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Limit Laws for Mixtures with Applications 
to Asymptotic Theory of Extremes 

Janos Galambos* 

1. Introduction 

For a sequence X 1 , X 2 ,  . . .  of random variables, consider the events 
Aj(x)={Xj>x}, j =  1, 2, ..., where x is an arbitrary real number. Putting v,(x) 
for the number of Al(x),A2(x),...,A,(x) which occur, the event {v,(x)=0} 
reduces to {Z,<x},  where Z,=max{X1,X 2 . . . .  ,X,}. Here n can be a given 
integer or a random variable itself. This research has, in fact, started with the 
aim of unifying techniques for proving limit laws for the extremes when (i) the 
X's are independent and n is a random variable, independently distributed of 
the X's and when (ii) the X's are from an infinite sequence of exchangeable 
random variables and n is a fixed integer. The common property of these two 
cases is that the distribution of v, (x) can be written in the form 

P(v,(x) = k)= E[fk (n , y(x))] (1.1) 

where fk(n, y(x)), k=0,  1, 2, ..., is a probability distribution with parameters n 
and y. As a matter of fact, in the two quoted cases, 

fk(n, y)= (~) yk(1-- y) "-k, (1.2) 

where in case (i), n is a random variable and y=y(x) is a given function, while 
in case (ii), n is given and y=y(x) is a random variable. Our aim in the present 
paper is to investigate the limiting properties of (1.1) under assumptions on 
fk(n, y), which includes, but is not limited to, (1.2). We shall then apply the results 
to asymptotic theory of extremes. These results extend those of Berman [2] 
and [3], Benczur [1], and the limit theorem in Kendall [7] as well as classical 
results on the asymptotic theory of extremes. 

Section 2 gives the general limit law together with some examples, while in 
Section 3, we discuss extreme value theory. 

2. A Limit Theorem on Mixtures 

Let fk(2, ~) be a two-parameter (,~, ~) family of discrete distributions on the 
non-negative integers k=0 ,  1,2, .... We assume that fk(2, C~) tends to a one- 
parameter family gk(a) of distributions as 2 and ~ go through certain sequences 
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{4.} and {%} of real numbers, where, as n ~ + oe, 

limfk(2 ., a c%) = gk(a) (2.1) 

for any a>O. We further assume that the sequences {4,} and {e,} determine 
one another in the following sense: given {2,}, if for each k, as n ---> + oe, 

limfk(2., %) = hmfk(2,, ,) ,  

then lime,/c~*= 1, and conversely, given {e,}, a similar property is satisfied by 
the sequence {4,}. 

We say that a distribution gk(a), k=O, 1,2, ..., generates an identifiable 
mixture of distributions if a distribution function U(a), U(O)=O, is uniquely 
determined by the sequence 

d-oo 

pk= ~ gk(a)dU(a), k=O, 1,2, . . . .  (2.2) 
0 

We now have the following result. 

Theorem 2.1. Let the two-parameter family fk(2, CO, k=O, 1, ..., of distributions 
satisfy the preceding assumptions and we further assume that its limit gk(a) 
generates an identifiable mixture of distributions. Let U,(a) be a sequence of proper 
distribution functions with U,(O)=O for each n. Then, for each k, as n---> +o% 

lim ~ fk(2., a%) dU,(a)=pk (2.3) 
0 

exists and {Pk} is a distribution if, and only if, as n ~ + co, 

lim U,(a)-- U(a) (2.4) 

exists at each continuity point a of U(a) and U(a) is a proper distribution function. 
When they exist {Pk} and U(a) satisfy (2.2). 

Remarks. 2.1. Naturally, the roles of the two parameters 2 an ~ can be freely 
interchanged and thus the above statement can be repeated when 2, takes the 
role of %. 

2.2. We shall discuss applications of Theorem 2.1 to special choices of fk(2, ~) 
in detail after the proof. We mention, however, already here that several other 
choices of fk(2, ~) can lead to interesting applications as indeed several important 
discrete distributions satisfy our assumptions, see Johnson and Kotz [6], in 
particular pp. 31-48, 76-79, 104-114, 137-138 and 248-253 as well as Chapters 
8 and 9. For identifiability of mixtures, see Teicher [10] and its references. 

Proof of Theorem 2.1. Sufficiency. Put 

-koo 

pk, = ~ fk(2,, ae,)dU,(a).  (2.5) 
0 



Limit Laws for Mixtures with Applications to Asymptotic Theory of Extremes 199 

Multiplying (2.5) by e irk and adding up with respect to k from 0 to + Go, we get 

+ c o  + c o  

q~,(t)= ~ Pk,, ei'k= ~ 0(t;  2,, a~,) dU,,(a), (2.6) 
k - O  0 

where @(t; 2, ~) is the characteristic function of the distribution {fk()O, ~)}. 

By assumption, @(t; 2n, a~,) tends to the characteristic function ~(t; a) of 
the distribution {gk(a)}. Hence, by the Helly-Bray lemma ([8], p. 180) and by 
(2.4), for any fixed A, as n -~ + oo 

A A 

lim ~ O(t; 2,, ae,) dUn(a)= ~ ~(t; a) dU(a). (2.7) 
0 0 

On the other hand, for A with 2(1 - U(A))<e, and for n sufficiently large, 

and thus, as n --, + o% 

+ c o  +oo  

lim ~ 0(t;  2.,ae.)dU.(a)= L( ~(t; a)dU(a). 
0 0 

(2.8) 

Since ~(t; a) is a characteristic function in t, the right hand side of (2.8) is con- 
tinuous at t = 0  and thus, by the continuity theorem of characteristic functions, 
(2,3) holds and the limit is a proper distribution by U(a) being so. The sufficiency 
part of the proof is thus completed. 

Necessity. Assume that (2.3) holds and that {Pk} is a distribution. By the 
compactness of distribution functions ([8], p. 179), U,(a) has a subsequence 
U,o~(a), such that U,(~)(a) tends weakly to a distribution function U*(a) (possibly 
not proper, as yet). Repeating the first part of the proof for this subsequence 
(replacing 1 -  U(A)<e by U*(+  oo) -  U*(A)<e), we have from (2.8) 

+oo  

Pk = ~ gk(a)dU*(a) �9 
0 

Since U,(0)=0 for each n, U*(0)=0. On the other hand, from the assumption 
of {Pk} being a distribution, we get that U*(+ oo) = 1, that is, U*(a) is a proper 
distribution function. But since gk(a) generates an identifiable mixture of distri- 
butions, {Pk} uniquely determines U*(a). Therefore, any weakly convergent 
subsequence of the distributions U.(a) has the same limit U*(a), that is, U,(a) 
is weakly convergent, which proves the necessity part of our theorem. Since by 
the uniqueness theorem of characteristic function, (2.8) and (2.2) are equivalent, 
Theorem 2.1 is established. 

Let us give some examples for application. 

Example 2.1. Let 

fk(2,~)=(2k)~k(1--O:)~-k, k=0,  1, ..., 2, 
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where ): is a positive integer and 0 < ~ < 1. If 2, ~ + ~ and for ~, ~ a/,t,, 

fk()~ n , an)  --* gk (a )  = a k e -~/k!, 

and thus our assumptions are evidently satisfied (the fact that the Poisson distri- 
bution generate an identifiable mixture of distributions is well known). 

Theorem 2.1 therefore implies 

Corollary 2.1. For each k, as )~ ~ + ~ ,  

lim~ ek(1--CQ~-k dux(~)=pk 
0 

exists and {Pk} is a distribution if, and only if, U~*(a)= Ua(a/2) converges weakly 
to a distribution function U(a). The limits Pk satisfy 

1 + ~  
! ake "dU(a). Pk = ~  

Since the Poisson distribution generates an identifiable mixture of distri- 
butions, Corollary 2.1 yields 

Corollary 2.2. A s  2 ~ + ~ ,  

lim ~ ek(1--e)x kdUa(e)=pk 
o 

is a Poisson distribution if, and only if, Ux(a/2)= U*(a) tends to U(a), degenerated 
at a positive number. 

Interchanging the roles of 2 and e in Example 2.1, we get from Theorem 2.1 

Corollary 2.3. Let U~(2), for fixed c~, be a distribution function having jumps 
only at non-negative integers. Then, as ~ ~ O, 

? 
exists for each k and {Pk} is a distribution if, and only if, U2"~(a).= U~(o~a) converges 
weakly to a distribution function U(a). The limits Pk satisfy 

1 + ~  
! ake ~dU(a). 

It is interesting to note that the limit distributions {Pk} in Corollaries 2.1 
and 2.3 are formally the same. In the next section, where we apply these corollaries, 
we shall return to this remark. 

Example 2.2. For integers M, N and n, let 

Putting 
fk (2, ~) = h k (2 N, N, c 0, N > e, 
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where N can vary independently of (2, c0, except that N > c~ should be satisfied, 
we have from Theorem 2.1 

Corollary 2.4. For fixed a and N, with c~ < N, let U, (2) be a distribution function 
with jumps at the values k/N, 0 <_ k < N. Then, as ~ ~ + oo, 

1 N - 2 N  N 

exists for each k and {Pk} is a distribution if, and only if, U~(a)= U~(a/cO converges 
weakly to a distribution function U(a). The limits Pk are necessarily of the form 

1 +oo 
! ake -~ dU(a). Pk = ~d. 

Example 2.3. Let S(t) be the number of occurances in the interval (0, t) in a 
Poisson process with intensity one, that is, 

t k e - *  

n(s(t)=k)= k! 

Let Xa, X2, ..., Xa be independent uniform variates on the interval (0, e) and let 
the X's be independent of the Poisson process. Put 

fk(2, a)= P(S(Wa)= k) 

where W~=min(X 1, X2, ..., Xx). Since 

P(W~ <x)= I -  ( 1 - - ~ )  ~, O<_x<_c~, 

by our assumptions 

k _ x  "~ o? - 1 ~ [  1 -  dx, 

which, by the dominated convergence theorem, has a limit as 2--* oo and e ~ 2/a 
with a fixed a > 0, 

1 +~ a 
fk(2, ~ ) ~ g k ( a ) = ~  ! xke-xae-aXdx= ( l+a)k+l- ,  

a geometric distribution. Since, as one can easily see, all of our assumptions are 
satisfied, S(Wx) with random sample size 2 has a limit, as e ~ + c~, if, and only 
if, 2/e has a limiting distribution U(a). In this case, 

+oo 

limP(S(Wx) = k) = ~ a o ( l+a)k+l  dg(a). 

The only problem may be here to see that gk(a)=a(l+a)-k-1 generates an 
identifiable mixture of distributions. This however easily follows by considering 
the transformation y =  1/(1 +a), by which the mixture of gk(a) and U(a) becomes 
the k-th moment of a distribution bounded by 0 and 1. Such a distribution is 
known to be determined by its moments. 
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We included this last example for illustration of Theorem 2.1 being applicable 
to a variety of problems and in particular, to give an example where gk(a) is 
not a Poisson distribution. For additional examples, see Remark 2.2. 

Corollaries 2.1 and 2.4 are significant in terms of exchangeable events. We 
say that the events A1, A 2 . . . . .  A N are exchangeable if the probabilities 

Wk=P(AilAi2. . .Ai~),  l < i l < i 2 < . . . < i k < N + l  (2.9) 

depend on k but not on the actual subscripts ij, 1 < j < k .  There is a significant 
difference between situations when N = + ~ and when N can not be increased 
to infinity. In case of N = + oo, the now classical theorem of DeFinetti [4] says 
that there is a random variable ~ such that 0 < ~ < 1 and 

w k = E (~k). (2.10) 

Therefore, if v denotes the number of A 1, A 2 ,  . . . ,  A n which occur, we have 

and Corollary2.1 therefore gives a necessary and sufficient condition for the 
existence of a limiting distribution {Pk} of V, when, for each n, A j = A j , , , 1  < j < n ,  
is a segment of an infinite sequence of exchangeable events. In this setting, 
Corollary 2.1 is essentially due to Benczur [1]. 

Let us put Wk, . and 4, for w k and ~ respectively when we have sequences 
{Aj,,}, n = 1, 2,. . .  of infinite sequences of exchangeable events. Then, if, as n ~ + 0% 

n w l , , ~ a > O  a n d  //2Wz,n---~a 2, (2.12) 

~n/n --* a in probability by the Chebishev inequality, which in turn implies that ~,/n 
has a degenerate limit law. Corollary 2.2 thus yields that v, has a limit law and 
it is Poisson, which is the limit theorem obtained by Kendall [7]. Though 
Kendall's limit theorem has been reobtained in the literature a number of times, 
the present setting may give some new light to its significance. First of all, it 
gives the best possible result in terms of Poisson limits of v, if only the sequences 
{Wk,n) but not the variables ~, are known. Secondly, it immediately extends to 
a simple criterion for obtaining gk (a) as limit law in the notations of Theorem 2.1. 

If the sequence A j, 1 __<j__< n, is from a finite set of exchangeable events then 
DeFinetti's Theorem does not apply. It was shown by Kendall [7] that in this case, 

P(v,  = k) = ~ n - k n 
o 

where UN(x) is a distribution with jumps only at non-negative integers and 
U N (N) = 1. Corollary 2.4 is therefore giving a criterion for v. to have a limit law. 
The limit law will again be Poisson if, and only if, the limit distribution U(a) is 
degenerate. A sufficient condition for this case, similar to Kendall's result for 
infinite sequences, was obtained by Ridler-Rowe [9]. We remark here that it 
was obtained in my paper [5] that exchangeability is not important here: the 
distribution of the number of those occurring in a given sequence of n events 
can always be reduced to exchangeable ones. In principle, therefore, Corollary 2.4 
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is applicable to v, when the sequence A ~ , , , A 2 , , , . . . , A , , ,  is arbitrary. This 
possibility is, however,  limited by lack of knowledge on N when only w~, w2, ... ,w, 
of (2.9) are available (this same difficulty also arises when the A's are known to 
be  exchangeable). 

3. Extreme Value Theory: Exchangeable Variables and Random Sample Size 

For  a triangular array X~,,, 1 =<j=<N(n), n =  1,2, ..., of  r andom variables, 
we consider the order  statistics 

X *  < Y *  < . . . < X * . ,  N = N ( n ) .  

For  fixed t, as n-~ + ~ ,  X* t,, are called the extreme values or extreme order  
statistics. In this section, we investigate condit ions for the existence of normalizing 
sequences {a,} and {b,} such that  

P,(X~_ t,, < a,  x + b,) = F,, t(x) (3.1) 

tends to a limit for each t, as n ~ + ~ ,  for two systems of Xj,,:  (i) for each n, X~,,, 
1 < j < n ,  is a segment of an infinite sequence of exchangeable variables and (ii) 
the X's are independent  and identically distributed and the size N(n) of the n-th 
row is a r andom variable which is independently distributed of the X's. In both  
cases we assume that the sequences {a,} and {b,} are, in a sense, characteristic 
sequences of the extremes. Let us put  this requirement  into a definition. We say 
that {a,} and {b,} are characteristic sequences of the extremes if for at least 
one fixed t, as n ~ + ~ ,  

l imF,, t(x)=F~(x)>O for x > x  o, (3.2) 

and for any function t(n) ~ + ~ as n ~ + ~ ,  

lim F,, t(,)(x) = 1, x > x  o . (3.3) 

Lemma 3.1. {a,} and {b,} are characteristic sequences of the extremes if, and 
only if, the limits Ft(x ) in (3.2) satisfy the condition that, as t-~ + ~ ,  

lim Ft (x) = 1, x > x  o . (3.4) 

Proof  Evidently, for t I < t 2, F,, t2 (x )>  F,, t,(x) for any x. Hence, for n sufficiently 
large and for any fixed t, 

F..,(.~ (x) _>_ V., ~(x), 

if t(n)-~ + ~ with n. Therefore  (3.4) implies (3.3). Conversely, assume that (3.4) 
fails. Since Ft(x ) is mono ton ic  in t, l imF~(x)=q(x) always exists as t ~ + ~ .  
Hence, if q ( x ) < l ,  there is an N such that for all fixed t, and for all n > N ,  
F , , t (x )<q*(x)< 1. Thus, for any n > N ,  we can have with a T>t (n ) ,  

V.,,~.~ (x) <= F., ~(x) <= q* (x). 

Since the extreme right hand inequality does not depend on n, (3.3) also fails in 
view of the choice of  q*(x). The  proof  is completed.  

Before formulat ing our  results, let us quote  the definition of exchangeabil ty 
of r andom variables. A sequence Y1, Y2,-.. of r andom variables is called 
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exchangeable if the distribution of the vector (Yil, Yi2, "", Yi~) for distinct sub- 
scripts ij depends on k only, that is, it does not depend on the actual subscripts ij, 
l < j < k .  In particular, the events {gj>x} are exchangeable in the sense of the 
previous section and we can therefore apply DeFinetti's Theorem as expressed 
in (2.10) and (2.11). Let us put ~n(x) for the random variable in (2.10) and (2.11) 
for the sequence Az . (x )={Xzn>x} ,  l < j < n ,  and let Vn(X) be the number of 
those among Aj,.(x), which occur. Then evidently 

{Vn(X) = 0} = {X.*n < X} 
and, in general, 

{Vn(X)--_< t} ----- {X*_ t,. < X}. 
Thus, putting 

(3.5) 

(3.6) 

(3.7) 

lim Un( ~- ; a ,x  + bn) = U(a; x ) (3.9) 

exists and is a proper distribution function. Ft(x ) is necessarily of the form 

t 1 q-m 

b; (X) = k~k-]-= �9 o ~ ake-" dU(a; x). (3.10) 

In order to apply Corollary 2.1 to obtaining Theorem 3.1 we have just to 
observe that, in view of (3.6), the existence of the limits ha (3.8) is equivalent to 
v,(a n x+b,)  having a limit law {Pk(X)}. The requirement that {pk(x)} be a proper 
distribution is equivalent to (3.4), which, by the conclusion of Lemma 3.1, is 
equivalent to the sequences {an} and {b,} being characteristic sequences of the 
extremes. The theorem thus follows. 

Two special cases have been investigated for t = 0  by Berman [2] and [3]. 
In [2], he restricted himself to the choices of {an} and {b,} when, roughly speaking, 
they can come up as normalizing sequences for the maximum of independent, 
identically distributed random variables. More precisely, let {an} and {bn} be 
such that there is a distribution function F(x) such that, as n ~ + o% 

lira Fn(a, x + b n) = G(x), (3.11) 

a proper distribution function. From classical theory it is well known (and easily 
follows from (3.11)) that (3.11) is equivalent to 

n [1 - F(a n x + b,)] --* - log G(x). 

Thus the condition (3.9) can be written in the form that if {an} and {bn} are such 
that (3.11) is satisfied with some distribution function F(x), then a criterion for 

x)  = 

we have from Corollary 2.1 the following result. 

Theorem 3.1. Let {a,} and {bn} be characteristic sequences of the extremes. 
Then for each t, as n ~ + o% 

lira P, (X*_ t,, < a, x + bn) = F~ (x) (3.8) 

exists if, and only if, as n ~ + o9, 
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(3.8) is the existence of the limit 

lira P. (~. (a. x + b.)/[ 1 - F(a. x + b.)] < a), 
as n--+ + oo. 

The result of E3] is a special case of the following form which may also serve 
as an example to Theorem 3.1. Let G (x, y) be a distribution function in x for given y, 
and let F. (y) be another distribution function. Let the joint distribution function 
of (X i .... X i . . . . . . . .  Xik ,.) be given by 

+oo 

~. G(xl, y) G(x2, y) ... G(xk, y) dF,(y). 
--09 

Then 
~. (x) = 1 - 6 (x, y) 

and thus (y signifying the random point) 

x)= e.(G(x, y)> 1 

= d e . ( y )  
J(c~; x) 

where J(c~; x) is the y-set determined by 

G(x, y)>  1 - ~ .  

The criterion (3.9) therefore reduces to the existence of the limit 

lim ~ dF,(y), (3.12) 
J(a/n;  an x + bn) 

as n---, + oo. Berman [3] deals with the case when G(x, y ) = H ( x - y )  with a distri- 
bution function H(z) and F,(y)= F(y) for all n. With these choices, J(~; x) reduces 
to the interval ( - 0 %  x -  H 1(1-  ~)) and (3.12) to the existence of the limit 

l i m F ( a n x + b , - H - - l ( 1 - ~ ) )  (3.13) 

as n ~ + oo. If F = H is the normal (0, 0 distribution, (3.13) has limit F(x) itself 
with a, = 1, b, = (2 ~ log n) ~/2, independently of a. Hence we get a degenerate case 
F~(x)= F(x) for each t, which is a non-characteristic case for the extremes. We 
intentionally excluded such a case, though evidently the whole theory of Section 2, 
and thus of Section 3, remains unchanged if we drop our requirement of the limit 
{Pk} in Theorem 2.1 being a proper distribution. In this case, in our criterions, 
the limiting distribution U(a) is not necessarily a proper distribution function 
and the normalizing constants {a,} and {b,} are not necessarily characteristic 
sequences of the extremes. 

Another direct consequence of Theorem 2.1, in view of Corollary 2.3, is a 
necessary and sufficient condition for the existence of the limit of F.,t(x ) in (3.1) 
for each fixed t, when the X~,, are independent and N is a random variable, 
independently distributed of the X's. Though the theorem below extends the best 
known one, due to Thomas [11], the emphasis is rather on the fact that our 
Theorem 2.1 unifies this theory with those of exchangeable variables. 
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Theorem3.2. Let Xj,., l < j<N(n ) ,  be independent random variables with 
common distribution function G.(x). Let {a.} and {b.} be sequences of real numbers 
such that, as n ~  + ~ ,  G.(a. x +b.)--+ 1. I f  N(n) is a sequence of positive integer 
valued random variables, independently distributed of the X's, then 

e.(x?~.~ _,.. < a. x + b . )= F..,(x) 

has a limit Ft(x ) for each t if, and only if, as n ~ + o% 

lim P,(N(n)/[1 - G , ( a .  x + b,)] < a ) =  U(a; x) 

exists. When it exists, ~ 1 + ~o 

Ft (x) = k~o = k)-.~ o~ ak e-a dU(a; x). 

I f  {a.} and {b,} are characteristic sequences of the extremes, then U(a; x) is a 
proper distribution function in a. 

The theorem follows from Corollary 2.3 by observing that, with the notations 
of (3.5) and (3.6), 

P~(vN(,)(x)=k)= I [1-G,(x)]kG,(x)~-kdP~(N(n)<2) �9 
o 

As pointed our after Corollary 2.3, it is interesting to note that the distributions 
F t (x) in Theorems 3.1 and 3.2 are formally the same. Hence, results on exchangeable 
variables can immediately be transformed into theorems on extremes of independ- 
ent variables with random sample size. 

Thomas [11] obtained the conclusion of Theorem 3.2 for t = 0 with the restric- 
tion that {a,} and {b,} should satisfy (3.11) for some F(x). 

We conclude this section with a remark. If the sequence Xj, n, 1 < j<N(n ) ,  is 
an arbitrary sequence of random variables, we can appeal to Corollary 2.4 for 

�9 after normalization. This is made possible by obtaining limit laws for Xu t,,, 
Kendall's representation theorem and by my comparison method obtained in [5] 
(see the last paragraph of Section 2). While such an application is mainly of 
theoretical value at the present stage, it may be of interest to remark that the form 
of the limit law will be exactly the same as for the class of exchangeable variables. 
It follows from the form of Pk in Corollaries 2.1 and 2.4. 
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