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Summary. We discuss a robust approach for predicting a weakly stationary 
discrete time series whose spectral density f is not exactly known. We 
assume that we know that f~33, where 33 is a convex set of spectral 
densities fulfilling some not too stringent conditions. We proof the existence 
of a "most  indeterministic" density f o  in 33, and we show that the classical 
optimal linear predictor for a time series with spectral density f0  is mini- 
max-robust in the sense that it minimizes the maximal possible prediction 
error. 

We investigate some special models 33, and, in doing so, we illustrate a 
generally applicable method for determining the robust predictor. In partic- 
ular, we discuss model sets 33 which are defined by conditions on a finite 
part of the autocovariance sequence of the corresponding time series. These 
examples are of particular interest as the most indeterministic density is an 
autoregressive one, i.e. the robust predictor is finite. We discuss connections 
between this type of model set 23 and maximum entropy and generalized 
maximum entropy spectral estimates. 

1. Introduction 

The classical theory of linear prediction of weakly stationary discrete time 
series, due mainly to Wiener and Kolmogorov, is based on complete infor- 
mation about the spectral measure of the time series, a situation rarely en- 
countered in applications. Normally, one has only approximate knowledge 
about the spectral measure. 

In Chap. 2 we develop a general approach to the problem of optimal linear 
prediction one time unit ahead in the case of incomplete information. For 
simplicity, we consider only time series with absolutely continuous spectral 
measure. We assume that our information consists of knowing that the spectral 
density is contained in some convex set 33, which we call the spectral infor- 
mation set, and which is a subset of the space L1(2) of functions on ( - ~ ,  ~] 
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integrable with respect to Lebesgue measure 2. Our approach is closely related 
to Huber's theory of robust estimation of location parameters. Martin [17] 
considers robustness with respect to certain types of innovation distributions. 
Our approach differs, in that we focus our attention on robustness with respect 
to the second moment structure, in the spirit of the classical theory. 

We first investigate the notion of a "most  indeterministic" spectral density 
f o  in the set of densities 2). This is the density in ~) for which classical optimal 
prediction has maximal risk, and, in this sense, it represents the least favorable 
situation which is still compatible with the given spectral information. Then, 
after clarifying the appropriate notion of "predictor" in our situation, we show 
that, under quite general assumptions on 3,  the classical optimal predictor H ~ 
for a time series with f0  as spectral density is a good predictor uniformly with 
respect to all spectral densities in 3 .  More precisely, we have 

R(llO, f) <R(/7 o, fo) for all f ~ ,  

where R(II, f) is the error we have to expect when we predict one step ahead a 
time series with spectral density f by means of the predictor H. Thus H ~ is a 
minimax-robust predictor, in the sense that it minimizes the maximal possible 
prediction error. This property of /7 0 is an immediate consequence of the 
concavity and of the form of the directional derivative of the functional 

2 ~  log{f(o))} do), logarithm prediction error. tile o f  the classical minimal 

The purpose of this paper is to describe a generally useful method for 
finding minimax linear filters in situations where the spectral properties of the 
time series concerned are only vaguely known. Robust one-step prediction has 
been chosen as illustrative example here, but our approach can be adapted to 
similar problems like q-step prediction or filtering of a signal in uncorrelated 
noise [32]. 

The problem of robust prediction has been solved by Hosoya [12] for the 
special additive noise model 

~AN-----{f f=(1-e)g+ef*,ff--~,f*(o))do)=l} 

which is closely related to the e-contamination model considered by Huber 
[13] in location parameter estimation. Hosoya's methods rely heavily on the 
special properties of this model. There is no indication how to prove similar 
results for other kinds of spectral information set, as Hosoya's crucial Lemmas 
3 and 5 make essential use of rather special features of the model considered. 
By applying the theory of convex optimization in Banach spaces, we are able 
to prove the main result for arbitrary convex sets ~3. Simultaneously, we 
describe a method for explicitly deriving the robust predictor with respect to 
those sets. 

In Chap. 3 we illustrate this method in two problems. These examples 
should find the interest of applied people since it turns out that the minimax- 
robust predictor is a finite predictor which can be evaluated. These results lead 
us to investigate which model sets ~ have this desirable property. We further- 
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more tie up robust prediction problems with the theory of maximum entropy 
spectral estimates, an area of remarkable current interest (see Childers [-6] for 
extensive references). In [31], the results of Chap. 2 are applied to the pre- 
diction of a time series which is the sum of a model process with known spectral 
density and a noise process with only vaguely known spectral density, which 
may be correlated in a not completely known manner. 

Vastola and Poor [33] have independently studied the prediction of a time 
series with only vaguely known spectral density, and they have provided an 
interesting alternative to the approach of Chap. 2. The precise relationship 
between both methods is described in [32]. As discussed at the end of Chap. 2, 
our approach has the advantage that it allows for a straightforward generaliza- 
tion to non-convex spectral information sets. 

2. A General Approach to Robust Prediction 

{X,, -Go < n<  oo} will denote a time series, i.e. a (weakly) stationary sequence 
of zero-mean complex random variables, with autocovariances 

r, = gX,+k J(,, -oo<n,k<oo. 

Let Y" be the closed, linear hull of the X., - oo < n < oo, with respect to mean- 
square convergence, and let ~c_ be the subspace of ~ generated by the X.,  n < O. 
We regard ~r as a subspace of the Hilbert space ~ of all complex-valued 
random variables Y which have mean zero and finite variance, where the scalar 
product of Y, Z ~ f '  is given by NYZ. 

For  sake of simplicity, we consider only situations where {X., 
- o o  < n <  oo} has a spectral density f Then, the autocovariances 5, are given 
by 

1 ~ ino~ r.=~-~je f(co) do~, - o o  < n <  ~ .  

Here and in the following, the range of integration is always (-~z, ~]. Let La(f) 
denote the Hilbert space of complex-valued functions on (-7c, ~z] which are 
square-integrable with respect to the measure with density f ;  L 2_ (f)  will denote 
the closed subspace generated by the set {e ik~, k < 0}. 

We want to predict Xo from the X,, n<0.  We consider only linear 
predictors, i.e. elements of ~f_. For H ~ _ ,  we measure the performance of the 
linear p r e d i c t o r / / b y  its mean-square error g lX o -//12. 

The classical prediction theory of Wiener and Kolmogorov is concerned 
with minimizing the mean-square prediction error, presupposing that the auto- 
covariances r,, - oo < n<  o% or, equivalently, the spectral density f of {X,} is 
known. EIX0-17I 2 is minimized, if we choose / /  as the orthogonal projection 
P{XolY'-} of X0 onto the subspace ~_.  Therefore, the classical linear pre- 
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diction problem is solved if we succeed in specifying a triangular scheme ~zn,k, k 
= 1,. . . ,  n, n > 0, of prediction coefficients such that 

k = l  

in Hilbert space Y'. 
The spectral representation theorem [-10 - Theorem II.2"] provides an 

isometry from the Hilbert space L2(f) onto the Hilbert space W, where, in 
particular, e i"~ is mapped onto X,,  - o o  < n < ~ .  The solution of the classical 
prediction problem is based on this isometry: one constructs a sequence 

e - i k ( o  

k ~ l  

of trigonometric polynomials which converge 
jection of the function 1 onto L 2 ( f ) .  Then, 
n>0 ,  satisfy (2.1). 

We now leave the classical framework by 
but that we have some partial knowledge of 
f ~ .  The spectral information set ~ is a 
interested in linear predictors of X0 based on 
small mean-square prediction error if any f 
(x.}. 

in L2(f) to the orthogonal pro- 
the coefficients ~,,k, k =  1, ..., n, 

assuming that f is not known, 
f which can be summarized to 
given subset of s We are 
the X,,  n < 0, which result in a 
in ~ is the spectral density of 

Before proceeding further, we first have to clarify what we mean by a 
predictor of Xo. As stated above, in classical prediction theory, where f is 
known, there are two essentially equivalent notions of a linear predictor. In 
time domain, a linear predictor is any element of W_ or, equivalently, a linear 
predictor is given by a triangular scheme of prediction coefficients satisfying 
(2.1). In frequency domain, a linear predictor is given by a function in LZ_(f). 
However, if we do not know f then we do not know the space L2(f). Also, we 
do not know the subspace W of J(r as, given coefficients 7~n,k, k = l ,  ,.., n, n>0,  

we cannot always say if ~ ~,,k X-k converges in mean-square. 
k = l  

In order to overcome these problems, Hosoya [-12] considers only functions 
in (~ {L 2_(f); fs3?} as representing linear predictors of X0 under uncertainty 
about the spectral density f which is described by the set 3 .  To stress the 
procedural aspect of prediction, we prefer to consider linear predictors as 
specified by a triangular scheme of prediction coefficients for which mean- 
square convergence of the corresponding linear combinations of the X,,  n<0 ,  
holds for all time series {Xn} with spectral denSity in 3.  We, therefore, 
introduce the following terminology: 

Definition 1. Let ~ be a subset of L ~ (2). 

a) A D-global linear predictor H of Xo is given by a sequence 

zcn,kX k, n>  1 of finite linear combinations of the observations X,, n<0,  
k 



Minimax-Robust Prediction of Discrete Time Series 341 

which converges in mean-square if the spectral density of the time series {X,} 
is contained in ~. 

b) If the coefficients ~Z,,k of a 5?-global linear predic tor /7  do not depend on 
n, then we say that 17 is of infinite autoregressive type, and we write 

H = ~ 7 ~ k X _  k. 
k=l 

A sequence ~Z,,k -k, n > l  is a ~-global linear predictor iff the trig- 
k 

onometric polynomials ~ ~,,ke -ik~~ converge in LZ(f) for all f e D .  Therefore, 
k = l  

a D-global linear predictor corresponds to a predictor in the sense of Hosoya. 
Without further assumptions on ~,  it is, however, not obvious if for every 

rc~ ~ {L 2_ (f) ;  f ~ }  there exists a fixed sequence ],_~rc,, ke , n > 1 of trig- 
) 

onometric polynomials converging to ~ in LZ(f) for all f e ~ .  As the following 
results in the main do not depend on the particular notion of predictor which 
is adopted, if only it is general enough, we do not discuss this point further. 

It is convenient to extend the notion of a D-global linear predictor of Xo to 
that of a generalized predictor of X0. Then, we can talk about candidates for 
~-global linear predictors of X0 without having to worry about convergence 
immediately. 

Definition 2. a) A generalized linear predictor /7 of X0 is given by a sequence 

rC,,kX_k, n => 1 of finite linear combinations of the observations X,,  n < O, 

where 7on.k, k = 1, ..., n, n > O, are arbitrary complex numbers. 

b) Let f be a spectral density. We call a generalized linear predictor /7 

= rC,,kX_k, n>  1 a Wiener predictor with respect to f if (2.1) holds for 

time series {Xn} with spectral density f. 

c) Let /7=  ~n, kX-k, n>  1 be a generalized linear predictor and f be a 
k n 

spectral density. If the sequence 7r(co)= ~ ~ ,ke  -ik~' converges in L2(f) then we 
k = l  

define the prediction error R(/7, f) by 

R(H,f)=~imC XO--k~=l~n,kX k 2 

= lira ~1~ S I1 --~,(co)12 f(ro)de) 
n ~ o o  

Otherwise, we put R(/7, f ) =  oQ. 

The last line of Definition2 corresponds to common usage of convex 
optimization theory, where convex functionals, which are not defined every- 
where, are set to ~ outside their domain of definition. 



342 J. Franke 

In searching for a good predictor of Xo under spectral uncertainty, de- 
scribed by 5?, we adopt a minimax approach. Therefore, we introduce the 
following terminology: 

Definition 3. a) A 5?-global linear predictor H r is called a minimax-robust 
linear predictor with respect to 57 if it satisfies 

max R (H ~, f )  = min max R (II, f ) ,  
f c ~  ljr f ~ b  

where the minimum is taken over all generalized linear predictors of Xo. 

b) A spectral density fo~57 is called most indeterministic in 57 if 

min R (/7, fo) = max min R (H, f ) ,  
H f e d  H 

i.e. f o  is least favorable in 57 for one-step prediction. 

Under appropriate assumptions we shall show that a Wiener predictor with 
respect to a spectral density, which is most indeterministic in 5?, is minimax- 
robust with respect to 5?. 

To begin with let us remark that by the theorem of Szeg6, Krein and 
Kolmogorov [10 - Theorem III.3] 

min R ( I I ' f ) = e x P  (2~  ~ l~ { f  (c~ (2.2) 

It is more convenient to work with the exponent I ( f )=~--~log{f(co)}dco,  

which we call the entropy of the spectral density f. (The relation of the 
functional I to Shannon's notion of entropy per degree of freedom for Gauss- 
ian time series will be made explicit in Chap. 3). 

By (2.2) and by the isometry of L2(f) to the Hilbert space W generated by a 
time series with spectral density f we have 

exp / ( f )  = inf  2-~ ~ 1--k~lCke--ik~ dco 
where the infimum is taken over all n>  1 and complex Cl . . . .  , c,. As infimum of 
functionals which are continuous with respect to the w*-topology of L1(2), 
exp {I(f)} is upper semicontinuous itself. 

By (2.2), a spectral density f o  is most indeterministic in 57 iff the entropy 
functional I assumes its maximum in 57 at fo.  The strict concavity of I on the 
set {f; I ( f ) > - o o }  and the upper semicontinuity of I in the w*-topology of 
D (2) immediately imply the following theorem. 

Theorem 1. Let 57 be a set of spectral densities on which I is not identically 
- -  O Q ) .  

a) I f  5? is convex then there exists at most one most indeterministic spectral 
density in 5?. 

b) I f  5? is w*-compact in L1(2) then there exists a most indeterministic 
spectral density in 5). 
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By a result of Ioffe and Tihomirov [14 - Proposition 9.1.2.2], b) can be 
replaced by the equivalent statement: if 9 is uniformly summable in the w*- 
topology of L1(2), then there exists a most indeterministic spectral density in 
the w*-closure of 9.  

The second part of the theorem is not so useful for verifying the existence 
of a most indeterministic spectral density in 9 ,  as most of the particular 
spectral information sets 9 discussed in the literature are not w*-compact. 
However,; frequently the natural generalizations of these spectral information 
sets to subsets of the set of all spectral measures on (zc, ~] are compact in the 
w*-topology. It is not difficult to generalize Theorem 1 b) to sets 9 of arbitrary 
spectral measures (Theorem 1' below), and, in this more general framework, it 
is useful 'for infering the existence of a most indeterministic spectral measure. 

As we are primarily interested in spectral information sets 9~L~(2)  which 
are not ~w*-compact, it is convenient to assume convexity of 9 .  Then, convex 
optimization methods provide not only necessary, but also sufficient conditions 
on a most indeterministic spectral density, as given in the following proposi- 
tion. We shall discuss the convexity assumption in more detail at the end of 
this chapter. 

Proposition 1. a) Let 9 be a convex set of spectral densities such that I is not 
identically -o~  on 9. fo  is most indeterministic in 9 iff 

1 
2-~ S {f(e))/f~176 de) < 1 for all f ~  9.  

b) Let 9 be an arbitrary convex set in LI(2) such that the set of functions in 
9 which are essentially bounded from below is dense in 9. Let fo  be a spectral 
density in 9 for which 1/f ~ is essentially bounded. Then, fo  is a most inde- 
terministic spectral density in 9 iff 

i 
~ {f(co)/f~ do) < 1 for all f~  9.  

Proof. By Lemma 1 of the appendix f0  is most indeterministic in a convex set 
9=/2(,~) iff I'o(f)<I'o(f ~ for all f e 9 ,  where I'o(f) denotes the directional de- 
rivative of I at f o  in direction f. 

By Lemma 2 (i) of the appendix 

1 
I'o ( f )  = ~ ~ {f(o~)/f ~ (co)} d o  

for all nonnegative feLl(h)  and all f0  with l ( f  ~ > - 0 %  from which a) follows. 
If f o  is nonnegative and 1/f ~ is essentially bounded then by Lemma 2(i) 

(2.1) is true for all f~L~(2) which are essentially bounded from below. As these 
are dense in 9 we conclude b) from Lemma 2(ii) and (iii). [] 

The motivation for stating part b) of Proposition 1 is our intention to use 
later on convex optimization methods for determining most indeterministic 
spectral densities. If we work with sets 9 of spectral densities then we always 
have to deal with the additional constraint of nonnegativity. For  calculating a 
most indeterministic spectral density, it is more convenient to forget about this 
constraint and work with general subsets of/2()  0. The boundedness assumption 
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on 1If ~ is satisfied for most sets D, as spectral densities which are not 
bounded away from 0 have comparatively small entropy. 

The following proposition replaces Hosoya's theorem 1 [12] for our con- 
text of general model sets 33. 

Proposition 2. Let 3? be a convex set of spectral densities such that I is not 
identically - o~  on 3?, and let f o  be the most indeterministic density in 3?. Let 

H ~ = ~~ n> 1 be a Wiener predictor with respect to fo ,  and let ~z~ 
k 

denote the L2(f~ of the trigonometric polynomials 

n 

~ o ( e ) ) =  , ~  o - i ~  ~n ,k  e 
k = l  

Then 

(i) u~ for all f~37 

1 1 
(ii) ~ S ]1 --~z~ d e ) < ~ - ~  I1 -~z~176 de) for all fe3?. 

Proof The proof of (i) is broken into three parts. 

a) If I ( f )  > - o% then f is the spectral density of a purely nondeterministic 
time series, and it admits the canonical factorization 

where 

f(e)) = I h ( e ) ) [  2 

h(e)) = F, 5k e ik~ 
k = O  

lao] 2 = exp I ( f ) ,  fakl 2 < 0o, 
k = O  

~(e))=l -ao /h (e ) )~L~( f ) ,  

and {eikO/h(e)), - o o < k < ~ }  is an orthogonal basis of L2(f) such that 

{elk~ k<O} generates the same subspace as {e ik~~ k<O} (see e.g. [10]). 
~(e)) is the function in Le(f) which corresponds to the classically optimal 
predictor, i.e. to a Wiener predictor with respect to f 

b) Let f~ 2 be the factorization of fo,  and [a~176 
From Proposition 1 we know that f(e))/fo(e)) is integrable for all fe3?. There- 
fore, 

7r~ = 1-a~ for all f~3?, 

and so we have particularly ~z~ in the deterministic case I ( f ) =  -o~,  
where LZ_(f) coincides with L2(f). 

c) Consider a sequence of functions 0n(e)) which converges to 0 in L2(f~ 
Let fE3? be the density of a purely nondeterministic time series and let h give 
its factorization f(e))= Ih(e))l 2. By the Cauchy-Schwartz inequality and Proposi- 
tion 1 a): 
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IS {f(0)) 0,(0)) e-ik~ d0)l 2 = IS {0 . ( 0 ) )  e -~k~' ho(0)) h(0))lho(0))} d0)l 2 

< S {10,(0))12 f~ do S {f(0))/fo(0))} doo 

< 2~ S {10-(~ fo(0))} de) 

for all - o o < k < o o ,  n > l .  

We conclude that 0,(0)) converges weakly to 0 in the Hilbert space La(f). 
Applying this argument to 0,(0))=~~176 we get 

n~176 weakly in LZ(f). (2.3) 

As one-sided trigonometric polynomials, the n~ are contained in L2 (f), 
and, by b), n~ As a closed subspace of the Hilbert space L2(f), 
L 2 ( f )  is weakly closed (e.g. [-29], p. 82), and we conclude from (2.3) that 
n~ 2 (f). 

d) (ii) follows from Proposition 1 and 

]l-n~176176 a.s. [] 

By Proposition 2, we have n~ for all f ~ 9 .  If f o  the most inde- 
terministic spectral density in 9 ,  satisfies certain conditions we can even 
specify a sequence of one-sided trigonometric polynomials which converges to 
n~ in L2(f)-norm for all f ~ 9 .  This sequence of polynomials then de- 
termines the desired minimax-robust linear predictor with respect to 9.  

Theorem 2. Let 9 be a convex set of spectral densities such that I is not 
identically -oo  on 7~. Let fo  be the most indeterministic density in 9,  and let 
1If ~ be essentially bounded. Let n~ be the function in L2(f ~ which corre- 
sponds to the classically optimal predictor of Xo, provided {Xn} is a time series 
with spectral density fo. 

(i) n~ i.e. there exist n ~ k> 1, such that 

The Cesaro means 

k = l  k = l  

k = l  

converge to re~ in U(f)-norm for every spectral density f 

 ii' 

is 9-global and minimax-robust with respect to 9. 

(iii) I f  l i f  o is even a function of bounded variation over ( - n ,  hi, then the 

series ~, n ~ of prediction coefficients converges absolutely, and the predictor of 
k=l f i  

infinite autoregressive type Ha o = ~~ X_ k is minimax-robust with respect to 9.  
k = l  
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Proof (i) By a theorem of Masani [18 - Theorem 2.8, Lemma 2.7] 1/f~ 
implies the existence of coefficients n ~ ~z2~ ... such that for m ~ oD 

~~ e-ik~ -a~176 in L2()~), 
k = l  

where, as in the proof of Proposition 2, ho(o)) denotes the canonical factor of 
fo .  As i / f  ~ 1/Iho((~)[ 2 is essentially bounded, ~~ is essentially bounded, 
too. By theorems of Zygmund [28 - Theorems 3.4, 3.9] the Cesaro-means 
~~ converge almost everywhere to s~ and the sequence ~~ is essen- 
tially bounded uniformly in n. By Lebesgue's theorem we get for every spectral 
density f :  

lc~ ~ ~~ in L2(f). 

(ii) From (i) we conclude for every spectral density f 

R (H ~ f )  = 2 ~  ~ 11 - ~o (co)l 2 f(~o) de). 

As f o  is most indeterministic in ~, the last relation and Proposition 2(ii) imply 

max R (//o, f )  = R (H~ f o) = max min R (H, f ) .  
f ~  f ~  H 

This is the desired minimax property of / /o .  

(iii) If 1If ~ is of bounded variation then ~o(~) = 1 -a~ is of bounded 
variation, too. Moreover, since its Fourier-coefficients vanish for k ~ 0  it is in 
the Hardy-space H 1. By a theorem of Hoffman [11 - p. 71] s~ is absolutely 

continuous and its Fourier-series ~ ~~176 converges absolutely. As in part 
k = l  

(i) we conclude the minimax property of the infinite autoregressive predictor 

Y, n~ X_~. [] 1-1 a 0 = 

k = l  

Boundedness of 1/f  ~ is a rather weak condition, as we have discussed 
below Proposition 1. In most practically interesting examples of ~ the even 
stronger assumption of Theorem 2(iii) is fulfilled, and in these situations the 
minimax robust predictor is of infinite autoregressive type. 

Due to Masani [18 - Theorem 5.2], in classical prediction theory there is a 
criterion for this event to happen: f 0  should be essentially bounded, and 1If ~ 
should be integrable. We impose an analogous, in some sense stronger con- 
dition: 1If ~ should be of bounded variation. From this we get that the 
minimax-robust predictor is of infinite autoregressive type and, additionally, 
convergence properties of this predictor which are uniform for all spectral 
densities. 

For concrete model sets ~3 we can explicitly determine the most inde- 
terministic density by means of Proposition 1. We illustrate this calculation 
with an example. 
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1 
Parzen [25] considered ~ {f(oo)-g(co)}2dco as a measure of closeness 

between spectral densities f and g. For fixed spectral density g and e > 0  we 
choose 

332={feLl(2) 2---~S {f(oo)-g(co)}2 doo<= @ 

as the subset of LI()o) representing our knowledge of the spectral density of the 
time series which we want to predict. 

As discussed below Proposition 1, it is convenient from a technical view- 
point to consider ~32 instead of the subset of all spectral densities in 32. 

Proposition 3. Let g be a spectral density essentially bounded from above. Then 

f~ = g (co)/2 + {g2 ((o)/4 + c} 1/2 

is the most indeterministic density in 332, where c>O is uniquely determined by 
1 

~ - ~  { f~  g(co)} 2 dco = e. 

Proof. Consider f~176176 ) for which 1/f ~ is bounded. By Proposition lb) 
f o  is most indeterministic in ~)2 iff 

~b(f) =~--7~ {f(oo)/J'O(co)} do)< 1 for all f ~ 3 2 .  (2.4) 

(2.4) says that �9 is a support functional of the convex set 332 in fo.  
From this and Lemma 5 of the appendix we get that f o  is most inde- 

X)2 iff 2~ S {fO(('O) --g(('O)}2 d o  = e and there exists c > 0 such that terministic in 

{f(co)/f~ do)=~ {f~ f(co)dco for all fe/2(2).  (2.5) 

As fo  is nonnegative, (2.5) is equivalent to 

f(co)=g(co)/2+{g2(co)/4+c} 1/a a.s. 

The right-hand side is indeed in L~(2) and essentially bounded away from 
0. Moreover, there exists a unique c > 0 such that 

1 
e = ~  S {f~ - g(c~ 2 dco 

1 
=~-~ S {g2(c~ + c} 1/2 _ {g(co)/2}2 d o  

as the right-hand side is continuous and increasing in c, and it vanishes for c 
=0. [] 
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Once fo  is known, the minimax-robust predictor can be derived from the 
classical best linear predictor for a time series with spectral density fo.  As 
f~ &/2 >O a.s., 1If ~ is of bounded variation if g is of bounded variation. 
Then, the minimax-robust predictor with respect to 3 2 is of infinite autore- 
gressive type. 

In essentially the same manner the most indeterministic density in Hosoya's 
additive noise model 

DAN= feLl(2) - - a )g+ef* ,  ~ -~ f* (co )dco= l  

can be determined (see [8 - Chap.  5] for the details). The support functionals 
of ~)AN in fo  are of the form 

~b(f) =2~- ~ {(p(o~) + l/c} f(co) d~, 

where c >0  and (p~L~(2) satisfying 

q~(co) < 0 a.s. and 

(o(co)=O a.s. on {co[f~ 

From this and Proposition 1 b) we get 

f ~  (1 -e )  g(co)} a.s., 

where c > 0 is uniquely determined by 

1 ~ {fo(co)_(1 -e )  g(oo)} dco=e. 
2= 

By Theorem 2, fo  determines the minimax-robust predictor of DAN. This is the 
result which Hosoya [12] derived using a different kind of argument. 

It is of theoretical interest that most results of this chapter extend easily to 
robust prediction of time series with arbitrary spectral measures. The reason is 
that the minimal prediction error for a time series with spectral measure kt 
depends only on the absolutely continuous part of/.t. To be precise, consider 
the following extension of Definition 2 c): 

Definition 2'. Let /7 = rc , , kX  k, n >  1 be a generalized linear predictor and 
k 

converges in be a spectral measure. If the sequence ~,(o))= ~Zn, ke ~ i k ~ 

k = l  

mean-square with respect to # then we define the prediction error R(II, #) by 

1 
R(H,/~) = lira ~ - 5  ]1 -n,(co) e d#(co). 

n ~ o ~  

Otherwise, we put R(/7, #)= or. 
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By the theorem of Szeg6, Krein and Kolmogorov, 

H 

where f ,  is the density of the absolutely continuous part of the measure #. By 
the same argument, which we have used for proving the upper semicontinuity 
of min R(YI, f )  as a functional of f, we get that minR(H,  #) is upper semicon- 

H // 

tinuous as a functional of # in the w*-topology. This implies the following 
generalization of Theorem 1 b), which we state for later reference. 

Theorem 1'. Let 9J~ be a w*-eompact set of spectral measures. Then, there exists 
a most indeterministic spectral measure #o in 9J~, i.e. a measure #o satisfying 

m i n R ( I I , # ) < m i n R ( H , #  ~ for all #e?Ol. 
11 H 

We have shown [8 Theorem 2] that Theorem 2(iii) remains true for an 
arbitrary convex set 9J~ of spectral measures if the most indeterministic mea- 
sure is absolutely continuous and 

2 ~  {1/f~ d#(co)< 1 for all #egJl. 

(Remark that by Proposition l a) the inequality holds for all absolutely con- 
tinuous measures anyway.) The proof of this result is quite similar to the proof 
of Theorem 1 (ii); therefore, we do not give it here. The additional assumptions 
are easily checked for, e.g., those sets 99l, which are straightforward generaliza- 
tion of Hosoya's spectral information set DAN, described above, and of the 
spectral information sets discussed in the following Chap. 3 [8J. 

In this chapter, we have considered only convex spectral information sets 
T~. We have needed the convexity of ~ for proving that the condition 

1 
{f(o~)/f~ d o  < 1 for all fE  ~ (2.6) 

2~  

of Proposition 1 is sufficient for f0  to be most indeterministic in 3 .  The 
condition is still necessary if ~ is not convex, but looks locally around f0  like 
a convex set. A precise definition of this rather weak property of 3 ,  which 
requires too much preparations to repeat it here, has been given by Girsanov 
[-30 - Chap. 6J; he calls those constraints regular at fo.  In proving Proposi- 
tion 2 and Theorem 2, we have used only the necessity of the condition of 
Theorem 2. Therefore, Theorem 2 continues to hold for spectral information 
sets ~ given by constraints on f which are regular at f0  in the sense of 
Girsanov. 

The difference between convex sets 2? and sets ~ which are only regular at 
f0  is best seen by looking at the robust prediction procedure suggested by the 
results of this chapter. As a first step, we have to find a spectral density f o  in 

which satisfies (2.6). This is a more or less straightforward task if we use the 



350 J. Franke 

tools of convex optimization theory in L1(2). If 3) is convex then, by sufficiency 
of (2.6) and by Theorem l a), we know that such a f o  is the unique most 
indeterministic spectral density in 3?. If ~ is not convex, but only regular at f 0  
in the sense of Girsanov, then we have to verify by some ad hoc means that fo,  
satisfying (2.6), really is most indeterministic in 3.  Finally, provided f o  satisfies 
the assumptions of Theorem 2, we predict X0 by means of the classically 
optimal linear predictor pretending that we are confronted with the least 
favorable situation, i.e. that {X,} is a time series with spectral density fo .  

3. Finite Robust Predictors and Maximum Entropy Spectral Densities 

In this chapter we consider models ~ where we can expect the minimax-robust 
predictor to have finite memory. This feature would be most desirable from the 
practical point of view. 

In a first approach we assume exact information about some autovariances 
r k of the time series {Xk,-or<k< or}. We restrict our attention to real time 
series for simplicity. We are given a positive definite sequence {ck, 0 <  k < M} of 
real numbers. Our information about the process to be predicted is described 
by the set of spectral densities 

7~c={f ~-~cos(kco) f(co)dco=ck, O<-k< M}. (3.a) 

We want to predict Xo robustly with respect to the set ~c. As it is convex, 
by Theorem 1 there exists at most one most indeterministic spectral density f o  
in :~c. To calculate fo ,  by Proposition 1 and Theorem2 we only have to 
determine the support functionals of ~)c- This is done in Lemma3 of the 
appendix. Before formulating the result, let us point out some connections 
between this robust prediction model and some concepts in spectral estimation 
theory. 

Lacoss [15] discussed spectral estimation problems where the time span 
during which data have been obtained is of the order of periods of interest. He 
pointed out that common techniques of estimating the spectral density suffer 
considerably from inadequate resolution of neighboring peaks of spectral den- 
sity and possibly from undesirable shifts in the frequency of such peaks. To 
circumvent both effects Burg [4, 5] proposed estimating the spectral density by 
means of the maximum entropy (ME) method. His criticism of the common 
spectral estimation methods was based on the reasoning that those make 
rather unrealistic assumptions about the extension of the data outside the 
known interval of observations; e.g. the autocorrelation approach of Blackman 
and Tukey [2] assumes a zero extension. Burg proposed to use the obser- 
vations for extrapolating the unknown data in such a way that the resulting 
spectral density estimate fE exhibits maximum entropy under all spectral 
densities which agree with the available data. Here, a spectral density is said to 
agree with the data iff its autocovariances coincide with some autocovariance 
estimates Co, . . . ,  C~t based on the data. 
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If we pass a strictly stationary, e.g. Gaussian, time series through a linear 
filter with frequency response function h then, by a theorem of Shannon [26, 1] 

the resulting change in entropy is 2~Sloglh(o))12do). In particular, let {Y~, 
4 

- o o  < n<  or} be a purely nondeterministic Gaussian time series with spectral 
density f This process can be generated by passing white Gaussian noise {l/V,, 
- o o  < n < oo} through a suitable linear filter: 

Y, = ~ ak Wn-k for all n 
k = 0  

where 
co 2 

age ig~ =f(o))  a.s. 
k = 0  

From Shannon's theorem and his definition of "entropy per degree of 
freedom" for a strictly stationary process we conclude that the entropy of the 
time series { Y,, - ~ < n < oo } is the sum of the entropy of the one-dimensional 

distribution of the innovations Wn and of 2~  ~l~ {f(o))} 
4 

do). 

Due to the above reasoning, the ME-spectral density fE with respect to the 
autocovariance estimates Co,. . . ,  C M is defined as the solution of the extremum 
problem 

2 ~  log { f(o))} = do) max[ 

under the constraints 

1 SCos(ko))f(O))do)=Ck ' O<_k<_M. 
2~z 

In this formulation the connection between ME-spectral estimation and 
robust prediction is obvious. The ME-spectral estimate fE is the most inde- 
terministic density in ~c for the choice ck = Ck, 0 <-- k <- M. 

Edward and Fitelson [7] and van den Bos [3] derived explicit expressions 
for f t .  Makhoul [16] and Morf  et al. [19, 20] discussed computationally well- 
behaved algorithms for determining f~, which are based on the Levinson- 
Durbin algorithm for estimating autoregression coefficients. We derive the 
form of f~ once more as illustration for the general method of determining 
most indeterministic densities for special models 3 .  

Proposition4. For M>=O and a positive definite sequence Co, . . . ,c~ of real 
numbers, let C denote the Toeplitz matrix (Cj-k)O<=~,k<_M-1, and e=(c l ,  ...,CM) T. 
Let a=(a l , . . . , aM)  T be the solution of the Yule-Walker equations [24 - Chap. 
3.5.43 

C a =  - e ,  (3.2a) 
and 

M 

~2 = ~ Ckak + CO. (3.2b) 
k = l  
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The unique most indeterministic fo  in the spectral information set 7~c, given by 
(3.1), is 

t M iko) 2. f~  2 1+ ~ ake- (3.3) 
k = l  

The finite-memory predictor 
~t 

IIO=-- s akX-k 
k=l 

is minimax-robust with respect to ~c. 

Proof. By Proposition 1 and by Lemma 3 of the appendix, a spectral density 
f0,  for which 1If ~ is essentially bounded, is most indeterministic in ~c iff there 
exist Lagrange multipliers 2o, ..., 2M such that 

1 M 1 
f(co)/f~ de) = ~ 7 -  ~ 2k cos (k co) f(c9) dw 

2~ k=ozrc 

for all feL*(2). 

This is only possible iff 

f~ = 1 ~ 2k COS (kco) a.s. (3.4) 
/kk = 0 

As f ~  a.s. and f~ by a theorem of Hannah [10 - Theorem II.10] 
(3.4) implies the existence of real numbers 70>0, 71 . . . . .  7M such that the zeroes 

M 

of the complex polynomial ~ ]kZ k lie outside of the unit circle and 
k = O  

fO(o))--~-l/k~=o,ke-ikc~2. 

Therefore, f o  is the spectral density of an autoregressive time series of order 
M. By results of Pagano [23], there exists exactly one such spectral density in 
~c, and it is given by (3.3) with a, a 2 satisfying (3.2). As H ~ is the classically 
optimal predictor for time series with spectral density fo ,  it is minimax-robust 
with respect to ~c, by Theorem2.  []  

Along the same lines as Proposition 3 one can handle the case where only 
part of the autocovariances up to lag M are known. The appropriate model set 
is 

:Dc,~= { f  ~--7 ~ cos(koo) f(co)dcO=Ck, k~K } , 

where K is a subset of {0, ..., M} with 0eK. 
If ck, keK, are the values of autocovariance estimates then the most 

indeterministic spectral density in 33c,~ coincides with the ME-type spectral 
estimate derived by Newman [22]. 
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From the practical viewpoint it is rather unrealistic to assume exact knowl- 
edge of some autocovariances and no information at all about the rest. We 
now consider the case that only an approximate knowledge of some autoco- 
variances is given. 

Let 51 be a convex set in I (  M+I for some M_>_0. We want to predict a (for 
simplicity real) time series from which we know that its covariance vector r 
= (ro,..., rM) T is in 51. 

Theorem 3. Let 5t be a compact, convex set in IR M+ 1 with nonempty interior and 
containing at least one r for which the sequence to, . . . ,r  u is positive definite. Let 

~ a =  f](ro . . . .  ,rM)re51 for r k = ~ c o s ( k c o ) f ( c o ) d o ,  O<_k<_M 

There exists a unique most indeterministic spectral density fo  in ~ .  Let r ~ 

=~--y~cos(kco) f ~  O<k<-M. Furthermore, we have 

(i) fo  is the unique spectral density in ~ for which there exist 20, ..., 2MEIR 
such that 

} f~ = 1 )ok cos (kco) a.s. (3.5) 
k 

and 

M M 

Y 2krkZ Y, kr~ for all r 51. 
k = O  k = O  

In particular, f o  is the spectral density of an autoregression of order at most M. 
(ii) Let 70>0, 71 . . . .  ,?M~IR be given by 

and 

k=o 2 k c ~ 1 7 6  ?ke ,ko 

M 

f /o=  _ ~ 7kX-dTo 
k = l  

i.e. H ~ is the classically optimal predictor for a time series with spectral density 
given by (3.5). Then, H ~ is minimax-robust with respect to ~ .  

Proof. a) ~ satisfies the assumptions of Theorem4 below. In particular, (3.8) 
follows from the compactness of 51. By Theorem4, there exists a unique most 
indeterministic density f o  in ~ ,  and it has to be the spectral density of an 
autoregression such that, particularly, 1/f~ is essentially bounded. 

b) By Proposition l and Lemma4 of the appendix f o ~  is most inde- 
terministic in ~ iff there exist real Lagrange multipliers 2o, ..., 2M such that 

~{f(cO/f~ ~S2kCOS(ke))f(co)do~ for all feLl(2),  
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and 
M M 

2 )~krk~ 2 2k r~ for all rE!~/. 
k = O  k = O  

The rest follows completely analogous to the proof of Proposition4. [] 

Theorem3 reduces the problem of determining the most indeterministic 
spectral density in ~a ,  i.e. of solving an extremum problem in La(2), to the 

finite-dimensional problem of constructing a hyperplane 2krk= 1 

in Euclidean space ~M+I which is tangential to the convex set R in r ~ where 

r~1 7 6  rc / U ~= o 2 J l  cos (jc~)} dco O<k<_M. 

Corollaryl.  Let T be a convex, continuous functional on IR M+I, which is 
Gateaux-differentiable in all positive definite r=(ro,...,rM) T. Let a>inf{T(r),  r 
positive definite} and R={r[T(r)=<~}. Let f o  be the most indeterministic spec- 
tral density in 33~ and r ~  (r~ r~ T its covariance vector. Let 

M 

T~(r)=l iml -{T(r~176 = ~ tkrk, rMR ~t+l 
~ 0  e k = O  

be the Gateaux-derivative of T in r ~ 
There exists a Lagrange multiplier fl > 0 such that 

f~ = 1 tk COS (kco) a.s. 
k 

and fi is uniquely determined by the condition T(r ~ = cc 
M 

Proof By Theorem 3 it suffices to specify the set of support functionals ~, 2kli 
k=0 

of R in r ~ By results of Ioffe and Tihomirov [-14 - w  and Proposition4.3.2] 
these are of the form flTd with fl>0, i.e. 2k=fltk, O<_k<M. [] 

Apart from the robust prediction setting, Theorem 3 characterizes the class 
of generalized maximum entropy estimates which take into account the vari- 
ability of the covariance estimate appearing in the original ME-method. New- 
man [-21] has discussed a special generalized ME-spectral estimate. He consid- 
ered the neighborhood 

M 1 2 

where 0-2>0, Ck=C_k, Wk=W_k, O<k<--M, and WO,...,WM are some positive 
weights accounting for the different degree of confidence placed in each esti- 
mated autocovariance value. 
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(3.6) coincides with our model set ~ for the special choice 

St= r k wklrk--cklN<G2 

The form of the ME-spectral density in (3.6) which Newman derived, can easily 
be shown to follow directly from Corollary 1. 

In our opinion (3.6) has the drawback that the Ck are treated as non- 
related estimates of varying reliability. It should be preferable to take into 
account that Co, . . . ,  CM are highly correlated components of a covariance 
estimator and to consider appropriate neighborhoods !;/. 

It is a somewhat surprising and satisfactory result that by Theorem3 the 
minimax-robust  predictor is finite even if our information about some auto- 
covariances of the time series to be predicted is of a rather general nature. This 
fact can be understood by a simple and intuitive argument. 

Consider a time series {X,, - o o < n <  ~ }  with spectral measure # and 
positive definite covar iance sequence {Ck, --oO < k <  oo}. For the moment  we 
allow for spectral measures with non-vanishing singular part. 

Let M__> 0. As we have assumed that Co,..., CM is positive definite, by results 
of Pagano 1-23] there exists a unique solution a=(a l , . . . , aM)  r of the Yule- 
Walker equations (3.2a), and there exists an autoregression {Yn, - o o  < n <  oo} 
of order at most M with autoregression coefficients al . . . .  ,aM and innovation 
variance a 2, given by (3.2b), i.e. we have 

M 

Y,+ ~ ak Yn_k=O'Vn for all n, 
k = l  

where V,, - oo < n < oo, are uncorrelated random variables with mean zero and 
unit variance. 

Let fM denote the spectral density of {Y,, - o o < n < o o } .  fM is uniquely 
determined by the fact that it is the spectral density of an autoregression of 
order at most M and by the requirement 

~--~[. e-ig~fM(co)do~=Ck, O<--k<_M. 

By (3.2) al . . . .  , aM are also the solution of 

Xo + akX_k =min! ,  
k = l  

i.e. - a t ,  ..., - a M  are the coefficients of the best finite-memory linear predictor 
HM of X0 on the basis of X _  i, ..., X - M .  The minimal finite-memory prediction 
error for the time series { X , , - o o < n < o o }  is always greater or equal to the 
minimal prediction error. For the autoregression {Y,, - o o  < n <  oo}, the best 
linear predictor coincides with the best finite-memory linear predictor FIM of 
the length M. We conclude 

min R( H, it) < R ( FI M , #) = R ( H M , fM) = min R ( H, fM). (3.7) 
l I  1I 
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From these considerations and Theorems 1 and 2 follows 

Theorem 4. Let M >= O. Let 7~ be a convex set of spectral densities on which I is 
not identically - o~. Let ~ be the set of absolutely continuous spectral measures 
with density in ~, and let 9~ be the w*-closure of 93l. Assume that ~ is w*- 
compact and 

if # ~  and fM is the spectral density of an autoregression 
of order at most M with 

2n e_ i k~ fu (~ )dco=l  ~e_ik~d#(o~), Ikl<-_M, (3.8) 

By (3.7) 

Let 

r~176 k = 0  . . . .  ,M. 

As there exists f ~ 3  with I ( f ) >  - o o  we have 

min R(II, #o) > rain R(FI, f )  > O. 
H H 

Therefore, #o is not singular, and r~  ~ is a positive definite sequence. By 
the remarks which we have made in advance of the statement of the theorem, 
there exists a spectral density f o  of an autoregression of order at most M with 

r O = 2 ~  -iko~ o e f~(c~) do) k = 0  . . . .  ,M. 

min R(H, fo)  >= min R(H, #o) > min R(H, f )  for all f ~  ~. 
H H H 

By (3.8) f o e ~ .  Together with Theorem 1 a), we conclude that f o  is the unique 
most indeterministic spectral density in ~3. 

As f o  is an autoregressive spectral density, 1If  ~ is essentially bounded. The 
rest follows from Theorem2. [] 

The assumptions of Theorem4 are fulfilled for the sets ~3a of Theorem 3, 
and the finite memory of the minimax-robust predictor for these models 

then fM~ ~. 

There exists a unique most indeterministic f o  in ~,  and it is the spectral density 
of an autoregression of order at most M. In particular, the minimax-robust 
predictor for X) has finite memory of length at most M. 

Proof. Let f~ denote the density of the absolutely continuous part of the 
measure #. By Theorem l', minR(H,#) assumes its maximum on the w*- 

n 
compact set 9~, i.e. there exists a spectral measure #o in 9Yl with 

rain R(II, #o) > rain R(I1, #) for all #~gY/. 
/ /  /7 
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follows. Theorem 4, however, gives only an existence result, whereas Theorem 3 
gives a unique characterization of f o  in terms of the set R. 

Loosely speaking, Theorem 4 says that the minimax-robust  predictor for X o 
depends only on the last M observations X 1, ..., X_M if our knowledge of the 
time series {Xk, - o e  < k <  oe} is restricted to information about some finite 
part of its time domain structure. 

Appropriately formulated, analogous results are true for e.g. interpolation 
or prediction over more than one time lag into the future, as can be shown by 
considerations completely analogous to Theorem4.  However, the dominating 
role played by autoregressive processes in this chapter depends on the problem 
of predicting robustly exactly one time unit ahead. E.g., if we want to predict 
further into the future then autoregressions as the processes which correspond 
to most indeterministic spectral densities are replaced with certain mixed 
autoregressive-moving average processes [-31]. 

Appendix 

Some Results from Convex Optimization Theory 

In this appendix we consider an optimization problem of the form 

L(p)=min!  under the constraint pOI~. (A1) 

Here, L is a convex functional from some Banach space IE into the extended 
real line ( - Go, oe]. (1) is some convex subset of IE. 

Firstly, we introduce some notation. X~ denotes the convex indicator of ~), 
i.e. 

XQ(p)=0 for p~Q, =oe  for p~(l). 

8L(p ~ denotes the subdifferential of L at the point p0, i.e. the set of all 
continuous linear functionals 4~ on IE with 

�9 (p-p~176 for all pEIE. 

For  pO~Q, the subdifferential 0X•(p ~ coincides with the set of support func- 
tionals of the convex set ~ in p0, i.e. the set of continuous linear functionals ~b 
on IE with 

4)(p-p~ for all p6Q. 

E o denotes the directional derivative of L in the direction p a t  the point pO, i.e. 
for L(p ~ < oe we set 

Eo(p)=oe if L(p~ for all e > 0  

Eo(p)= lim l{L(p~176 else. 
~ 0 +  8 

We are interested in necessary and sufficient conditions that for given p O ~  
we have L(p)>=L(p ~ for all psll~. The main theorem of convex optimization 
theory (see e.g. [27]) says: 
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Let L be finite everywhere, Let int (11~)~0 or let L be continuous in some 
point p~ll~. Then, p0 is a solution of (A1) iff 

O~SL(p ~ + 8Z~(p ~ 

and the latter condition is equivalent to 

Eo(p-p~ for all p~Q. 

We have to modify this result, as we want to consider a nowhere con- 
tinuous, non-finite functional L and sets (1) with empty interior. 

Lemmal .  Let L be a convex functional from lE into ( -oo,  oo) and II)clE 
convex. 

(i) Every point pO of local minimum for L on ~ with L(p ~ < c~ is also a 
point of global minimum. 

(ii) Let L(p~ oo and p~ pO is a solution of (A1)/ff  

Eo(p-p~ for all p ~ .  

Proof. The first part of the lemma is well known for everywhere finite convex 
functionals (e.g. [9] - Theorem 15.1), and the usual proof applies to points of 
finite local minimum for extended real-valued convex functionals, too. 

Let pO be a solution of (A1). By convexity of Q 

p~=p~176 for all 0 N e < l ,  p~Q. 

By minimality of L(p ~ 

Eo(p-p~ lira l{L(p~)-L(p~ for all p~Q 
e ~ O +  8 

The other direction follows from the convexity of L, as 

Eo(p-p~176176 for all 0 < e < l ,  p~I/~. [] 
e 

In the following, we consider the special case 

= LI ( /~ ) ,  C(f) = ; l ~ l o g  {/+(co)} IE do) 

L is convex, as for 0 < 7 <  1 and f geL1(2): 

L({1 - 7 } f +  7g)_ < -(1 -7)  flog {/+(co)} de) - 2 ~ l o g  {g+(co)} do_) 
- 2rt 

The right-hand side is + oo unless f(co), g(co)>0 a.s. 
L has rather good directional differentiability properties. In particular, if 

essin fo, f~ then Eo is nearly identical to a continuous linear functional 
on L1(2). Therefore, it is possible to modify the proof of the main theorem of 
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convex optimization theory to cover the problem 

L(f)=min!  under the constraint fe(I) (A2) 

without assuming int (11)) + 0. 

Lemma 2. (i) I f  L ( f  ~ < co then the directional derivative of L in direction f at 
fo  is 

Eo(f)=oo if L ( f~  for all 5>0 

Eo(f) = ~ ~ {f(o)/f~ do else. 

(ii) Let essin f~,f~ Then, 

- 1  
~o(f) = ~ - S  { f ( ~  ~176 do 

is a continuous linear functional, and 

aL(f  ~ = {~o}. 

(iii) Let ~=t=0 be a convex set in L~(2) with the property: for all ger there 
exist f n ~ ,  n>__ 1, such that 

essin f~fn(o)>-o% n > l ,  and f n ~ g  in D(2). 

Let f~ and essin f~f~ Then, fo  is a solution of the optimization 
problem (A2) iff 

OeaL(f ~ + azQ(f~ 

Proof a) Let L( f~  for some 5>0. Then f~  a.s. By 
concavity of the logarithm 

1 
- {log ( f~  + ef(o)) - l o g  f~  
8 

~f(co)/f~ monotonically a.s. 

From this follows 

! 
{L(f ~ 4- af) -L( f~  = ~ ~ {log (f~ 4- af(o)) - l o g  f~ d o  

8 

- l ~ { f ( o ) / f ~  monotonically for ~ 0 + .  
2~ 

b) We show for a continuous linear functional ~: 

q~e6L(f ~ iff ~ b ( f - f ~  ~ for all feLl(2). (a3) 

If ~eOL(f~ then by definition 

~ ( f ) - q ~ ( f ~ 1 7 6  for all feL~(.~o). 
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Therefore, for ee(0, 1) and feLl(2) 

~ ( f _ f o )  =_1 {~b(fo + a(f_fo))  _ &(fo)} 
8 

1 
< -  {L(f  ~ + e ( f - f ~  - L(f~ 

8 

The right-hand side decreases for e,--* 0 +  monotonically to Eo( f - f~  
Due to the same reason 

E o ( f - f ~  ~ for all feL~(2). 

From this follows the other direction of (A3). 
c) Let essin foJ~ Then ~b o is a continuous linear functional, and it 

coincides with E0 on the set {f lEo(f)< oo}. By (A3), r176 
Let q~OL(f~ given by 

~b(f) = 2 ~  S q~ (co) f(~o) do), ~o ~L~ 

By (A3), we have in particular for all f~L~(2) 

O < Eo(f - f~ -eb( f  - f ~ 

= ~ l j ,  {~o(o~) + 1/f~ {f(co) -f~ dco. 

We conclude q~(co)= -1/f~ a.s., i.e. # =  ~o. 
d) As usual in convex optimization theory, we set L(f)=L(f)+zQ(f) ,  such 

that (A2) is equivalent to the unconstrained optimization problem: 

L(f)--- minl 

Then, by definition of the subdifferential" 

f o  solves (A2) iff O~,~L(f ~ 

~?L(f ~ ) ~ aL(f  ~ + aZQ(/~ 

The assumptions of the Moreau-Rockafellar theorem [144).3.3], which pro- 
vides the reverse inclusion, are not fulfilled in our situation. To complete the 
proof of (iii) we have to show 

o L( f  ~ ~_ aL( f  ~ + OzQ(f ~ 
directly. 

e) Let essin fo, f~ > 0 and Q fulfil the assumptions of (iii). By convexity of 

1 2 o ( f - f ~  ~ for all f~(I) (A4) 

Analogously to the proof of (A3) we can show for continuous, linear function- 
als ~: 

~ 0 L ( f  ~ iff r176176 for all f ~ Q .  (A5) 
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Let O e S L ( f  ~ and ~ g = O - O o .  Let f e Q  and e s s in f~o f (o ) )> -~ .  Then 
O o ( f - f ~ 1 7 6  and by (14) and (A5): 

7s(f _ fo)  = O( f  - f ~  _ Eo( f  _ fo)  < O. (A6) 

For gell~ we can choose a sequence f,  eQ  such that essin f~f,(o))> - o  e, n>  1, 
and f n ~ g .  By (A6) and continuity of ~P: 

~(g _ f o ) =  lim kg(f, - f ~  for all geQ. 

Thus, �9 = Oo + 7 j where OoeSL( f  ~ by c) and 7~eS)~(f~ [] 

In the following, we derive explicit representations of the subdifferentials 
8)~( f  ~ for some special convex sets tl~. 

Lemma3. Let ~ ,  j = l , . . . , n ,  be continuous linear functionals on L1(2), and 
cl, ..., cnelR. Let 

Q = {feLl(2) [ ~ ( f )  = c j, j = 1, ..., n}, 

For arbitrary f ~  

j = l  

Proof Let ~+_3={fl+_~(f)<=+_c~}, j = l , . . . , n .  Q is the intersection of 
Q1, . . . ,~ , ,  Q - t , . . . , Q - ,  all of which are convex sets with nonempty interior. 
By Propositions 4.3.1 and 4.3.2 of Ioffe and Tihomirov [141 

8zQ(f ~ = ~ {SZ~j(f ~ + 8Z~_ j(f~ 
j = l  

= 2 j 3 ;  21 ,  . . . ,  2 , e ~  . 
J 

Here, we have used that the Gateaux derivative of a continuous linear func- 
tional kg coincides with kg and, therefore, the support functionals of the level 
set {f]~(f)<=c} are of the form f17 ~, fl>0, by Proposition 4.3.2 of Ioffe and 
Tihomorov [-14]. [] 

Lemma 4. Let ab . . . ,  a, eL~176 and A be the continuous linear operator from L~(2) 
into IR" given by 

(Af)j = I aj(o)) f(o)) do) j = 1, ..., n, feLt(J.) 

Let !;t be a convex set in N n with nonempty interior, and 

Q =- {feLt(2)[Afe!;I}. 
For arbitrary f ~  D 

8z~(f ~ = IO]O(f) - -  ~ 2j S aj(o)) f(o)) do); 21 ....  ,2heiR 
j = l  

such that ~ 2j{cj - (Af~ _-<0 for all ceR~ 
j = l  ) 
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Proof Let A* be the dual operator of A. By Theorem4.2.2 of loffe and 
Tihomirov [14] 

azQ(f ~ = A* az~(Af~ 

Let A(e)= L 2scs, c~IR". The image of A under A* is given by 
j = l  

(A*A)(f )=  L )9~as(co)f(co) dco, f~Ll(Z) �9 
j=l 

By definition, 0z~(Af ~ consists of the continuous linear functionals A on ~"  
with 

A ( e - A f ~  for all ez~.  

This finishes the proof. [] 

Lemma 5. Let g be a nonnegative function in L~(Z), e > 0 and 

Let f~ and 

1 o 
To(f) = ~ - ~  { f  (co) -g(co)} f(co) do). 

Then 

_7 {o} 
8z~ (f~ {7 7,o, 7=> 0} 

1 
Proof a) If 2~7~ {fo(co) _g(co)}2 d o  < e then for every hEL~(2) there exists 6 > 0 

such that f~ From this we conclude 

�9 (h)=0 for all h~L~(2) and all ~b6~?)~(f~ 

As U~ is dense in L1(2) we get 0z~(f ~ = {0}. 
l 

b) In the following we assume ~-z~{f~ Firstly, we con- 
sider Q as subset of L2(2): 

1 
q)={feL2(2)lG(f)<e}, G(f)=~{f(co)-g(co)}2dco.  

G is a finite, convex functional on L2(2). It is Gateaux-differentiable in f o  with 
derivative 

G'o(f) = lim 1 {G(f o + 8f) - G(f~ 
a~O 8 

=1_5 {fo(co) _g(co)} f(co) de) 
7~ 

= 2  ~o(f). 



Minimax-Robust Prediction of Discrete Time Series 363 

Let L* denote the dual space of/2(2), i= 1, 2. By proposition 4.3.2 and example 
4.2.1.1 of Ioffe and Tihomirov [14] we have 

{q~eL*l~)(f)<=q~(f ~ for all f eQ}  ={7%,7>0}.  (A7) 

c) As L*~_L* 

As f0, geLO~ 
inclusion. [] 

ax~(f ~ = {q~eL* [ ~b(f) -<_ ~(fo) for all f eQ}  

_={7%,7_>_0}. 

we have ~oeL *. Together with (AT) this implies the other 
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