

(4.9) 71/~ II A l i A  j_ l  - III --,0, 

(4.10) Restricting Zi to Gi: 

n 

E i=~=1 (T, XiI(z,~oo-n-1/~'Zilg~,)) < n I-1/~'E 11(A21Aj+1 -I)ZlI(z,~Goll 

< IIA)-XAj+I - I l l  nT)/=P(llZll >n 1/~) 

<= RT)/~ II A7 a As+ 1 - I [I --,0 

by (4.9). 

501 

Let Y/=  Y~- Y/'. We 
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Combining (4.5)-(4.8) and (4.10) shows that 

( n t) lim 5~(T~(S,-v,))= lim 5~ n -1/~ ~ (Z~- EZ~I(llz, ll <=,~/=) = s  
n~oO n~oo i = 1  

by (4.4), which establishes (4.3). Therefore, X is indeed in the G D O A  of Z. 
It remains to show that for any fixed O~S a-l, (X,  0 ) e D O P A  of both 

(Z ,  01) and (Z,  02). Let z denote an arbitrary element of S a-1. Property (iii) 
ensures the existence of a sequence of integers f(/)--+oo such that 

A f ( j ) ' c ' ~ O .  

Take any integer nj = nj(z) near ]/c:(j)c:(j)+l and note that for any fixed y >0  

lim [P(<X, 0) > ynJ/~)/P(<Afo)Z, O) > a/~ ynj ) -  1[=0. 
j ~ o e  

Therefore, 

(4.11) 

Similarly, 

lim njP(( X, O) > yn 1/~) = lira njP(( ATo)Z, O) > yn)/~) 
j ~  oo j ~  co 

= lim njP((Z,  A~(j)O) > yn 1/~) 
j ~  oo 

= lim nj(yn}/~)'=#A,,:)o([1, Go)) 
j ~ o o  

=y-~#~([1, oo)). 

lim njP(( X, O) < - yn)/~) = y- '#_~([1;  oo)), 
j + o o  

Moreover, 

(4.12) 1 -- 2 /a  2 lim l imnj E(X ,O)  I(l<x,o>t<=~,~/~ ) 
6 1 0  j ~ o o  

1 -  <l im lim sup nj 2/~g~z,y)ZI(l(z,~,)l<_an)/~) 
6,~0 j + o o  y~S d - 1  

=0. 

Consequently, (4.11) and (4.12) for z=01 and 0 2  imply that (X ,O)  is indeed in 
the D O P A  of both (Z ,01 )  and (Z,  02). Hence ( X , 0 )  is not in the DOA of 
any law. [] 

(4.13) Example. Example 4.1 can be broadened to include Aj which are not all 
unitary. For  example, replace (ii) by 

(ii') lim (Cj_I/Cj) 2/a-1 liAr 11] 2 max [JAil 12 =0  
j ~ o o  l <=i<j 

and assume that Ajk in (iii) have the property that { ]A *-t~ ~j~ } is uniformly 
bounded. Assume Z has the property that among all affine transformations 
only the identity leaves the law of Z invariant. It then follows that the affine 
transformations (T,, v,) used in Example 4.1 are unique up to multiplication by 
6 ,~ I .  Hence, the PB is not orthogonal whenever 

liminfl<(3,A71)*ei,(fi,A)-l)*ek>[>O for some i=#k and all 6,--+1, 
n~o9 
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or equivalently, if for any weak subsequential limit A-1 of A) -1, 

I (A*- l e i ,A*- l ek ) l>O for some i#:k. 

If there is more than one such limit A -1 then X does not have a PONB when 
its partial sums are normalized for convergence to any affine modification of 
Z. [] 

(4.14) Example. Let F be a finite measure on S d-1 satisfying the following 
three properties: 

(i) F is not symmetric, i.e. / :4 :F  where F ( A ) ~ F ( - A )  for any Borel set A 
in S d-1 ; 

(ii) F + / :  is uniformly distributed; 

(iii) no element of the orthogonal group leaves F invariant. 

Construct a stable random vector Z with Levy measure given in polar form 
by 

#(dx)=F(du) • dr/r 1+~, r= Ilxll, u=x/llxll~S d-a. 

Z is a non-symmetric full stable random vector of index ~ with only the 
identity affine transformation leaving the law of Z invariant. Moreover, if Z, Z' 
are i.i.d., then Z*:= Z - Z '  is spherically symmetric stable of index ~. 

Construct X ~ G D O A ( Z )  according to Example 4.13. Since X * eG D O A (Z  ~) 
and Z * is spherically symmetric, there exist norming transformations A, con- 
structed using the minimal PONB's given in (1.3) such that 

A ~ , X -~Lf(ZS). 
i=1 

However, the conclusion of Example 4.13 is that if 

A ~ T, i Xi --*A~ 

then T~ is not constructable from the minimal PONB. Consequently, T, and A, 
do not differ merely by a translational (centering) component. [] 

Appendix 

(A.1) Lemma. Let I11 . . . . .  Y,, be i.i.d, symmetric random variables. Let Sn= Y1 
+ ... + Y~. Define ay = sup {a: yE(y2/x a 2) > aZ}. Then for any y > 1 

(A.2) P(I S, I > Y a,) < nE(( YZ/yZ a~) A 1) 

(A.3) nE((YZ/(ya,)2) A 1) < y -1 + nP(I I11[> ]f ;a , ) .  

Proof We prove (A.3) first. Note that 

(Y1/ya,) z A 1 <__ y-a((U1/a,)2 A 1)+I(I Yll >] /ya , ) .  
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Multiplying by n, taking expectations, and using the definition of an gives (A.3). 

We now verify (A.2). Fix n and let Y/= YjI(IrA __<y,~ ) and Yff= Yfl(Irjl>y~). Then 

P([S,[>ya,)<=P >ya, or { Y/' + 0} 
j j = l  

<=EQi=IY//Yan)2+np([Y[>Yan) 

= nE YzI(I rl <-_yan)/Y 2 a2, + nP(l Y] > yah) 
=nE{(Y/ya,) 2/x 1}. [] 

(A.4) Lemma. Let t/ be an operator-stable law on R~ with L6vy measure #. 
For each O~S d-l, #o is a continuous a-finite measure on N. 

Proof Let t / ~ [ a , ~ , # ]  be operator-stable and let B be an exponent of t/. 
Sharpe (1969) noticed that # is a mixture of L6vy measures concentrated on 
single orbits of t B. We utilize the following explicit representation, given by 
Hudson-Mason ((1981), Theorem 2) (also see Jurek (1978)) 

(A.5) #(A) = S S IA(tBu) t-2 dt dr(u) 
L 0 

where v is a finite Borel measure on S d-1 and L={ueSd-l:  for all t > l ,  
[ t B u [ >  I} .  

The continuity of #0 requires showing #o({a})=O for each aeR .  By defini- 
tion #0({0})=0. Let ae~,,\{0}. By (A.5), 

#0({a}) = S ~ l~x~d: (x,0> =~ - 2 dtdv(u). 
L 0 

The inner integral will be 0 if each K,,o-{t:  (tnu, O)=a} is at most countable. 
We appeal to the analyticity off,,o(Z)-(zBu, O) on f2=~2\ ( -o%0] .  Just notice 
that 

(zBu, O)=(eBlnzu, O)=j Bku(lnz) g 
k k! ,e~ (O, ej) 

(lnz) k 
= ~ ~', (Bku, e , )~Sf- . (O,  ej). 

j = l  k=0 

Since I(Bku, ej)l<= IIBll k, the above series converges uniformly for all z in any 
compact subset of f2. Thus, f,,o(Z) is analytic by the Weierstrass M-test. Now if 
K,,o contains uncountably many t e ~  +, then f,,o(z)=a on a set of points 
containing an accumulation point in ~, in which case these two analytic 
functions must agree on all of ~2, i.e. f,,o(z)=a. However, f~,o(Z) is not identi- 
cally some non-zero constant, for suppose the contrary. Differentiating with 



Affine Normability of Partial Sums of I.I.D. Random Vectors 505 

respect to t k-times, we find by induct ion that 

(Bktnu, O)--O for k=>l. 

So putt ing t = l ,  (Bku,  O)=O for k > l .  Let q(x) be the minimal monic  poly- 
nomial  for B. So there exists m<d and constants Co, Cl, ..., cm_l, Cm with cm= 1 
such that  

C m - 1  q(x):CmXm'-I - m _ i  X, "Jr . . . ' -~ -ClX-] -C O. 

Since Z is full, B is invertible and hence Co + 0. Since q(B)= 0, 

0 = (q(B)u, O)/co = ~ cj(BJu, O)/co = (u, 0)  = fu,0(1) = a, 
j=0  

a contradiction.  Hence, Ku, o contains at most  countably  many  t e n  +, which in 
turn means that  #0({a})=0. [ ]  
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