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Summary. Consider a Markov process on the real line with a specified 
transition density function. Certain conditions on the latter are shown to be 
sufficient for the almost sure existence of a local time of the sample 
function which is jointly continuous in the state and time variables. 

1. Introduction and Summary 

The purpose of this work is to present new sufficient conditions for the joint 
continuity of the local time of a homogeneous Markov process. These con- 
ditions are stated in terms of the transition density function. 

The concept of the local time of a stochastic process was introduced by 
Levy [10] in the case of the Brownian motion process. His work was devel- 
oped by Trotter [14], who proved, in the Brownian case, that the local time is 
almost surely jointly continuous. Since then the subject has developed in two 
different directions, namely, those of Markov processes and Gaussian pro- 
cesses, respectively. The methods in these two areas are generally different. (See 
the survey of German and Horowitz [7].) The author has been interested in 
the development of a general theory to cover a large class of stochastic 
processes which would include both Markovian and Gaussian classes. Re- 
cently, the author showed that one of the central concepts in the Gaussian 
case, local nondeterminism, could be usefully extended to a class of processes 
which includes a large class of Markov processes [3]. 

In the present work we again extend the methods of the Gaussian case to 
prove joint continuity of the local time for a class of processes which includes 
Markov processes with given transition densities. The most general known 
result for the joint continuity of the local time of a Markov process is that of 
Getoor  and Kesten [9]. The hypothesis of their theorem is stated as a c o n  
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dit ion on the dis t r ibut ion of a first passage time. The  lat ter  dis t r ibut ion is, of 
course, de termined by the t ransi t ion dis tr ibut ion function. Our  t heo rem is 
different f rom theirs in that  the hypothesis  is stated as explicit condit ions on 
the t ransi t ion density. The  two sets of  condit ions are not  strictly comparab le  
because the relat ion between the t ransi t ion density and the first passage t ime 
dis tr ibut ion is not  known in a form sufficient to link the hypotheses.  

We review the definit ion of local time. Let  X(t), 0 < t  < 1, be a real valued 
measurab le  function. (It is not  necessarily the sample  function of a stochastic 
process. Fur the rmore ,  the t ime doma in  [0, 1] may  be replaced by an arbi t rary  
measure  space, and X(0  may assume vector  or more  general  values.) For  each 
pair  of l inear Borel sets A c ( - o o ,  oo) and I c [ 0 , 1 ] ,  define v(A,I)=Lebesgue 
measure  (s: X(s)~A, sEI). If, for fixed I, v ( ' ,  I) is absolutely cont inuous  as a 
measure  of sets A, then its R a d o n - N i k o d y m  derivative, which we denote  as 
cq(x), is called the local t ime of X relative to I. It  satisfies 

v(A, I) = S a,(x) dx. (1.1) 
A 

If X(t) is a s tochast ic  process, then we say tha t  the local t ime exists a lmost  
surely if it exists for a lmost  all sample  functions. In the par t icular  case where I 
= [0, t], for 0 < t < l ,  we put  

a(x, t) = ~o,~7(x). (1.2) 

The  local t ime is said to be jo int ly  cont inuous  if c~(x, t) is cont inuous  in (x, t). 
Our  ma in  result is T h e o r e m  3.1 concerning the local t ime of a homo-  

geneous M a r k o v  process with t ransi t ion density p(t; x,y). The following con- 
ditions on the lat ter  funct ion are sufficient for the a lmos t  sure jo int  cont inui ty:  

i) p(t; x,y) is cont inuous  in its variables  on t > 0 .  
ii) Fo r  any real compac t  set K, 

lira sup Sp( t ;x ,y)d t=O.  
~ 0 x ,  y E K  0 

iii) Fo r  each x, there exists ~> 0 such that  
t 

~p(s; x,x)ds=O(t~), for t ~ 0 .  
0 

iv) There  exist posi t ive real A and 7 such that  for every x and h and every 
h' >0 ,  

h' 

Ip(t; x ,x  + h) -p( t ;  x,x)[dt < Alh h'l ~, 
0 

h' 

tp(t; x + h, x) - p(t; x, x)l dt < AIh h'V. 
0 

2. Preliminary Results and the Existence 
and Joint Continuity of the Local Time 

Let  X(t), 0 < t  < 1, be a separable,  measurab le  stochastic process. Assume that  
the f ini te-dimensional  dis tr ibut ions are absolutely cont inuous  with respect to 
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Lebesgue measure;  and, for distinct tl . . . .  ,tk in [0,1],  and for arbi t rary real 
Xl, . . . ,Xk,  let p(xl  . . . .  , xGt~ , . . . , t k )  be the joint  density of X( t l ) , . . . ,X( tk )  at 
(X,,. . . ,Xk). Define the function, 

1 1 

q( x l ' ' ' ' ' x k ) = f  ''" f p ( X l ' ' " ' X k ;  t l ' ' " ' t k )  d t l  "" dtg. (2 .1 )  
o o 

It is clear that  p is a symmetric function of the pairs (xl, h), so that  q is a 
symmetric  function of x~ . . . . .  xk. By an applicat ion of Fubini 's theorem, we 
obtain 

S ... ~ q ( X l , . . . , X k ) d X l . . . d x k = l ,  
-oo - ~  

so that q is finite almost everywhere. 
If the time domain  [0, 1] in (2.1) is replaced by an arbi t rary Borel subset I 

of [0, 1], then the corresponding function q is also a function of I:  

qi(xl ,  ..., xk) =~ . . .  Sp(xl ,  ..., Xk; h ,  ..., tk) d t l . . ,  dtk. (2.2) 
I I 

We now state an extension of a result in [7] which seems to be known but 
has not  been published. (I am indebted to N.R. Shieh for first bringing it to my 
attention.) 

Lemma 2.1. If, for some k>=2, the function q1 in (2.1) is continuous on R k, then 
the local time ~i exists almost surely, and 

k 

E H ~ I ( x i ) = q I ( X l  . . . . .  Xk)" (2 .3 )  
i~1 

Proof  To simplify the typography,  we put  I = [ 0 , 1 ] .  For  every e>0 ,  the 
definition (2.1) implies 

11 

(20  -1 ~ S n(IX(s) -X( t ) [  =< 8) ds dt 
O0 

=(28) -1 J" ""J '{ SJ" q ( x l , x 2 , x 3 , ' " , X k ) d X l d x 2 } d x a ' " d x k ,  
R k-2 lx~ -x2l <e 

which, by the continuity and integrability of q, has a finite limit for e--*0. 
Hence, by the result of Geman  and Horowi tz  [7], Theorem 21.15, ~ exists 
almost  surely. 

The proof  of (2.3) now follows by a familiar argument.  Let  Z(Y) be the 
indicator  function of [ - 1, 1], and define 

a n 
% (x) = ! ~ Z (n IX(t) - x]) d t. (2.4) 

For  arbi t rary x l , . . . ,  Xk and positive integers nl . . . .  , rig, we have 

k k k 

__II n' E 1-[ %,(xg) = I q(Yl , . . . ,  Yk) 5 z(n~(yz--x,)) 1-[ dy,. (2.5) 
i ~ l  R k i= i=1  
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If xl in (2.5) is restricted to a compact  subset of the real line, then the integrand 
in (2.5) vanishes outside a compact  subset of R k, and q, by the hypothesis of 
continuity, is uniformly continuous on the subset. Hence the arguments of 
Geman  and Horowitz [7], Sect. 25, imply that Co(X)= lira e,(x) exists almost 

surely for almost all x in a compact  subset; that e0(x) is actually a version of 
~(x); and that the convergence of the right hand member  of (2.5) to the right 
hand member  of (2.3) for nl . . . . .  n k ~  oO implies that the relation (2.3) holds for 
co(x) as well as for e(x). 

In [1] we employed the classical Kolmogorov  criterion to find sufficient 
conditions on the distributions of the process for the almost sure continuity of 
the local time as a function of the spatial variable. This was done in the 
context of Gaussian processes but the discussion could also have been extend- 
ed to more general processes. Let f ( x l , . . . , X k )  be an arbitrary real valued 
function on R k, and define the difference operator  Oj, h as 

O j, h f ( x  i . . . .  , Xk) = f ( x  1 , . . . ,  X~_ 1, Xj + h, x j  + 1 . . . .  , xk) - f ( x i , . . . ,  xj  . . . .  , Xk). 

Let ei(x) be the local time; then, by Lemma 2.1, 

k 

E(c~i(x + h) - e I (x ) )k=  lq Oj, h qi(x  . . . . .  x). (2.6) 
j=l 

This was used in [1] in applying the Kolmogorov  criterion to ~i: The latter is 
almost surely continuous in x for fixed I if there exist b > 0 and ~ > 0 such that 

j=~I Oj, h q , ( x , ' " , x ) l < b l h l l + ~ ,  for h>0 .  (2.7) 

This criterion was extended in [2] in the Gaussian case to a condition for the 
joint continuity of the local time in the space and time variables, that is, the 
continuity of the function c((x,t) in (1.2): The sufficient conditions are, in 
addition to (2.7), 

~=~I i 0~, h q i (x  . . . .  , X) < b Iht i + ~(mes I) i +~ (2.8) 

for all x, I and h; and, for each x and I, 

Iq~(x . . . .  , x)l < b(mes I) ~ +'  (2.9) 

where b and e may depend on x. Pitt [12] and Geman and Horowitz [7] have 
used another criterion not strictly comparable  to the one above. More recent 
work in this area is due to German,  Horowitz  and Rosen [8], Cuzick and Du 
Preez [4], and Ehm [61. 

All previous work on the computat ion of the integral in the continuity 
criterion has been done in terms of the modulus of the joint characteristic 
function of the process. Such computat ions are possible for Gaussian processes 
and processes with stationary independent increments where the characteristic 
function is of a given explicit form. HoweVer, they are not possible for other 



Joint Continuity of the LocaI Times of Markov Processes 41 

important classes of processes such as Markov processes where the probability 
distributions are characterized by the transition density function rather than 
the characteristic function. 

Note that (2.8) is stronger than (2.7). In the following theorem we give the 
precise conditions for a general process under which (2.8) and (2.9) form a set 
of sufficient conditions for the joint continuity of the local time. 

Theorem 2.1. I f  ql(xl  . . . .  ,Xk) is continuousofor some even k > 2 and every subin- 
terval I, then (2.8) and (2.9)form a set of  sufficient conditions for the joint 
continuity o f  the local time. 

Proof  The assumptions permit the use of the formula (2.6). The proof is now 
exactly the same as in the Gaussian case considered in ]-2]. 

Theorem 2.2. In verifying the conditions (2.8) and (2.9), it suffices to consider the 
function q in (2.1) as equal to k! times the function 

q (x l , . . . ,  Xk) = ~... ~ p(Xl , . . . ,  Xk; tl . . . .  , tk) d t l . . ,  dtk. (2.10) 
O_-<tl < . . . < t k <  1 

Proof  By the remark following (2.1), the latter integral may be written as 

~... ~ ~p(x~1, . . . ,Xak;  t l , . . . , t k )d t l , . . . , d t k ,  (2.11) 
O < t l  < . . . < t k < l  a 

where the sum is over all permutations a of (1,...,k). This implies that 
q(x, . . . , x )=k!~l (X,  . . . ,x),  so that c7 may be used in place of q in (2.9). Since the 

k 

operators 0j, h in (2.9) are linear and 1~ Oj, h is invariant under permutations, 
(2.11) implies that J=~ 

k 

V[ Oj, hq(x, . . . ,x)  
j = l  

k 

= f . f  Z p(x,.. . ,X;tl, . . . , tk) dtl ...dtk 
O < t l < . . , < t k ~ l  (7 j = l  

k 

=k!  I]  O~,hq(x . . . .  ,x). 
j = l  

3. Application to a Markov Process 

Let X(t), 0<t__< 1, be a real valued homogeneous Markov process having a 
transition density function p(t; x, y) representing the conditional density of X(t) 
at the point y given X(0)=x.  Let x0 be an arbitrary real number representing 
the starting point of the process, and let the function p in formula (2.1) be the 
joint density of X(tl) ,  ..., X(tk). If tl < . . .  < tk, then, by the Markov property, we 
have 

p ( x l , . . . , X k ; t l  . . . .  , t k ) = p ( t l ; X o , X l ) p ( t 2 - - t l ; X l , X 2 ) . . . p ( t k - - t k - - 1 ; X k - - i , X k ) .  (3.1) 
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Therefore, the function (7 in (2.10) takes the form 

q,(Xl . . . .  , x k t =  
I~i < . . .  < t k , t l ,  . . . , [ k E [  

p(ti; Xo,Xl)p(t2 -- t l;  xl, x2).., p(tk-- tk- i ;  xg - l , xk )d t l  ... dtk. (3.2) 

Theorem 3.1. Let X(t), 0<t__<l, be a homogeneous Markov process on the real 
line with the transition density p(t; x,y). Assume the following conditions: 

i) The function p (t; x, y) is jointly continuous for t > O. 
ii) For each compact real set K, 

lim sup jp( t ;  x ,y)dt=O. (3.3) 
e~O x,yEK 0 

iii) For every x, there exists e>O such that 
t 

~p(s; x,x)ds=O(ff) ,  for twO. (3.4) 
o 

iv) There exist A > 0 and 7 > 0 such that for every x and h, and every h'> O, 

h' 
[p(t; x, x + h) - p ( t ;  x, x)[ dt <__ Alh h'[ ~ 

0 

h' 
]p(t; x + h , x ) -  p(t; x , x )d t  < Alh h'['. (3.5) 

0 

Then the local time exists and is jointly continuous, almost surely. 

Proof. The continuity of the function q in (2.1) is implied by that of q in (2.10); 
this follows from (2.11). In the case of the function g/~ in (3.2), the integrand is, 
by assumption i), continuous in all its variables over the domain of integration. 
The assumption ii) implies uniform integrability with respect to ti . . . . .  tk near 
the boundary of the domain, where It~-tjl is small for some i and j. Therefore, 
the integral ~/i in (3.2) is continuous in (Xl, ..., xk). 

Next we verify condition (2.8). By Theorem 2.2 it suffices to consider the 
function qx in (3.2). Let k > 2 be an arbitrary even positive integer, and write q~ 
a s  

qr = ~...~ P( t l ;Xo,Xl )p( tk - - tk_ l ;Xk_l ,  Xk) 
t l < . . . < t k  
t 1, �9 . , ,  t k O l  

k ----1 
2 

" [I P(t2a - t 2 j -  1 ; x 2 j -  1, x 2 j )  P( t21+ 1 - t 2 j ;  x 2 j ,  x a j +  i)  dt,.., dtg. 
j = l  k 

Since the difference operator is linear, we may express I ]  Oj, h ~ as 
k 1 k__ I j=l 

j+  1,h" 02j ,  h ~]I 
j "= 

2 
= 1~ 02j+i.h'Ok, h~ '"~p( t i ;Xo ,  Xl)p(tk--tk--1;Xk--i, Xk) 

j = 0  
k ----1 
2 

" H 02j ,  h P ( t 2 j  - - t 2 j - -  i ; x 2 j -  l ,  x 2 j ) p ( t 2 j +  1 - - t 2 j ;  x 2 j ,  x 2 j §  1) dtl '" dtk'(3"6) 
j = l  
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Apply the difference opera to r  02j, h in the integrand in (3.6); then the produc t  
becomes 

k 
- - - 1  
2 

H {P (t2~- - t2j_ 1 ; x2j_ 1, x + h) p (t2; + 1 - -  t 2 j  ; X q-  h, x2j + 1) 
j = l  

- p ( t 2 j  - t 2 j _  1 ; x2j_ 1, x)p(t21+ t - t 2 j ;  x, x2;+ i)}. 

When  we apply  the opera tors  0 for the variables of the remaining indices, we 
obtain  for (3.6) a sum of 2 k/2+1 terms of the form 

+_ ~. . .~  P ( t l ; X o , X l ) p ( t k - - t k _ l ; X k _ l ,  Xk) 
1:1 < . , ,  < t k  
1:1, ...,tkEI 

k 
1 

2 

I~ {P(tzj -- t2j-  1 ; x 2 j -  1 ,  X -~- h) p(t2j + 1 - t2j; X -]- h, x2j + 1) 
j = l  

- p ( t 2 j - t z j _ l ; x 2 j _ l , x ) p ( t 2 j + l - t z j ; X ,  Xzj+l)}dt;1. . .dtk,  (3.7) 

where the variables Xzj+l,  j = O ,  1, . . . , k /2  assume the values x and x + h .  We 
est imate the typical te rm (3.7). Its absolute  value is at mos t  equal  to 

h" 

~p(s; ~o, Xl) ds. ~ p(~; ~_1 ,  x~) as 
I k 0 

~ - - l h '  h' 

[ I  S J" Ip(s; x2j_ 1, x -t-h)p(t; x +h, x2j + 1) - p ( s ;  x2j_ 1, x)p( t ;  x, x2j + 1)1 dsdt,  
j= l  o o  

(3.8) 
where h' = length of I, and x2j+ 1 = x or x + h, j = 0, 1, ..., k/2 - 1, xk = x or x + h. 

To  comple te  the p roof  it suffices to est imate the p roduc t  of double  integrals 
in (3.8). Put  i = 2 j ;  then, by the triangle inequality, the i th factor  in (3.8) is at 
most  equal  to the sum of the terms 

h" h' 

~ p(s; xz_ 1, x + h)]p (t; x + h, xi + 1) - - P  (t; x, xi + 1)1 ds dt (3.9) 
0 0 

and 
h'  h '  

y p (t; x, xl + 1)[P (s; xl_ 1, x + h) - p  (s; xi_ 1 ,  x)lds dr. 
0 0 

The double  integral  (3.9) is equal to 

h'  h '  

y p ( s ; x i _ l , X + h )  ds" [ Ip ( t ; x+h ,  x i + l ) - p ( t ; x ,  xi+l)Idt,  
0 0 

(3.1o) 

which, by assumpt ions  i), ii) and iv), and the fact that  xi = x  or x + h, is at most  
equal to a constant  times Ihh'] ~. The integral (3.10) has a similar estimate. F r o m  
this we infer that  the produc t  in (3.8) is at most  equal to a constant  mult iple  of 

]hh,i~(k-3). 
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Since k may be taken arbitrarily large, it follows that condition (2.8) is satisfied 
if k is chosen so that 7 ( k - 3 ) >  1. 

Finally, we verify condition (2.9). As before, we put I = [a, b], and then h' 
=b  - a .  According to (3.2), the function ~i(x, ..., x) is at most equal to 

b <1 
j p ( t ; X o , X j C l t ,  p ( t ; x , x ) d t  . 
a 

By assumptions i), ii) and iii), the expression above is of the order 

ih,l~(k- a) 

so that (2.9) is satisfied for k chosen so that e ( k - 1 ) > l .  The proof is now 
complete. 

4. Examples and Comparisons with the Theorem of Getoor and Kesten 

The hypothesis of Theorem 3.1 requires a specified smoothness of the tran- 
sition density function in its variables (t, x, y) for t ~ 0  and for Ix-yl---,0. The 
corresponding theorem of Getoor and Kesten in [-9] requires a specified 
smoothness of the function 

q (x, y) -- 1 - E x (e- r,) E '  (e- rx) (4.1) 

for I x - y l ~ 0 ,  where T~ is the first passage time to z, and EZ(-) is expectation 
given X(0) = z. 

Example4.1. Let X(t), t>O, be a process with real stationary independent 
increments. Let 

E e iu(x(t) - X(s)) = e -  (t - spt,(u), 0 < s < t ,  

be the Lhvy representation of the characteristic function. If 

- cto 

for t > 0, then, by the inversion formula, we have 

p(t; x, Y)=2~ ~ e-lU(Y-x)-t~(m du. (4.2) 
- o o  

Standard calculations show that conditions i), ii) and iii) of Theorem 3.1 are 
valid if 

ov 1 - - e  - t R e ~ ( u )  

S ReiY(u) du=O(tg, for t~0 .  (4.3) 
- - c o  

Assumption iv) is valid if 

S [sinuhl 1 --e-h'ReT~(") 
_~ Re 7J(u) du=O(Ihh'lO, (4.4) 
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because by (4.2), 

Ip(t; x, x § h) - p(t; x, x)[ 

<(2re) -1 S ]e-iuh-l[ le-t~'(,)ldu 
- o o  

=(2~z) -1 S 2lsin�89 le-t~('~ 
- o o  

It can be shown that the conditions hold for the symmetric stable process of 
index c~, 1 < c~ < 2. 

The conditions (4.3) and (4.4) are not comparable to the sufficient condition 
for the corresponding result of Getoor  and Kesten in [9]. Put 

1 
6(u)= sup 1 (1 - c o s x 2 )  Re 1 + 7/(2) d2. 

[xl<u rc _ 

Their condition 

{6(2-"} 1/2 < oo (4.5) 
n = l  

is sufficient for joint continuity. The latter is a condition on the smoothness of 
the cosine transform of Re 1/1+ kU(u) at the origin. This is not strictly com- 
parable to the conditions (4.3) and (4.4). 

Example 4.2. Define 
oo  

f i (s;x ,y)=Se-Stp(t;x ,y)dt ,  s > 0 ;  
0 

then, for a large class of Markov processes, the Laplace transform EX(e -sTy) 
appearing in (4.1) can be expressed in terms of functions/3. For  example, if X(t) 
is a general diffusion process satisfying a backward equation, then EX(e -sTy) 
and ~(s;x,y) satisfy the same equation as functions of x. (See, for example, 
[13].) Thus the condition of Getoor  and Kesten is stated in terms of/3 while 
our conditions in Theorem 3.1 are given in terms of p itself. On the one hand, 
the smoothness of the function q(x, y) in (4.1) for ] x - y [ - * 0  requires an estimate 
of ]/3(1;x, y)-/3(1;  y, y)[. On the other hand, the corresponding hypothesis (iv) 
requires an estimate of 

h' 

]p(t; x, y) --p(t; y, Y)I dt 
0 

for h ' ~ 0  and ] x - y ] ~ 0 .  In general, one estimate cannot be derived from the 
other. 

As an illustration of the difference of the computations needed to verify the 
respective hypotheses, let us consider a well known example to which both the 
Getoor-Kesten theorem and our Theorem 3.1 may be applied. Let X(t) be the 
Ornstein-Uhlenbeck process, where 

p(t; x, y )=  [2•(1 --e-2t)] -1/2 exp [ (y --xe-t)2] (4.6) 
2(1 - -e -  zt)J" k 
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The conditions of Theorem 3.1 are verified by a direct computation with (4.6). 
In order to verify the hypothesis of [9], one first obtains EX(e -st ,)  in terms of 
solutions to the Laplace transform version of the backward equation. From 
this it follows that EX(e -st , )  is a ratio of functions of the form eX2/4D_s(-x), 
where Dr(z) is a parabolic cylinder function (see [-13, 11], p. 323). The verifi- 
cation of the condition of [-9] is then done in terms of the latter function. 

Acknowledgements. I thank Narn Rueih Shieh and the referee for constructive comments on an 
earlier version of this paper. 
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Note Added in Proof. The arguments in the proof of Theorem 3.1 can also be used to establish 
H61der conditions for the local time in x and t. This was indicated to me by N.R. Shieh. 


