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Summary. Stochastic bounds are derived for one dimensional diffusions 
(and somewhat more general random processes) by dominating one process 
pathwise by a convex combination of other processes. The method permits 
comparison of diffusions with different diffusion coefficients. One interpre- 
tation of the bounds is that an optimal control is identified for certain 
diffusions with controlled drift and diffusion coefficients, when the reward 
function is convex. An example is given to show how the bounds and the 
Liapunov function technique can be applied to yield bounds for multidi- 
mensional diffusions. 

I. In troduc t ion  

A well known comparison theorem for diffusions may be stated as follows (see 
[10, 3-5]) for proof and remarkable refinements): 

Theorem 1.1. Suppose that ~, bl and b 2 a r e  Lipschitz continuous functions on IR 
i.e., for  some constant K 

I o-(0) - a(0')l + I b~ (0) - bl (0')1 + I b2 (0) - b2 (0')1 < K [ O  - 0'I 

and suppose that X i, i=  1, 2 are the (pathwise unique) solutions to the stochastic 
differential equations driven by a Wiener process w 

dX[=a(X[)dw~+bi(X~)dt ;  X~(0) given. 

Then the conditions b~ ~ b  2 and X~(0)>X2(0) imply that 

Xr > Xt 2 for all t, P a.s. 

* This work was supported by the Office of Naval Research under Contract N00014-82-K-0359 
and the U.S. Army Research Office under Contract DAAG29-82-K-0091 (administered through 
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Corollary 1.2. Let x and y be one dimensional diJJi~sions (on possibly distinct 
probability spaces) with respective generators 

~2(0) 62 ~ 0 2 ~?02 t-b~(O) and ~r2(O) 62 
2 ~302 ~-b2(0)~,  

where ~r, bl and b 2 are  Lipschitz continuous. Then b1 ~ b 2  and Xo>=Yo imply that 

P [ x t > c ] < P [ y , > c ]  t>O, cenl,. 

Proof The random processes x and X 1 have the same distribution - we denote 
this by x ~ X ~. Similarly y ~ X 2. Thus 

P[x,>c]=P[Xr [] 

Results of this type have been applied to prove stability theorems for 
diffusions z in IR" by letting x be a process of the form xt=p(z 0 (often p is 
called a Liapunov function [12]). A major  difficulty is that the diffusion term a 
in Theorem 1.1 is the same for both diffusions. Thus, in order to compare 
processes with different diffusion terms, one must introduce a random time 
change to equalize the diffusion terms (see [3, 6]). This makes the method 
cumbersome and it is especially difficult to obtain accurate comparisons for 
large times (e.g., bounds on tails of invariant measures). An alternative method 
we explore in this paper is to dominate one process pathwise by a convex 
combination of other processes. 

Throughout  this paper  we use the usual conventions of stochastic calculus. 
For  example, each random process is assumed to be defined on a probability 
space (f2, IF, P) equipped with an increasing family OFt) of sub-o--algebras of IF. 
The random processes are assumed to be adapted and Wiener processes are 
assumed to be (IFt) martingales. When a process x is said to be a semi- 
martingale with representation 

dxt = #tdt + atdwt 

where wt is a Wiener process, it is understood that # (resp. a) is locally 
integrable (square integrable) with probabili ty one, and the above is shorthand 
notation for 

t 

xt--xo+i  sds+f  sdws. 
0 0 

x is an "I to  process" in the terminology of [4]. 

Theorem 1.3. Let x and y be semimartingales with representations 

dxt = #tdt + ~tdwt 

dyt = mdt + pdvt 

where w and v are Wiener processes and m and p are constants. Suppose that 

~,~m and IGtl~p (1.1) 
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and that Xo < yo. Then 

PExt>c]<2P[yt>c] ,  

and jor any nondecreasing convex function (1) on It. 

(1.2) 

E 4~(xt) < E ~b (y~). (1.3) 

Proof. By using a standard extension [3, p. 72] of the probability space that x 
is defined on, we can assume without loss of generality that there exists a 
Wiener process # on the same probability space which is independent of (x, #, 
a, w). Let yi, i=  1, 2 each be defined by 

Yti=yo+mt+ ~sdws+(-  1) i ~ (p2-~r2)l/2d#s �9 
0 

For each i, the process in square brackets is a continuous martingale with 
quadratic variation process pZt, and hence it has the same distribution as pv 
[see 2, p. 384]. Thus, the processes y1 and y2 each have the same distribution 
as y: 

yi y for i=1 ,2 .  (1.4) 

Now define ~=(Ytl + Yt2)/2. Then, 

d ~ = m d t  +atdwt 
so that 

t 
f , - x , = y o - x o + S  

0 

By our assumptions, the right side is nonnegative. Therefore 

~ > x t  for all t, P a.s. (1.5) 

So, (since ~ < m a x  {Yt 1, Yta}) 

]{Xt~C } ~ ] { Y t  I ~ c }  -[-I { Ytt 2 ~ c }  (1.6) 

and (since 4~ is nondecreasing and convex) 

�9 (x,)__< + 0.7) 

Taking the expectation of each term in inequalities (1.6) and (1.7) and using 
(1.4) yields the desired conclusions (1.2) and (1.3). [] 

Remarks (1) The conditions of Theorem 1.3 are satisfied when x , - 0  and yt=-vv 
Then equality holds in (1.2) for c : 0  so the factor two cannot be reduced. 

(2) Since y itself satisfies the conditions placed on x, y may viewed as a 
semimartingale with given initial value which maximizes EqJ(x,) over all semi- 
martingales x satisfying (1.1). In other words, Theorem 1.3 identifies a solution 
to a certain stochastic optimal control problem. A similar interpretation holds 
for Theorem 1.1 (see [3, Sect. 6.2]) and for the other theorems of this paper. 
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(3) If Y0 is constant then Theorem 1.3 is valid (same proof) even if x and y 
are defined on different probabili ty spaces. 

(4) Since (1.4) and (1.5) are statements about processes (rather than just 
about  random variables) inequality (1.3) may be strengthened to 

E~(x)__<E~(y) 

for any real valued function ~b defined on the space of continuous functions 
C [0, t] such that 43 is (strongly continuous and bounded below) nondecreasing 
and convex. For  example. 

E max x t < E  max Yr. 
O<=t<T O<~t<_T 

Theorem 2 and Theorem 4.1 in this paper can be strengthened similarly. 
(5) In the proof  of Theorem 1.3 and in similar proofs later, lower case 

letters are used for the random processes x and y being compared while upper 
case letters are used for auxiliary random processes and their convex com- 
binations. 

Theorem 1.3 is generalized in the following sections by relaxing condition 
(1.1) so that it need only hold when x~ is sufficiently large, and by allowing 
nonconstant m and p. An application is presented in Sect. V. 

II. Domination on a Half  Line Reflecting Dominating Process 

We now make the following assumptions: 

u, p and Yo are constants with Yo_-> u. 

rn is a convex, Lipschitz continuous function on [u, + c~). 

v is a Wiener process. 

Then by Skorohod's  theory [9] (see [13] for a more general theory) a pair (1, y) 
is (strong sense) uniquely determined by fin, p, u, v, Y0) and the equations 

dyt = m(yt)dt + p dvt + dlt, 

yt>=u, I { y t > u } d l t = O ,  /0=0, y0 given, (2.1) 

l is continuous, nondecreasing. 

The process y is a Markov  diffusion, and if the boundary u is reachable it is 
instantaneously reflecting. In the special case that m is a constant function we 
can write (l, y) explicitly as 

y t = y o + m t + p v t + l t  

lt= max ( u - y  o - m s - p v s )  +. 
O<_s<~t 

Theorem 2. Suppose that x is a semimartingale with representation 

dx  t = # f i t  + atdw t + d2 t 
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(here 2 is a sample continuous process with finite variation over each bounded 
interval, a.s. and 2o =0) and let (y, l) satisfy (2.1). Suppose that 

#t<m(xt) and ]atl<P whenever xt>u, 
I{xt>u}d2t<O, and xo<Yo. 

Then 

P[x ,> c] < 2P[yt> c] 

and for any nondecreasing convex junction cb on ]R 

E~(x,)_<_E~(y,). 

Proof. Let ~ be a Wiener process independent of (x, #, a, w, 2), set 

i p if a t < - p  
at = t if --p<at~,O 

if at>p 

and let (yi, 1 i) be defined by (for i=- 1, 2) 

d rt i= m(Yti)dt + [~tdwt + ( - 1)~(p / - 8t2) 1/2 dfvt] + dl~, 

Yt~>=u, I {Yt~>u}dl~=O, /~=0, Y~=Yo, (2.2) 

l i is continuous, nondecreasing. 

For  each i, the term in square brackets in (2.2) is the differential of a Wiener 
process multiplied by p, so y1 and y2 each have the same distribution as y by 
uniqueness in law of the stochastic differential equations. 

Define 
ft -Ytl+Y~2 and N t -  m(Ytl)+m(Ytt2) 

2 2 
Then 

d~=rfitdt +~tdwt +�89 +dl 2) 
and so 

d ( x -  Y, x -  f)s=(as-~s)2ds. 

Now as = ~s whenever xs > u (and hence whenever Xs > Ys) so 

t 

I { x s -  ~ > O } d ( x -  Y, x -  Y)s=O. (2.3) 
o 

Using (6.2) to reexpress the left side of (2.3), we conclude that 

L~(x-  Y)da = 0 
o 

which, by the right continuity of L~ in a, implies that 

L~ - Y) = 0. (2.4) 
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By It6's formula (6.1) and by (2.4), 

t 

(.,,:,- =f  X{Xs> 
0 

Then, using the fact that xs > u whenever Xs > ~, and using the fact (due to the 
convexity of m) that r~t > m(~), we have 

t t 

(xt-  Yt) + =S I{xs> g}(ps-Ns)ds+ I I{x~> ~}d(2, a 1 - (ts + q)) 
0 0 

t 

< [. I{xs> ~}(m(x~)-m(fO)ds 
0 

t 

<=k I ds 
0 

where k is the Lipschitz constant of m. Therefore (xt-Y0 + --0, or equivalently 

"~t~Xt for all t,P a.s. 

The remainder of the proof follows that of Theorem 1.3. 

Remark. If u = 0  and m(O)-m then the transition density of y is given in terms 
of the standard Normal  distribution function N by 

pt(Olyo):~--~{NL-O-y~ -j - e x p  [~][2mO]N[-(O+Y~ 2 -j j (2.5) 

and, if m < 0, the invariant density is 

p2 
p+oo(O)=Te-~~ where 7 = - 2 m '  

Thus under the conditions of Theorem 2, if m < 0 then 

and 

lim sup Eq~(xt) < ~ 7e -~(a+u)da  
t ~ c o  0 

lim sup P [xt > c] < 2 e- ~(c-,). 
t ~ c o  

Also, for example, if P[xo>c]<e -~(c-") for all c then (take xo=Yo) 
P[xt>=c] < 2 e  -7(c-") for all c and t. 

Ill.  Variable Diffusion and Zero Drift 

An alternative technique, namely random time transformation, is applied in 
this section only. The technique is best suited to the case that the processes 
have zero drift. 
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Theorem 3. Let  x be a continuous martingale with representation 

x t = x o +  i asdws 
o 

such that Jor some Lipschitz continuous Junction p on IR 

Io'sl < p(xs) .  

and let y be the unique solution to the stochastic differential equation 

Yt=Xo + i p(ys)dw~. (3.1) 
0 

Then for any convex function ~ and any t > 0 

E q)(xt) N E ~b(yt). (3.2) 

Proof  Define a nondecreasing process 6 by 

du 
o P ( x . )  2 

with the convention that the integrand is one when cr,=p(x,)=O. Then 6( t )<t  
and, on the other hand, we can assume without loss of generality that for some 
constants a and b with b > 0, 

6 ( t ) > a + b t  for all t~O. 

2 (If this is not already true, simply modify x by choosing au =p(xu) z for all u 
larger than a given t for which inequality (3.2) is to be established.) Next, for 
each s > 0 define the stopping time 

~(s) = inf {t: 6(t) > s}. 
Then 

s <= z(s) < (s - a)/b. (3.3) 

Define a random process z by 

zs = x~(s); (3.4) 

then, since x and 6 have the same intervals of constancy, 

zo(o = xt. (3.5) 

Next, applying Lebesgue's formula for transformation from Lebesgue to Stielt- 
jes integrals [1, p. 120] 

~(s) 

z~ - i P(zO~ dt= z~-  ~ P(zo(,)~ d'~ 
0 0 

~(s) 
2 = XT(s)- ~ a2 dt. (3.6) 

0 
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By (3.3), (3.4) and (3.6), the optional sampling theorem implies that 

(z,) and ( z 2 - i  p(zs)2ds) are cont inuous martingales 
o 

Thus z is a weak solution to the equation defining y, and under our assmnp- 
tions the solution is unique. Thus 

z ~ y  (3.7) 

Now, if ~b is a convex function then ~(zs) is a submartingale. Therefore since 
a(t) < t the optional sampling theorem implies that 

E �9 (zt) > E cb (za(o). 

F rom (3.5) and (3.7) we conclude that 

E~b(yt)>=EOb(x,). [] 

IV. Variable Diffusion and Drift 

When the dominating diffusion y has a nonconstant diffusion coefficient it may 
no longer be possible to dominate x pathwise by f ini te convex combinations of 
processes with the same distribution as y (see remark at the end of the section). 
However, an infinite convex combination suffices: 

Theorem 4.1. Suppose that m and p are each convex Lipschitz  continuous Junc- 
tions on IR, and suppose that # and a are BoreI measurable functions on IR x ]R + 
such that for  some constant K and all O, O' in IR and t > 0  

b,(0, t ) -  ~(0', t)l + I~(0, t ) -  G(0', t)l-<_ K I0 -  0'I 
and 

I~(0, t)l + It(0, t)] __<K(1 + IOl). 

Let  x and y be solutions to the stochastic difJerential equations: 

dxt = # ( x ,  t)dt + ~(x~, t)dwt 

dyt = m(yt)dt + p(yt)dv, 

where w and v are Wiener processes. Suppose that 

#(0, t)<m(O), O<a(O, t)<p(O) for all 0, t 

and that Xo and Yo are constants with xo < Yo . Then 

E ~(xt) __< E ~(yt) 

for  any nondecreasing convex function 4) on ~ .  

Proof  We will first prove the theorem under the following extra assumptions: 

~b is Lipschitz continuous (4.1) 
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and for some 8 with 0 < e < 1, 

e<p(O) and a(O,t)<(1-~)(p(O)-e) for all 0, t. (4.2) 

Given any Borel measurable function f on the interval [0, 1] we will ab- 
breviate 

1 b b 

~f(cOdc~ by ~f(c~)de and ~f(cOdc~ by ~f .  
0 a a 

Let  L 2[0, 1] denote  the space of Borel measurable functions f on the interval 
[0, 1] such that Ilf][2 is finite, where for any p >  1, 

[I f lip = (5 f(e)Vde) alp" 

Since p is Lipschitz cont inuous there is a constant  K v such that 

p2(O)<=Kp(l +02) and ]p(O)-p(O')l<Kp[O-O']. 

Choose a positive constant  D so large that  Ko(1 + D1/2)/D__< e/2 and define ~ by 
(0) = min (p (0), D). 

L e m m a  4.2. For rl in L 2 [0, 1], 

1 

p(tl,)-~)(th)dc~<=e/2 whenever Ilt/[[2 ~ D 1/4 
0 

Proof of Lemma 4.2. 

1 1 

p(tl~ ) - ~(tl~)da<= ~ (p(tl~)- ~)(th))P(th)da/D 
0 0 

<= []p(rl)[]~/D 

<=Ko(1 + [[t/l[2)/D 

which implies the lemma. [ ]  

L e m m a  4.3. Let f and g Borel measurable Junctions on the interval [0, 1] such 
that for some constants D, a, and b, 

If(cOl<D; Ig(e)l_-<D; 

f(cOda = ~ g(cOde = O; 

f(a)<=O(resp, f(cO>O if o:<a(resp, a > a ) ;  and 

g(a)<O(resp, g(cO>O ) if e<b(resp, a > b ) ;  

Then 

II f -  g II 2 < (111fl - Ig l  II 2 § 6D II Ifl --Igl Ih 2) 1/2- 

Proof of Lemma 4.3. Suppose without  loss of generality that  a < b. Now 
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and 

b 

IIf-g/12 ~ rIIfl-Igl 1122§ " (Ill § 2 
a 

b b 

< Hill-Igll[2 z +2  y Ifl 2 +2  5 Igl 2 
a a 

2!  If[2 <2D ! l f l  = D (2 i I f l - 2  i l f l ) =  D (2 i l f l --  Ifl 
0 0 0 

=<o (2 i,j,-2 (2 
0 0 0 

< 3D/I I f l -  Igl Ilx < 3D I l l f l -  Ig1112. 

Similarly 
b 

2 5 Ig] 2 =< 3 D II I f l -  I gl ]12. 
a 

These inequalities easily imply the lemma. [] 

Given t/ in L210, 1] and a nonnegative number 0 define functions B(t/, 0; .) 
and F(t/, 0; .) on [0, 1] by 

B(t/, O; ~)= 2(~/, O)~(~h) 
where 

0 
2(~/, O)=min ( i - z ,  S ~(~/~)d~) 

and 
~)=5 P(~/~) ~/1-2(~/, 0) 2 if ~<y(t/, O) 

F(~, 0; [ - f iOl~)l /1-2(q,  O) 2 if ~>7(q, O) 

where ?07, O) is uniquely determined by the condition 

F(t/, 0; a)dc~=0. (4.3) 

We seek a two parameter random process (Y(t, e): (c~, t)r 1] x IR+) which 
is jointly measurable and adapted with 

IIIYIllt~g sup IIY(s, ")112< +oo 
0 < s _ < t  

for all t, and processes x, w and # such that 

d Y ( t, c0 =m(Y(t , cO )dt + B( Y ( t , .), a(xt, t); a)dwt 

+ F(Y(t ,  .), cr(xt, t); e)d~vt, a.e. c~, 

d x  t = I~(Xt ,  t) dt + a(x,, t)dwt, (4.4) 

Y(0, c 0 = Yo; Xo is given, 

w and # are independent Wiener processes. 
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Using Lem ma  4.3 it is easy to verify that the maps 

(~,O)~ B(~,O; .) 
(7, 0).~ F(~, o; .) 

are each bounded,  uniformly cont inuous maps from L2[0, 1] x Ill+ to L210, 1]. 
Hence,  we can apply (a lemma-by- lemma generalization of) the Skorohod  
theory of existence of weak solutions as presented in [11, Sect. 6.1] or in [4] to 
deduce the following: 

If we allow a change in probabil i ty  space and, in particular,  we allow 
substi tution of new processes x and w (with the same distribution) for those 
originally given, then a collection (x, Y, w, #) which satisfies condit ions (4.4) 
exists. 

Define 
mt= ~ m( Y(t, cO)da 

Bt = ~ B(Y(t, "), a(xt, t); ~)d~ 

f~=~ ~(t, ~)d~. 

Then, using (4.3) and (4.4) we have 

d ~ = ff~tdt + JBtdwt; No = Yo" (4.5) 

For  a.e. e, we have for all t 

B( Y (t, "), a(xt, t); ct) 2 + F ( Y (t, -), a(xt, t); e)2 = ~(y(t ,  ct)) 2. 

Therefore,  for a.e. a, 

d Y(t, c 0 = m(Y(t, e))dt + f)(Y(t, cO)dw ~ 

where for each cq w = is a Wiener  process. Thus, for a.e. c~, Y(., c~) has the same 
distribution as the solution yD to the stochastic differential equat ion 

dYtD=rn(y~)dt + p(yD)dv,; Y~= Yo. 

That  is 
y D  y ( .  ~) a.e. c~ (4.6) 

Next, define a stopping t ime z by 

~= in f{ t :  ]lY(t, ")]]2>D1/4}. 

If t < z then by Lemma  4.2, 

p(Y(t, cO)de<- ~ ~)(Y(t, c0)da+ e/2. 

Thus, if t<z  and [Xt -Yt l_  -<b, where 6=e/2Ko, then 

p(xt)<p(~)+ Kp]xt - ~[<=~ p(Y(t, ~))da+e/2<~ ~)(Y(t, cO)d~+~. 
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So, if t < r  and Ix t -~1  <6,  then (using (4.2)) 

a t e (1  --Q(p(xt) --e) --<(1 --e) f D(Y(t, c~))dc~ 

from which it follows that/3t = at. Consequently, if v' is defined by 

~ '=min  {t_>0: x t -  ~ > 6 }  
then 

/3t=a~ i f ( t<min(~ ,~ ' )  and x t - ~ > O ) .  (4.7) 

Compare the equation for x in (4.4) to equation (4.5) and use equation (4.7) to 
conclude by the same argument used in the proof  of Theorem 2 that xt < Yt for 
t_< rain (~, ~'). Therefore z '>  v and so conclude that 

xt < ~ for t <= z P a.s. 

Using (4.6), note that 
1 

E sup [(Y(s, ")I[2NE~ sup Y(s , e )2da=E sup (yy)2. 
O<-s<~t 00<--s<-t O<-s<--t 

The final term is bounded by a constant which does not depend on D. Thus, 
for any fixed t, 

P [ ~ > t ]  -* 1 as D--+ + oo. 

As D varies for t fixed, the random variables ~(Y(t)) are uniformly integra- 
ble since (using the Lipschitz assumption on ~) 

E qs(Y(t)) 2 < K ,  + K2 E(fZ(t) 2) 

<_Ki + K2E ~ Y(t, ~)2dc~ 

= K 1 + K 2 E [ytD) 2] 

and the last term is bounded independently of D. Thus, if we write " f ~ g "  to 
mean that [ f - g [  can be made arbitrarily small by choosing D sufficiently large, 
we have 

E cI)(yt) ,,~ E cI,(yt D) = E ~ q~(Y(t, cO)dc~ > E q~(f(t)) 

E [~  ( f ( t ) ) I  {t < z}] > E [~(xt)I  {t < z}] 

This establishes the theorem under the extra conditions (4.1) and (4.2). 
We will now consider the general case in which (4.1) and (4.2) may no 

longer be true. First, we may assume that q~ is Lipschitz continuous without 
loss of generality since in general q5 is the limit of a monotone increasing 
sequence of nondecreasing, convex Lipschitz continuous functions ~,  - thus we 
only need prove the theorem with ~ replaced by ~b, and then let n tend to 
infinity to deduce the theorem with �9 replaced by q~, and then let n tend to 
infinity to deduce the general case by monotone convergence. 

Next, suppose that 0 < ~ < 1 and let z ~ be the process defined by 

dzt =m(zt)dt  + p~(z~)dvt; ~ -  zt - Yo 
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where  
p~(O) = ~ + p(O)/(1 - e). 

Then when (p, y) is replaced by (p', z ~) the assumptions of the theorem as well 
as the stronger assumption (4.2) holds. Thus, we can apply the theorem to 
conclude that 

E �9 (xt) < E �9 (z~). (4.8) 

Now by standard estimates used to prove existence and uniqueness for so- 
lutions to stochastic differential equations, we can easily show that 

l i m E  sup ]z~-ys]2=O. 
~ 0  O<-s<-t 

Therefore, the right side of inequality (4.8) converges to Ecb(yd as e tends to 
zero, which proves that E O(x,) < E O(Yt) as claimed. 

Remark. The conditions of Theorem4.1 are satisfied when re=O, p(O)=O, y 0 = l  
and x t = l  for all t. Using It6's formula it is easy to verify that then yt=exp(v~ 
- t /2) ,  and so P[yt>= 1] is equal to P[vt>t/2]  which tends to zero as t tends to 
infinity. Thus, inequality (1.2) is not true (even if 2 is replaced by a larger 
constant). Thus, x is not pathwise dominated by a convex combination of any 
finite number of processes with the same distribution as y. 

V. Application to Semimartingales in n Dimensions 

Let z be a semimartingale in IR" with representation 

dz~=c~tdt + ~ fitJ dwt 
J 

where c~, flJ are adapted, n-vector valued locally norm square integrable, and 
(w]: l < j < p )  is an adapted vector Wiener process. Use " l l l r '  to denote the 
Euclidean norm in ~" .  

Theorem 5. Suppose there is a function g and positive constants p and u such 
that 

Zt 
- - ' ~ , < g ( l l z ,  ll) IIz~H 

and whenever []zt]l >u 
(~ tlfljll2) ';2 <__. 

J 

Suppose also that m defined by 

re(o) = g ( 0 )  + p2/20 

is convex and Lipschitz continuous on [u, + oo) (for examples, g may satisfy 
these conditions). Let (y, l) be a (pathwise unique) solution to the stochastic 
differential equation 

d yt = m (YO d t + p d vr + d It, 

y~>u, l{y ,>u}dl ,=O,  lo =0,  Y0 =max(llz0ll, u), 

l is continuous, nondecreasing. 
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Then 
PE[lzt[I >c]<2PEYt>C] Jbr c in IR, 

and for any nondecreasing convex function 4~ on IR 

(5.1) 

E q~( l[zl[t) <= E q~(yt). (5.2) 

Proof Let x be defined by x ,=max(u,  Ilztlr). Equivalently, xt=max(u, st) where 
st is the one parameter semimartingale st=h(zt) where h is any twice con- 
tinuously differentiable function such that h(z)= I[zlJ if Ilzll__>u and h(z)<u if 
Jlzll<u. Hence, we can apply It6's formula (6.1) to yield that xt is a senti- 
martingale with representation 

dxt= #tdt +l-  Z zt. fitdw] + d2t= #tdt + atd~t + dZt 
Xt j 

where 

I~,- =- [zt'c~r Y~ llfl{ll =-,~?]/x. 
J 

# is a Wiener process (the construction of which may require enlarging the 
probability space if at is sometimes zero), and 2 is a continuous increasing 
process (twice the local time of Ilztl[ at u) which is increasing only when I[ztll 

By the Schwarz inequality 

a2-< 2 ]lfltJ[I 2, 
J 

so that la t l<p and #t<m(xt) whenever xt>u. Therefore Theorem2 can be 
applied to (x, p, m) to yield (5.1) and (5.2). [] 

Examples. If g(O)= c-p2/20 then re(O)= c and y~-u has transition density (2.5). 
If g(0)= - x - p Z / 2 0  then y is an Ornstien-Uhlenbeck process which is modified 
to reflect at u. If g(0)--K/O then y becomes a Bessel process which is modified 
to reflect at u. 

VI. Appendix - Local Time for Continuous Semimartingales 

In our proof of Theorem 2 we use a method suggested by Perkins [8] which 
was used by Le Gall [5] for establishing a comparison theorem along the lines 
of Theorem 1.1. The method is based on local times - a topic we briefly review 
here. 

The local time of a continuous real-valued semimartingale X at a is the 
nondecreasing process IYt(X ) defined by 

L~(X) = [Xt-a]-  IXo - a l -  i I{Xs>a}dXs. 
0 



Mean Stochastic Comparison of Diffusions 329 

One can show (see [14]) that there is a version of L(X) which is jointly 
(continuous in t and right continuous in a). It6's formula can be generalized: if 
f is the difference of two convex functions then (see [7, Sect. VI.II, especially 
(13.1) and (14.3)]) 

t 

f (X,) = f (Xo) + ~ f'(X~) dX s + ~ f"(da) I~(X) (6.1) 
o IR 

where f '  is the left derivative of f and f "  is the generalized second derivative 
(in general, a a-finite signed measure) of f 

Finally, if g is a nonnegative Borel function on IR [7], 

i g(Xs) d(X,  X)~ = y g(a)I~(X)da (6.2) 
o 

and for each a, 

i I{xs+a}dL~(x)=O. 
o 
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