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Introduction 

The theory of capacities initiated by Choquet [6] has well-known applications 
in potential and measure theory, as well as in probability theory including 
stochastic processes (cf. Dellacherie [9, 10]) and statistics (cf. Huber's pro- 
grammatic article [14]). 

A central result going back to Choquet [6] and Strassen [20] is the fact 
that strongly subadditive capacities can be represented as upper envelopes of 
measures (cf. Dellacherie [8], Anger [2-4], Huber and Strassen [15], Topsoe 
[24], Adamski [1], and Hummitzsch [16]). However, the upper envelope of a 
set of measures need not be strongly subadditive in general, but obviously is o-- 
subadditive. On the other hand, it follows from an example of Davies and 
Rogers [7] that there exists a o--subadditive capacity which dominates no 
measure other than zero. 

It therefore seems worthwhile to characterize capacities which are upper 
envelopes of measures by a subadditivity property, thus solving a problem 
posed by Choquet [6] and Fuglede [12]. The notion of multiple covers 
introduced in [17] by the second author led to the following conjecture proved 
as Theorem 2: Upper envelopes of weakly compact sets of measures are exactly 
those capacities c which are infinitely subadditive, i.e. for every finite sequence 
(K~) of sets in the domain of c covering a set Kn times the inequality 
nc(K)<~c(Ki) holds (Definition1). The proof is based on a Hahn-Banach 
argument as carried out by the first author in [4], using in addition a measure 
extension theorem due to Topsoe [23]. 

After a preliminary first section the results are presented in Sect. 2 for an 
abstract setting in order to yield a representation of infinitely subadditive 
capacities as upper envelopes of Radon measures on locally compact spaces, of 
Borel measures on regular topological spaces, and of Baire measures on to- 
pological spaces. 

In Sect. 3 we investigate conditions for the approximation of capacities by 
probability measures and show that in contrast to the strongly subadditive case 
the subadditivity assumption has to be strengthened (Theorem 3). 
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Section 4 is devoted to the representation of infinitely subadditive capacities 
defined on a o--algebra. Again, the situation differs from the strongly sub- 
additive case: The outer capacity need no longer be a Choquet capacity. This 
can be used for a counterexample to a conjecture of Huber [14] on the 
capacitability of Borel sets with respect to upper envelopes of weakly compact 
sets of measures. Finally, capacitability arguments lead to the representation of 
infinitely subadditive capacities on the Borel subsets of a Souslin space as 
upper envelopes of regular Borel measures (corollary of Theorem 4). 

1. Basic Assumptions and Standard Examples 

Let R be a paving on a set X, i.e. a subset of the power set ~3(X). 

Definition 1. A family (Ki)i~ I of subsets of X is said to cover K ~ X n times, if K 
c U { ~  Kj: J c I ,  c a r d J = n } ,  i.e. n lK<  ~ lr~ for the corresponding indicator 

j~J  ieI 
functions. 

A set function c: ~ - ~ R +  is called subadditive of order nMN if for every 
K ~  and every finite family of sets K~ .. . .  , K ~ e ~  which covers K n times, the 

inequality n c(K)G ~ c(Ki) holds, c is called subadditive of order infinity (ab- 
i = 1  

breviated: ~-subadditive) if c is subadditive of order n for all n~N. 

Remark 1. If the paving ~ is stable for finite unions and intersections, then 
every increasing set function c: ~-~1R+ which is strongly subadditive (i.e. 
C(KlWK2)+c(Klc~K2)~(K~)+c(K2) for K 1 , K 2 e ~  ) is ~-subadditive: In 
fact (cf. [24], w 8, Lemma 1 (iii)), if K ~ / i s  covered by K 1 . . . . .  K ~ I  n times and 
if 

then 
j e J  

Kj: J ~ { 1 ,  ...,m}, ca rdJ= i} ,  

1/~<_- ~ 1K~= ~ 1K~ 
i = 1  i = 1  

and hence K c K', c ... c K'I, which yields 

i i i 
i = 1  i = 1  i = 1  

The last inequality follows by induction from the strong subadditivity of ~. 
Furthermore, every oo-subadditive set function is subadditive (i.e. subadditive 
of order 1). However, the converse of these statements is false, as we will show 
in the following 

Example1. Let X={1 ,2 ,3}  and ~ = ~ ( X ) .  For  0_<c~_<l, define c~ on !;t by %(q~) 
=0,  c~(A)=l/2 for every one-point set A, c~(A)=c~ for every two-point set A, 
and %(X)= 1. Then it is easy to see that ~ is subadditive iff c~_>_ 1/2, c~ is oo- 
subadditive iff c~ __> 2/3, and c~ is strongly subadditive iff c~ = 3/4. 
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In the following definition (cf. [24], w 8), we introduce a useful functional 
analytic tool for the characterization of oo-subadditive set functions. 

Definition 2. Let ~r denote the real vector space generated by the indicator 
functions 1~:, K~R. For  a set function ~: R ~ N + ,  the functional ~: 34e--,IR+ is 
defined by 

~(h)=inf o~iz:(Ki): meN,  ei6lR+, K i E R  , ei lK~>h 
i= i = 1  

} =inf  e(Ki): m, neN,  KieR,  - 1K >h . 
i = 1  n i = l  

Lemma 1. For every set function e: R-*IR+ with e(4)=0,  $ is an increasing 
sublinear functional on ~ .  c is subadditive of order infinity iff e(K)=$(I~:) for 
every KeR .  

Proof Obviously, $ is increasing, sublinear, and $(1K)<c(K ) for K~R. If # is 

I i oo-subadditive and if K, K ~ R  and m, n e N  are such that - 1K>I  K, then 
m n i = l  

no(K)<-_ ~ c(Ki), hence e(K)<$(1K). 
i = 1  

If e(K)=$(1K) for every K e R  and if KI~R, re, h e N  are such that 

n 1K < ~ 1K~, then 

,=1 n~(K)=2:(nlK)<=2:(~IK')  i = 1  

hence e is oo-subadditive. 

For  the rest of the paper we make the following basic assumptions: 
!;t and 15 are pavings on a set X, each being closed under finite unions and 

intersections, and containing the empty set. 
We assume that for p = a and p = z, respectively, 
(1) 1;1 is closed for countable (p = a) or arbitrary (p--z) intersections; 
(2) K \ G e R  and GkKe15 for KeR,  Gel5;  
(3) every set of 15 is R-bounded, i.e. contained in some set of 1;1; 
(4) for every K e R  there are sets KieR and Gie15 with K c G i c K  i and such 

that KiJ, K. (],K indicates for p = a  a decreasing sequence and for p = ~  a 
p p 

downward directed family with intersection K.) 

Let ~3(R) be the smallest a-algebra containing all subsets A of X with 
A c ~ K e R  for every KeR.  ~/p(R) denotes the set of all a-additive measures # on 
~3(R), which are finite on the sets of !;t, inner R-regular, i.e. #(A) = sup {#(K) : K 
c A ,  KeR} for Ae~B(R), and p-continuous from above on 1;1, i.e. #(K) 
= i n f # ( K )  for K,K~eR with KiSK.  (For p=a,  the last condition is a con- 
sequence of the others.) P 

The weak topology on J/go(R) is defined to be the coarsest topology for 
which the mappings #w-~#(K)(KeR) are upper semi-continuous and the map- 
pings /~--~#(G) (Gel5) are lower semi-continuous (cf. [231, p. 197). In other 
words, a net (#) on o/go(R) converges weakly to # ~ p ( R )  iff 

lim sup #r <__#(K) for K~R 



406 B. Anger  and J. Lembcke 

and 

lim inf #i(G) > #(G) for Gel5. 

If X61;l then X~15 by (4), and therefore, for K ~ / a n d  Gel5, C K~15 and C Ge!;/ 
by (2), hence the above conditions can be replaced by each of the following: 

limsup#~(K)__<#(K) for K e R  and lim#~(X)=#(X) 

o r  

liminf#i(G)>__#(G ) for Gel5 and l i m # i ( X ) = # ( X  ). 

It is easy to see that the weak topology is always Hausdorff. 

The basic assumptions are satisfied for the following 

Standard Examples. (1) Let X be a locally compact (Hausdorff) space, p =% 
the paving of compact, and t5 the paving of open, relatively compact subsets of 
X. Then ~3(R) is the Borel a-algebra ~B(X) generated by the open sets and 
~ ( R )  is the set of inner compact regular Borel measures (or Radon mea- 
sures) on ~3(X). The weak topology is the usual vague or weak *-topology of 
simple convergence on the continuous real functions with compact support. 

(2) Let X be a regular (Hausdorff) space with the pavings R of closed and 
15 of open sets, and p = z. Then ~3(R) is the Borel a-algebra ~3(X) and JE~(!R) is 
the set of all (automatically R-regular) finite Borel measures, z-continuous from 
above on the paving of closed sets. The weak topology is the weak topology 
considered by Topsoe ([22], Theorem8.1), which coincides with the topology 
of simple convergence on the bounded continuous real functions in the case of 
a completely regular space X. 

(3) Let X be a topological space, p=a ,  !R the paving of zero sets ( f - l (0 )  
for f continuous), and 15 the paving of cozero sets, i.e. complements of zero 
sets. ~3(R) is the Baire a-algebra ~Bo(X ) generated by the zero sets, and J/t~(!;/) 
consists of all finite (automatically R-regular) Baire measures. (If X is perfectly 
normal, in particular if X is metrizable, zero sets and closed sets coincide, 
hence the Baire sets are the Borel sets.) The weak topology is the topology of 
simple convergence on the bounded continuous real functions considered by 
Varadarajan [25]. 

(4) Let 91 be a a-algebra on a set X , . p = a ,  and R=15=91. Then ~3(R)=91, 
and Jg~(R) is the set of finite measures on 91. The weak topology is the 
topology of setwise convergence considered by G~inssler [13], which coincides 
with the topology of simple convergence on the bounded measurable functions. 

2. Approximation of Subadditive Capacities of Order Infinity 

We now develope the abstract theory which can be applied to the Standard 
Examples. 

Definition3. A p-capacity is a set function c: R--*IR+ with e(~b)=0, which is 
increasing and p-continuous from above: if K, Kie!;l and K iSK, then e(K) 
= inf c(Ki), p 
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We shall frequently make use of the following result due to Topsoe ([23], 
Theorem 1, Lemma 1, Lemma 2 and remarks following Lemma 2). 

Proposition 1 (Topsoe). Assume v: (5 ~ IR + has the following properties: 

a) v is increasing and v(q~)=0; 
b) v is strongly additive, i.e. v(GI~G2)+v(GlC~GE)=V(GO+v(G2) for G1, 

G 2 ~ ( 5 ;  

c) inf{v(Glc~G2): Gi~(5 , KicGi)=O for every pair of disjoint sets 
K 1 , K 2 ~ ;  

d) v*: K~--~inf{v(G): KcGE(5}  is finite on 9~ and p-continuous at ~), i.e. 
infv*(K~)=0 for KiER, Ki ~ 4). 

p 

Then #: A~--~sup{v*(K): K~R, K c A }  is an extension of v* to a measure 
#eMp(fi) on ~(~l). 

The above proposition together with Lemma 1 are the tools for the proof of 

Theorem 1. Let c be a p-capacity which is subadditive of order infinity. Then, for 
every Ko~R , 

c(Ko)=max {#(Ko): #~Jgp(!;t), #(K)<e(K) for KeSt}. 

Proof. Apply the theorem of Hahn-Banach to the sublinear functional 2 on ~ut~: 
By Lemma 1, we can find a linear form 2 on 2/f with 2(h)<3(h) for h ~  and 
2(1Ko)=~(1Ko)=C(Ko). 2 is increasing since 2(h)=<~(h)=0 for h~Nr with h__<0. 
As every GE(5 is R-bounded, we have 1 ~ .  Therefore, we may define v: 
(5~IR by v(G):=2(la).  Then v(qS)=0, and v is increasing since 2 is increasing. 
Hence v is positive real-valued and obviously strongly additive. By our basic 
assumption (4) on the pair (R,(5), for j =  1,2 and Kj~!~t there are sets K j ~ I ,  
Gj~(5 such that KjcGj~cKj~ and Kj~J, Kj. As KI~c~K2~J, Klc~K2, the p- 
continuity of ~ implies P P 

0 =< inf v(G 1~ c~ G21 ) ~ inf 2(1K~ ' ~ K~,) <= inf ~(1K~, ~ K2,) 

= inf c(K~ c~ Kzi  ) = e(K~ c~ K2).  

If K~ ~ K 2  =qS, this implies property c) of Proposition 1, and if K~ = K z = K  , we 
get v*(K)<e(K) and hence property d) of Proposition 1. Let #~d4"o(R ) be an 
extension of v*. Then #(K)<=c(K) for K~!;t and c(Ko)=2(l~:o)<V*(Ko) 
= #(Ko)<e(Ko),  which proves the theorem. 

Remark2. A p-capacity e on R is oo-subadditive iff for every neN,  K~!;/ and 
every infinite sequence (Ki)i~ ~ in R which covers K n times we have 

n~(K)<= ~ ~(Ki): 
i=1 

Obviously, this condition implies that c is oo-subadditive. The converse 

follows from Theorem 1 and the fact that n 1 K < ~ 1K, implies 
c o  

n#(K)< ~ #(Ki) for #~J~p(R). 
i=1 

i = 1  

In particular, subadditivity of order infinity implies a-subadditivity for p- 
capacities. 
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The explicit formulation of the versions of Theorem 1 corresponding to the 
Standard Examples is left to the reader. For  the following application the basic 
assumptions need not be satisfied. It is a simultaneous generalization of [1], 
Theorem 3.10.1, [4], p. 250, and [24], w 8, Theorem 2: 

Corollary. Let X be a Hausdorff space with the paving !;I(X) of compact subsets 
of X, and c" ~t(X)--+ IR + a r-capacity on 9i(X), subadditive of order infinity. Then 
c is the maximum on R(X) of the set of inner compact regular Borel measures 
on X,  dominated by c on R(X). 

Proof. For Ko~!;I(X), the restriction c o of c to R(Ko) is an oo-subadditive z- 
capacity on R(Ko). By Theorem 1 applied to %, there exists #o~JC/,(R(Ko)) 
with #o(Ko) =%(Ko)  and #o (K)<%(K)  for K6R(Ko). Define #: 
A~-~#o(A~Ko) on ~3(X). Then # is an inner compact regular Borel measure 
on X, #(Ko)=c(Ko)  and #(K)<=e(K) for K~R(X).  

Proposltion2. For every p-capacity, the set M : = { # ~ p ( ! ; / ) :  #(K)<e(K)  for 
K~!;I} of measures dominated by c is weakly compact. I f  XE!~, then the set MI: 
= { # 6 M  : # ( X ) = I }  of probability measures dominated by c is weakly compact, 
too. 

Proof. Let (#i) be a universal (ultra-) net on M .  We have to prove that (#1) 
converges weakly on M e. For  A~3(S~), (#1(A)) is a universal net on [0, oo] and 
hence convergent. Define v: ffi--, [0, oo] by v(G)..=lim #i(G). Then v obviously 
satisfies properties a) and b) of Proposition 1. For  K 1, K2e!R, e >0  and j =  1, 2 
there are (by the basic assumption (4)) sets Gj~ff~, K)~gi such that K j c G . c K ' . j  j 
and c(K~ ~ K~) < c(K 1 c~ K2) + e. Therefore, 

v(G 1 ~ G2) <lim #i(Ki c~ K'2) < c(K' t c~K'a) < c(K 1 ~ K2) + a 

If K~ c~K2=~,  this implies property c) of Proposition 1, and if K ~ = K 2 = K  we 
get v*(K)<c(K) which implies property d) of Proposition l. Consider the 
extension #: A~--~sup{v*(K): K c A ,  K~t;t} of v* given by Proposition 1. We 
have #sJ/,(!~l) and #(K)=v*(K)< c(K) for K~!;t, hence # ~ M .  We claim that 
(#1) converges weakly to #. For  G~(5 we get 

#(G) < v(G) = lim #~(G) = lim inf #~(G), 

and for Keel ,  Geffi with K ~ G  we have 

lira sup #1(K) < lira sup #~ (G) = lim #~ (G) = v (G), 

hence lim sup #i(K) < v* (K) = #(K). 
Finally, if X ~ ,  then #~--~#(X) is continuous. Thus {#~JC/~(St): # (X)=  1} is 

closed, which proves that M ~ is compact. 

Theorem 2. A set function c: !;l ~ JR+ is a p-capacity, subadditive of order infinity, 
iff c is the upper envelope of a weakly compact set M c J g p ( 9  0 of measures, in 
fact 

c (K)=max {#(K): g e M }  for every K~!;I. 
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Proof By Theorem 1 and Proposition2, it only remains to prove that for a 
compact set McJClp(~) the function c defined on St by c(K)=sup{gK): 
#eM}=max{p(K): #eM} is a p-capacity, subadditive of order infinity. Ob- 
viously, c(q~)=0, ~ is positive real-valued and increasing. The p-continuity 
follows from the corresponding property of the measures # e M  by applying a 
minimax theorem (cf. [21], Theoreml) .  If m, neN, K,K~e.~t are such that 

n lr__< ~ lrc,, then n#(K)< ~ # ( K i ) a n d  hence no(K)< ~ z(Ki) , which proves 
i : 1  i = 1  i - - 1  

that c is oo-subadditive. 

3. Approximation of Strictly Subadditive Capacities of Order Infinity 

In general, one cannot approximate a bounded capacity ~, subadditive of order 
infinity, by measures with the same total mass, as the following examples show. 
In the first one, XeR.  

Example2. Consider Example 1 with e=2 /3  and let !~l=(5=~(X).  ~ = ~  is an 
oe-subadditive z-capacity with e (X)= l .  By Theorem l, e = m a x M  . But the 
convex combination g = (el + e2 + @/3 of Dirac measures is the only probabili- 
ty measure in M ,  and # + e. 

If X~I~, the situation may be even worse. The following example of an oe- 
subadditive z-capacity ~ on a second countable locally compact space X shows 
that there need not be any regular Borel probability measure on X dominated 
by ~ on the paving R of compact sets, if the inner capacity e.(X).-= {supe(K): 
K e R } = I .  The example is a modification of [-18], Beispiel4.11, and of the 
example given in 1-19]. 

Example3. Let A = { e l , ~  2 .. . .  } and B={fll,fl2,... } be countable discrete 

spaces, and let F = l:I Fk be the topological product of the finite discrete spaces 
k = l  

Fk={Tk0 . . . . .  Yk2k} (keN). Denote by Pk: F~Fk the projections and let Gki'. 
=p~-l(~k~) (keN,  i = 0  . . . . .  2k). 

Then F is compact, and the topological sum X of A, B and F is second 
countable locally compact. Choose p, R, and (5 as in Standard Example (1). 

For  neN,  define the regular Borel measure g, on ~(X) by 

#,(R )= ~ @~ (R) +k~I ~k (R)/2k + ~z~(R c~ F) ) , 
k:4-n 

where ~ denotes the product probability measure 

~n \k= 1 _ i 
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(1) It is straightforward to check that #0 = lim #, in the weak topology on 
n ~ o o  

~(~(R), hence the set M : = { # , : n = 0 , 1 , . . . }  is weakly compact. Therefore, the 
upper envelope ~: K~--~sup{#,(K): n=0,1 , . . .}  (KER) is an oo-subadditive z- 
capacity on X. 

(2) %(X)= 1, but there is no probability measure #eM~(~l) dominated on !;I 
by c. 

Proof. By the regularity of the measures #,, 

c.(A):=sup{c(K): K ~ A ,  Ke.~l} = sup {#,(A): n=0,  1, ...} 

for A ~ ( X ) .  Therefore, % ( X ) = s u p { 1 - 2 - " / 3 : n = 0 , 1  ... .  } = i .  Now suppose 
that there exists some probability measure #eJ//~(R) dominated on I~/by ~. The 
regularity of # implies # < %  on ~(X), hence #(A), #(F)<1/3 and 
#({fig}) <2-k/3 for keN. Since 

I=#(X)=#(A)+ F, #({fik})+#(r), 
k = l  

we get #(A)= #(F)= 1/3 and #({fik})=2-k/3 (keN). 
Moreover, 

#({ilk} W Gk~ ) < e({flk } ~ ak~ ) = 2-k/3 (keN, i=  1 .. . .  ,2k), 

hence #(Gki)=O for i=  1, . . . ,2 k. This implies 

#(Gko)= #(F)-- # (i~= l Gk~ ) = l/3. 

On the other hand, #({~k}UGko)<=e({~k}UGko)=l/3, hence #({~k})=0 for 
k~]N, which contradicts #(A)= 1/3. 

In view of the above examples, we now assume Xe]R and strengthen the 
subadditivity requirements for the capacities. 

Definition 4. Let XcR.  A set function e: R ~ I R +  is called strictly subadditive of 
order infinity, if for every k~2g+=Nu{0},  n~N, K s ~ ,  and for every finite 

sequence of sets K1,...,Kms!~I such that ~ ) K  i covers K n + k  times and ~K 

k times, i.e. k + n l K <  1K~, the inequality kc(X)+nc(K)< c(K~) holds. 
i = 1  i = 1  

Remark 3. Obviously, strict subadditivity of order infinity implies subadditivity 
of order infinity. Example2 shows that the converse is false. On the other 
hand, if XER, it follows as in Remark 1 that every strongly subadditive 
increasing function e: R-+IR+ is even strictly subadditive of order infinity. 
Again, the converse implication is false. 

Without loss of generality, we may restrict the following considerations to 
capacities with total mass 1, and probability measures. 

Theorem3.  Let XE!~t. A set function c: !~I~N+ is a p-capacity with e(X)=l ,  
strictly subadditive of order infinity, iff e is the upper envelope of a weakly 
compact set M ~ Jdp(gl) of probability measures, i.e. e =max  M 1 
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Proof We prove that c = m a x  M 1 ~ for every p-capacity c with c(X)=l,  strictly 
subadditive of order infinity. The proof of the converse implication follows as 
in Theorem 2. 

Define 7: ~f~--*~, by 

7(h) = inf - c~ + ~ic(Ki): (x, oqE]R+, KiE~q , meN, -c~+ "= a i 1Ki>h 
" =  t 

'~ k l Z  } 
= i n f ' - - k +  -1 ~ c(Ki)" m,n~N, kee+,  -n+n,_~_l 1K >h . 

( n nl---~ .= ' 

Then 7__<7< oo and 7(0)__>0, as c is oo-subadditive with c ( X ) = l ,  hence 7(0)=0. 
This implies that 7 is real-valued, increasing, and sublinear. Obviously, 7 ( -  1)=< 
- 1 .  As c is strictly oo-subadditive we have ~(1K)>__c(K), hence 7(1K)=c(K ) for 
KeR.  By the theorem of Hahn-Banach,  for every K o e R  there is a linear form 
2 on ~/~ with 2(h)<=7(h) for he J r  and 2(lro)=7(1Ko)=c(Ko). 2 is increasing as 
2(h)=<7(h)=<0 for h=<0, and 2(1)=1 as 

2(1) < 7(1) = e (X) = 1 < - 7( - 1) < - 2( - 1) = 2(1). 

Define v: ( 5 - - . ~  by v(G),=2(la) .  As 2<7_<c, it follows from the proof of 
Theorem 1 that v has the properties required in Proposit ion1 and that 
v*(K)<c(K) for KER. Let #e /d0(R ) be an extension of v* to ~3(R). Then 
#(K) < c(K) for K e R ,  #(X) = v*(X) = v(X) = 2(1) = 1, and c(Ko) 
=2(1Ko)<=v*(Ko)<c(Ko). Hence c(Ko)=max{#(Ko): #~ml}.  As m 1 is weakly 
compact  by Proposition 2, this proves the theorem. 

4. Approximation of Choquet Capacities 

We now turn to the problem of approximating set functions defined on a 
paving containing ~/, for which the restriction to ~t is a p-capacity, subadditive 
of order infinity. In contrast to strongly subadditive capacities, the outer 
capacity corresponding to a p-capacity, (strictly) subadditive of order infinity, 
need not be a Choquet capacity. A counterexample is given in the following 

Remark 4. For #E~o(f l ) ,  the inner and the outer measure # .  and #*, respec- 
tively, are defined on the power set ~ (X)  by 

# . ( A ) : = s u p  {#(B): B c A ,  BE~B(R)} = s u p  {#(K): K c A ,  Kef l}  
and 

#*(A): =inf{#(B): A cBe~B(R)}. 

If c is a p-capacity, subadditive of order infinity, and Mcddp(R)  is compact  
with c = sup M, then 

c': A~-*sup{#*(A): #EM} ( A c X )  

is an extension of c to a Choquet !R-capacity on ~(X),  i.e. c': ~ ( X ) ~ +  is 
increasing, a-continuous from below on ~(X)  and a-continuous from above on 
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(cf. [11], chap. III, d6f. 27). For A623(I;/), c'(A) is equal to the inner capacity 

%(A):=sup{~(K): K ~ t ,  g c A } .  

The outer capacity ~* is defined on ~3(X) by 

e*(A), =inf{e,(G): AcGE(5} .  

Obviously e'=<c*, but equality does not hold in general as the following slight 
modification of an example due to Fuglede ([12], Example 5.6) shows: 

Let X =  [0, 1] x [0, 1] be endowed with the Euclidean topology and let St 
and (5 be the pavings of compact and open subsets of X, respectively. Consider 
the set M:={2x:x~[0 ,1]}  of one-dimensional Lebesgue measures 2x=e x 
| As the mapping x~--~2~ is continuous, M is weakly compact. Let A 
denote the union of the compact sets 

K,=({0} x E1/2,1])~ (i~1 ({1/i} x [0, 1/2])). 

Then c , (A)=c' (A)= 1/2, whereas c*(A)= 1. As ~ is z-continuous on R and X is 
compact, the outer capacity e* is an extension of e. But ~* is not a-continuous 
from below and hence no Choquet R-capacity. 

A conjecture of Huber ([14], p. 88, final remark of section 3) states that in a 
second countable locally compact space X, e,(A)=e*(A) (i.e. A is e*-capaci- 
table) if A is a Borel subset of X and if c is the upper envelope of a weakly 
compact set of probability measures on 23(X). By the above example, this 
conjecture is false. 

Lemma 2. Let 23 be a paving on X, stable for countable unions and countable 
intersections. Then every increasing set function ~" 23~1R which is a-continuous 
from below can be extended to an increasing set function -~: ~ 3 ( X ) ~  which is 
a-continuous from below. 

Proof Define X: ~ ( X ) ~  by ~(A),=inf{~(B): A cBe23}.  Then ~ is increasing. 

Let (A,) be an increasing sequence of subsets of X with A: = ~) A, and suppose 
n = l  

sup~(A,)<a  for some eelR. For heN,  there exist sets B, e23 with A, c B ,  and 

~(B,)<e. Then B , , =  ~, B m defines an increasing sequence in 23. As A, B, 

c B ,  for n~N, we have A c B ' : =  B', and therefore 
n = l  

~(A) =< ~(B') = sup ~(B') =< sup ~(B,) =< c~. 

Since sup~(A,)<~(A), this proves the lemma. 

Theorem 4. Let 23 be a paving on X with !;t ~ 23, stable for countable unions and 
countable intersections [with X~R].  Let ~: 23---,1R+ be an increasing set function, 
a-continuous from below, such that the restriction ~ of ~ to ~ is a p-capacity, 
[strictly] subadditive of order infinity. I f  every B ~  is !~l-anaIytic (in the sense of 
[11], chap. III, d6f. 7), then for B~23 

d(B)=sup {#,(B): #e~p(R)  [and #(X)= 1], # , (A)< ~(A) for Ac~3}. 
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Proof By Lemma2 and the assumptions on ~, there exists a Choquet !;I- 
capacity # extending ~ to ~(X). By the capacitability theorem of Choquet (cf. 
[11], chap. III, th6or6me 28), every B ~ 3  is ~-capacitable (in the sense of [11], 
chap. III, d6f. 27) and hence, by Theorem 1 [Theorem 3], 

d (B) = ~(B) = sup {~(g): K c B, K ~R} = % (B) 

=sup{#(g) :  K ~ B ,  K~R,  # e M  [#~M1]} 

=sup{#.(B):  #EM [#~Mt]}. 

As # ~ M  is equivalent to # . ( A ) < % ( A ) = ~ ( A )  for A~3,  the theorem is proved. 

Remark 5. The above proof shows that the conclusion of Theorem4 remains 
valid if the sets of ~3 are capacitable for every Choquet R-capacity. 

Example 4. The assumptions on ~ in Theorem 4 are satisfied in the following 
situations: 

a) ~3 is the paving of R-analytic subsets of X (cf. [11], chap. III, th6o- 
r6me 8). 

b) X is a topological space as in Standard Example (3) with the a-algebra 
~3=~30(X ) of Baire sets and the paving !;t of zero sets. In fact, every Baire set 
is R-analytic as every cozero set is the intersection of a sequence of zero sets 
and hence R-analytic (cf. [11], chap. III, th6or6mes 8 et 12). 

c) X is a regular topological space as in Standard Example (2) which in 
addition is assumed to be Souslin (in the sense of [5], chap. IX, w 6, d6f. 2). ~3 
=~3(X) is the Borel a-algebra and !;t is the paving of closed sets. Then every 
Borel set is R-analytic, but it may be more convenient to note that the Borel 
sets are capacitable for all Choquet R-capacities on X (cf. [5], chap. IX, w 
propositions 10 et 15), and to apply Remark 5. 

By essentially the same argument, replacing Theorem 1 by its corollary in 
the proof of Theorem 4, one gets the following modification of the last exam- 
ple: 

Corollary. Let X be a (Hausdorff) Souslin space with the parings ~(X)  and 
R(X) of closed and compact subsets of X,  respectively. Let ~: ~(X)---*N.+ be 
an increasing set function with ~(q~)=0, a-continuous from below on the Borel a- 
algebra ~(X),  such that its restriction to R(X) is finite and subadditive of order 
infinity. Suppose that ~ is a-continuous from above on ~(X) or that ~ is 
continuous on the right, i.e. for every compact set K in X 

~(K)=inf{r K c  U, U open}. 

Then ~ is the upper envelope of the set of inner compact regular Borel 
measures on X,  dominated by ~. 

Proof As in the proof of Theorem 4, we have to show that 

~(B)=sup{d(g):  K m B ,  KeR(X)} for B ~ ( X )  
and 

#(Ko)=Sup{#(Ko): # inner compact regular Borel measure on X with 
#<~} for Ko~R(X ). 
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The first assertion follows from the capacitability theorem (cf. [5], chap. IX, 
w th6or6me6, propositions 10 et 15). As every compact subset K o of X is 
metrizable (cf. [5], chap. IX, app. I, cor. 2), the restriction c o of d to R(Ko) is an 
~-subaddit ive z-capacity in both cases. Therefore, the second assertion follows 
as in the proof of the corollary to Theorem 1. 
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Note Added in Proof. Infinitely subadditive set functions have also been investigated by G.G. 
Lorentz (Can. J. Math. 4, 455-462 (1952)) and J. Moulin Ollagnier, D. Pinchon (Bull. Soc. Math. 
France 110, 259-277 (1982)) under the names of multiply subadditive and completely subadditive 
set functions, respectively. 


