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1. Introduction 

In this paper we shall obtain a sufficient condition for the continuity of the 
local time of a 1-dimensional L6vy process, which improves that of Getoor  and 
Kesten [7]. 

Let X t be a 1-dimensional L6vy process: that is a process with stationary 
independent increments. We denote by PX the law of X starting at x s N ,  and 
by E x expectation with respect to P~. We write P, E for p0, E 0. The character- 
istic function of X is given by 

where 

E eiXX~ = E eiZ(xt +s- xs) = e-t~ (i.l) 

. i 2 y  
t ~ ( 2 ) = - - i a 2 + � 8 9  ~-oo e ' ~ ' - - I  -- l §  (1.2) 

Here v is a measure on N satisfying ~ ( 1 A l y l Z ) v ( d y ) < o o ,  v({0})=0. We may, 
and shall, take a version of X~ which is right-continuous with left limits: X is 
then strongly Markovian.  

We shall restrict ourselves to L6vy processes for which 

0 is regular for {0} (1.3) 

and for which 

(1.4) P x ( X t = y  for some t > 0 ) > 0  for all x ,y .  

The first of these conditions ensures that, for each x, a local t ime L~ exists, 
while the second excludes the (in this context) uninteresting case when X is 
compound Poisson. 

* This research was conducted while the author was a visiting scientist at the University of 
British Columbia 
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These conditions may be expressed in terms of a, 0 -2  and v" a necessary and 
sufficient condition for (1.3) and (1.4) to hold is that 

1(2)d~< Re oo, (1.5) 
o 1+  

and 
either 0-2>0, or 5(Ixl/x 1)v(dx)= oo. (1.6) 

(See Bretagnolle [5], Kesten [9].) 
If X satisfies (1.3) and (1.4) then a version of L~(o) exists which is jointly 

measurable in (x , t ,o)  - see [2] or [3, V.3.41]. The normalisation of L is 
somewhat arbitrary; here we shall normalise L so that it is the occupation 
density of X; we then have 

t 

5 f ( X s ) d s =  ~ f (a)14da for all bounded Borel f. (1.7) 
0 --OO 

Conditions which ensure that ( x , t ) + L  t can be chosen to be jointly con- 
tinuous in (x, t) have been given by Trotter [16] (for Brownian motion), Boylan 
[4] (for a class of Markov processes), and by Getoor  and Kesten [7], who also 
found conditions on X under which (x, t)-+ L~ could not be continuous. Millar 
and Tran [13] improved the latter result, showing that, under the same 
conditions, E t is unbounded in every interval around X o. There is a gap 
between the necessary and sufficient conditions for the continuity of L, which 
is illustrated by some examples in [7]. 

The key result of this paper is given in Sect. 2, where we obtain an estimate 
on the size of ]La-Lb], when a and b are close together, which improves the 
estimate in [3, V.3.28]. Feeding this estimate into Garsia's lemma (very much 
as in [7]) we obtain a sufficient condition for the joint continuity of L, and a 
modulus of continuity in x for E~. If X is Brownian motion this modulus of 
continuity is a constant multiple of the correct modulus of continuity (see 
McKean [12], Ray [15], Knight [11]). 

Theoreml.1.  Let X t be a right-continuous 1-dimensional Ldvy process with a 
characteristic function given by (1.1) and (1.2), and satisfying (1.3) and (1.4). Let 

and 

Then if 

oo 

cos 2x) Re l ~ d 2  , (1.8) 

• 6 ( 2 - n ) ~ n - ~ <  o% (1.10) 
n = l  

there exists a version of L t which is jointly continuous in (x, t). Further, if 

Y 

p(y)-- ~ (log (1 + u -  2))~ d6~(u), (1.11) 
0 

g(x) = sup go(U). (1.9) 
lul <x 
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then p is finite, and for all t >O there exists et(co ) with PX(et>0 ) such that 

IIg,--gbsl<c(supgt)~ p(lb--al)  for O<_s<t, [a-bl<e,(co), a.s. (1.12) 
x 

Remarks. 1. We may compare (1.10) with the condition of [7], which is 
3(2- ' )  ~ < 00, and also with Boylan's condition ~ nil(2-") ~ < 00. 

n n 

2. In [13] Millar and Tran proved that, if 

1 
lim sup (log ~) 5 Re - -  d)~ > 0, (1.1 3) 

then P~ + o o ) = 1  for every t>0 .  There is a small gap between (1.10) 
x E ~  

and (1.13), which will be illustrated by some examples in Sect. 4. 
In the remainder of this section we introduce the notation which will be 

used in Sects. 2 and 3. X will always be a L6vy process satisfying (1.3) and 
(1.4). We set 

Tx=in f{ t>0 :  X , = x }  for x~IR, 
and 

~ ( x ) = E ~  -~r~+, for ~>0.  

It is well known (see Bretagnolle [5]) that, under (1.3) and (1.4), the 
potential kernel has a continuous density u=(x), so that, for every bounded 
Borel f, 

7 E ~ ~ e -  ~sf(Xs) ds = u~(y - x) f ( y )  dy. 
0 - - 0 0  

Using the density of occupation formula (1.7) we deduce that 

oo 

u~(x)=E ~ f e-~*dL ~. (1.14) J S~ 
0 

and, applying the strong Markov property of X at time T~, we have 

u~'(x) = tfl~(x) u~(O). (1.15) 

It is shown in [7J that 

1 ~ 1 
u~(x)+u ( - x ) = -  J cos2x (1.16) 7z R e ~ d 2 ,  

- o o  

from which it is immediate that 

6o(X ) = 2 u 1(0) - u*(x) - ul( - x). (1.17) 

The layout of the paper is as follows. In Sect. 2 we perform some prelimi- 
nary calculations, and then go on to obtain the fundamental estimate on IL a 
--Lbl, (Proposition l.6, Lemmal.7).  The calculations with Garsia's lemma are 
made in Sect. 3, and in Sect. 4 we give applications of Theorem 1.1 to the range 
of a L6vy process (see [1]) and [10]), and to the modulus of continuity of the 
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local t ime of a stable process. Finally, we describe a family of asymmetric  
processes, which includes the asymmetr ic  Cauchy process, and which illustrate 
the gap between (1.10) and (1.13). 

2. P r e l i m i n a r y  E s t i m a t e s  

For  a, b in IR let 

h(a ,b)=h(b-a)=EaUTo.  

L e m m a  2.1. (i) For each 2 > 0 

To 

E a ~ e-ZSdU~ = uZ(0)(1-0Z(b - a )  OZ(a -b) ) .  
0 

(ii) h(x)>ua(O)(1- tp l (x) )~pl ( -x)  for all x. 

Proof F r o m  (1.14) and the strong Markov  property,  

TO O0 

u~(~ =E~ S e-~SdI4+e~176 e-~aL~ 
0 0 

TO 

= E ~ ~ e -  ~ dL~ + 0Z(b - a) 0Z(a - b) uZ(0), 
0 

Tx T~ 

proving (i). Since h (x )=E  ~ ~ d L ~  ~ ~ e - ~ d L  ~ (ii) is an 
0 0 

sequence of (i). 

Corollary 2.2. h(x) = h ( -  x). 

Proof F r o m  (2.2) we see that, for all 2 > 0, 

Tb Ta 

E ~ ~ e-Z~dL~=E b ~ e-Z~dL~: the result follows on letting 2--*0. 
0 o 

We recall that  0 k ( x ) ~  1 as x ~ 0 (see [5]). 

L e m m a  2.3. Suppose that ]xl is small enough so that Ol(x)>= 3/4. Then 

Proof. Let  t > 0: then 

h ( x )  < 4u 1 ( 0 ) ( 1  - -  ~/1 (X) 0 1 (  - -  X)). 

(2.1) 

(2.2) 

immediate  con- 

(2.3) 

@l(x)= E~ e-  T~ l(Tx<=t) + E~ e -  Tx l(T~>t) 

<P~176  

Rearranging,  we have that  P ~  and, in particu- 
lar, P ~  �89 

N o w  h (x) = E ~ L ~  ^t + E~176 - L~ ^ t), and 

E~ ~  - L ~  ^ ,) = E ~ I(T ~ > t)(L~ -- L ~ ) = E l ( r  x > oEX' L~ 
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However ,  ErL~176176 for any y, and so E~ ~ -L~ ^t))<P~ 
Thus  

P~ t) h(x)< E~ L~ ^ t 
Tx 

~ E ~  J e ~dL ~ 
0 

= etul(O)(1 -- 01(x) 01(--x)), 

by (2.2), and taking t = l o g 2 ,  we obtain  (2.3). 

L e m m a 2 . 4 .  Suppose that Ix] is sufficiently small so that 01(x)> 3/4. Then 

3/46o(X ) < h(x) < 4 CSo(X ). 

Proof. It is shown in G e t o o r  and Kes ten  [7, p. 297] that  

5o(X ) = u 1(0)(1 - Oa(x) + 1 - 0 1 ( -  x)). 
Thus  

5o(X ) = ul(O)(1 - Ol(x) 0 1 ( - x ) )  + u 1 (0)(1 - 0 I(X)) ( 1 --  0 ( -  X)), 

(2.4) 

(2.5) 

and  combining  this with (2.3) we obtain  the right hand  side of  (2.4). Adding  
(1 -0~(x ) )  to the t e rm inside the final bracket  of (2.5) we obtain  

5o(X ) G u1(0)(1 -- Ol(x) 01( - x)) + (1 - 01(x)) CSo(X ), 

and  f rom this and  L e m m a  2.1(ii) the left hand inequali ty of (2.4) is immediate .  
Let  a, b be fixed points  in IR; we now proceed to obta in  an est imate on the 

tail of the dis tr ibut ion of U. - Lb.. Set h = h(a, b) = h(b, a). 
Let Y~ be a symmetr ic  M a r k o v  chain, with state space {a,b}, Yo=a, and (2- 

matr ix  given by q,b=qba=h, %a=qbb = - h .  (If X is t ime-changed  by the 
inverse of  L a + L  b, we shall see that  the resulting process has the same law as Y 

t 

killed at the t ime L ~ + L ~ . )  Fo r  x = a ,  x=b,  let H7=~l(rs=x)ds, and let zt be 
o 

the r ight-cont inuous inverse of H a: r t = i n f  {s: Ha > t}. Set M t = H~ta __  H~ tb = t 

- H  b �9 it is easily seen that  M is a mart ingale.  
Let  N be the n u m b e r  of excursions Y makes  to b before t ime ~t, and let Z i 

N 

be the length of the i th excursion to b. Then Hb= ~ Z i, N is Poisson with 
st 

i = 1  

mean  h- i t ,  the Z~ are exponent ia l  with mean  h, and N , Z ~ , Z  2 ....  are inde- 
N 

pendent  (see, for example,  I to [17]). Therefore  E M 2 t = E ~ Z 2 1 - t 2 = 2 h t .  We 
i = 1  

require an est imate on the tail of the distr ibution of Mr: this could be done  by 
direct calculation, but  it will be s impler  to use a Bernstein 's  inequali ty for 
mart ingales.  

L e m m a 2 . 5  (Theorem 1.6 and Propos i t ion  3.3 [8]). Let ~ ,  ..., ~, be a sequence of 
martingale differences relative to a filtration ((~,). Suppose that there exist 
constants c, a 2 > 0  such that 
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(i) ~i < c, 

(ii) ~, E(~l~;_~)___a 2. 
i = i  

Then, for all x > O, 

P ( m a x  ~ i > x t _ < e x p {  q/ cx 
\ l<-r<~ni=l  I \ - -2a  7 ~ ' 

where ~(2)=22  -25 l o g 0  +t)dt.  
o 

Lemma 2.6. For any x > 0, t > 0, 

P ( supM s > x ) < e x p  - ~  . 
s<t  

Proof  Let n=>l, ~i=Mit/~-M(i_l)t/n, and aJi=a(Ms, s<i t /n  ). By the strong 
/ 1  

Markov property of Y, the ~i are actually independent, and so ~ E(~glfgi_l) 
i = l  

= E M 2 = 2 h t .  As M t makes only downward jumps ~i<=t/n, and, applying 
Lemma2.5, we have 

X 2 X 

P ( m a x  ~ . ~ i > x ) < e x p ( - ~ ( 2 ~ n n )  ). 
i = 1  

Let n--+ oo: then ~(x/2hn)--+ 1, and we deduce the desired result. 
- " be the right-continuous inverse of L]. Now let z t - z  t 

Proposition2.7. For all x>0 ,  t>0 ,  yeN ,  

PY(sup (L~s - L~) > x) < exp ( - x 2/4 t h (a, b)). (2.6) 
8 < g t  

Proof Using the Strong Markov property of X at time Ta, it is clearly 
sufficient to prove (2.6) in the case y=a.  Under pa, L~rb is exponential with 
mean h - see Kesten [10]. It follows from this and the Strong Markov 
property of X that, if at=in f{s :L~+L~>t  }, then X~ is a Markov Chain killed 
at time ~ = / ~  + L~ with state space {a, b}, and Q-ma{rix 

O'= { -h(a ,b)  h(a,b)p(a,b)] 
\h(b,a)p(b,a) -h(b ,a)  ] '  

where p(x,y)=P~(Ty<o~). Let Y', Y" be independent copies of Y, but with 
Y~ = a, Yd' = b, and let 

fXT~ 0_<t<~ 
Z t =  ~Yt-r if Z~_ = b  

t v "  -t-~ if Z~_=a .  

Then Z has the same law as Y Let N t be the martingale obtained from Z in 
the same way that M was from Y: we have, for t < L ~ ,  L~-Lb~=Nt.  Then, by 
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Lemm a  2.6, 

e"(sup (C s- G) > x) = P"(sup > x) 
S ~ t  U<=t 

< Pa(sup N, > x) 
u<~t 

< exp ( -  xZ/4th(a,  b)). 

The final form of our  estimate on L ~. - L  b. is the following. 

L e m m a  2.8. For each 2 > 0 ,  x > 0 ,  y e n  

Pr(sup 12 A/2~ - 2 A Lbsl > x) < 2 exp . (2.7) 
s>_o - 4 2 ~ , b )  

Proof. Suppose CO~{sup(2AL~s--2ALb)>X}. Then, for some s, 2ALan(co) 
$ 

- 2 A Lbs(co) > x. As 2 A L~(co) < 2, we must have Lb,(co) < 2, and so 2 A L~,(co) > x 
+ Lb~(o)). Hence, if u = s A ~x(CO), IY,(O) = 2 A I~s(o~) > X + Lbs(CO) > x + L~(co), and 
therefore me{sup  (I~s--Lb~)>x}. (2.7) is now immediate  from (2.6). 

3. A Suf f i c i ent  Condi t ion  for Cont inui ty  

We are now ready to obtain a modulus of continuity for L from the estimate 
(2.7) by using Garsia 's  lemma, which we use in the following form. 

Lemma3 .1  (see Garsia,  [6]). Let  p and 7 j be strictly increasing functions on 
[0, oo), such that p(0)= ~P(0)=0, lim k~(t)= ~ ,  and ~ is convex. Let  N > 0 ,  and 

t~C~ 

let f be a measurable function on [ - N ,  N] such that 

[ I f ( x ) - f ( y ) l \ ,  , < r  

- N  - N  

Then for (Lebesgue ) almost all x, y in [ - N,  N]  • [ - N,  HI ,  

Ix-yl 
I f ( x ) - f ( y ) l<=8  ~ tP-1(Fu-Z)dp(u) .  

0 

Proof  of  Theorem i.1. We begin by remarking that  (1.10) implies that  the 
function p defined in (1.11) is finite. For  

c c  2 . 2  - ~  

p(1)=  ~, ~ ( log( l+u-2)~d6~(u)  
n = l  2 - n  

__< c Z n (a*(2.2 -") - a*(2 -")) 
n 

< c ~, ((n + 1) ~- - n*) 6~(2-") < c ~ n-21 6 ' (2 - " )  < oo. 
n n 

(In this calculation, and elsewhere, c denotes a universal constant,  the value of 
which may change from line to line.) 
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Let t P ( x ) = e ~ - l ,  so that 7J-l(y)=(log(1 +y))~, and let 

g(x)= sup h(u), p(2, x)=(82g(x)) ~, (3.1) lul<x 
qS(y)= i (log (1 + 1 ]  ]~dg~(u)" (3.2) 

o u ~ l l  

By Lemma 2.4, if t xl is sufficiently small, 3/4 p (x) < q5 (x) < 4p (x); and in particu- 
lar q5 is finite. 

Set 
Y(2, a, b) = sup I,~ A L~ -,~ A Lb~]. 

s>O 
By (2.7) 

P" (~  ( Y(2, a,b) ] ~) P~(Y(R, a, b) >_ p(R, la-bI)(log (1 + ~))~) 
\p(2, l a - b l ) l  > . = 

_ < 2 e x p ( l o g ( l + e ) . 8 2 g ( I a - b I ) )  
- 4).h(a,b) 
=<2exp( - -21og( l+~) )=2( l+c0  -2. 

Hence, integrating, we have 

( Y(2, a, b) ~ < 2. (3.3) 
E~Y \p(2,1a_bl)l 

Now let N > 1 be fixed, let I = [ -  N, N], and for 2 > 0 let 

(Y(2 ,a ,b)  '~ 
I x=! !  7 j \p(2,1a_b])] dadb; 

then, by (3.3) and Fubini, 

EXF~ < 2 N;. (3.4) 

So, for each 2, px(Ix< oo)= 1, and hence, throwing out a PX-null set, Ix(co)< oo 
for all 2eQ+,  cocO. Now for any t>0 ,  2eQ+,  

I~t - 2- a- -L~ [ ~ d a d b < F~ < 0% A 

and therefore, using Garsia's lemma, with p(2,.) for p(.), there exists a set 
A(t,2,co)cI x I such that IA(t,2,co)l = 0  and, for (a,b)e(I x I)cnAC(t,).,co), 

I~-bb 
[2AG--2 /x f f t l<8  y 7J-l(u-2Ix)d,p(2, u). (3.5) 

0 

The right-hand side of (3.5) is 

I,,-bl[ (log { u2 + F~ u 2 + 1~ ~ ~ 
8 dg~(u) 

. \~1 u ~ II 

< 8~2~[(log (1 v IX)? g-~ (la - bl) + qS(la - bl)-I < oo. 
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Following Getoor-Kesten [7], we define, for all (x, t, co), 

m x+  1/m 

m~=limsup,,~oo 2 x-~/,, L~;dy" (3.6) 

Let I o = [ - N + I , N - 1 ] :  using (3.5) we have 

12./, L~t-  2. A L~I __< c )~(q~ (1 b - a  1)+ (g (1 b - a  I ) log  (1 v F~)) ~) 

for all t>O, (a ,b )e loXI  o, 2eQ+. (3.7) 

Now (see [7]), W ( L t = L t ) =  1 for all (x, t), so that L ~ is a version of U. 
Let 

F={co: L~s(co) = L%(co) for all seQ+, aell~, and s~IYs(CO ) 

is continuous for all aeQ}. 

T h e n  W(F)= 1, and it follows from (3.7) that, on F, (x, t ) ~ 2  A L t is continuous 
o n  I 0 x JR+ for 2eli)+. To conclude that L~ is continuous, we need to show that 
sup L~ < oo. 
x~Io 

From (3.7), setting b =0, we have 

2AL~<=2AL~ vF~)) ~] for all a~I o. 

Hence, on {supL~>2}, 
x~Io 

2 < 2/x L ~ + 2 ~ (c ~b (N) + c g (N)~(log (1 v F~))~). 

Now if y2 < A  + By, then y2=< 2A + B 2, and so, on {sup L t > 2}, 
X~IO 

2L~ + c(4 (N) + g(N) +(log (1 v r~))+)~ >,~. 
Thus 

P(supg~t>2)<P(g~ (F~>exp (4c ,;I. 
~ I o  = g ( N )  

< P(L ~ > 2/4) + (1 + 2N 2) e 4~(m~/g(m e-  x/a~g(N). 

Integrating, we have 

E supg] < 4EL ~ + c N 2 h(N)-  1 e4~(s)~/g(N), (3.8) 
x~lo 

so that, in particular, supL]< oo PZ-a.s. Taking )~ greater than this supremum, 
X~Io 

it follows that ( x , t ) ~  is jointly continuous on [ - N + I , N - 1 ]  xlR+ for any 
N > 1, and hence on • x IR +. 

To conclude the proof of Theorem 1.1 it remains to establish the modulus 
of continuity (1.12). We may choose e>0  small enough so that (o(u)<4p(u) for 
0 < u < e .  Now let t>0 ,  let N=N(o~) be large enough so that ]Xsl<__g for 
O<_s<_t, let 2~11~+ be such that supL~_<2<2supL~; then if e~(co) is chosen small 

x Jr 

enough so that (g(et(o~))log(1 v Fz(co)))~<~b(et(co)), (1.12) follows immediately 
from (3.7). 
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4. Applications and Examples 

1. Range of a LOvy Process 

Let R~(o~)={Xo(O~),Xt_(~o)}~{X~(oo),X~_(co),O<s<t}. For  t > 0  R t is a.s. a 
closed perfect set of positive Lebesgue measure, and in [11 it was shown that 
either, with probabili ty 1, R t is nowhere dense, or else, with probabili ty 1, R t 
= c l(int (Rt)) and R t contains an open interval around X o. In [101 Kesten gave 
examples of symmetric L6vy processes for which R t is nowhere dense, and 
proved that if for some 5>0  6 ( 2 - " ) < n  - l -~ ,  then R t contains an open interval 
around X o a.s. Since (as is shown in [101) if L" is continuous then R t must 
contain an open interval around X0, Theorem l.1 gives immediately a slight 
improvement  on Kesten's result. 

Corollary4.1. I f  ~ 6 ( 2 - ~ ) ~ n - ~ <  o% then R t contains an interval around Xo, a.s. 
n 

Remark. In Pruitt and Taylor  [141 it is proved that the asymmetric, but not 
completely asymmetric, Cauchy process has a nowhere dense range. 

2. Modulus of Continuity in Space of the Local Time of a Stable Process 

The symmetric stable process of index e, where 0 < e <  2, is a L6vy process for 
which Ee~'~Xt=e -tl'~l~. For  0 < e < 2  this process arises by taking v(dx) 
=cr for e = 2  the process is a multiple of Brownian motion. For  
1 < e < 2 these processes have local times, which Boylan [41 proved are jointly 
continuous in (x, t). 

Using the notation of Theorem 1.1, it is not hard to see that 

~o(X)~C~lXl ~-1 as x - , 0 ,  

while p(y)<_c~(y~-l log~) ~ _ for sufficiently small y. Hence, by (1.12), for all 

t__> 0 there exists ~t(co) with P(e t > 0)=  1 such that 

IL~s-gbsI <c~(supg~) ~ [b-a l  ~-i  log 
x 

for O<_s<t, [b-al<~t(co). (4.1) 

Here c~ is a constant depending only on c~. 

Remarks. 1. The modulus of continuity which follows from the results in [71 is 
c l b - a l  (~-1)/2 loglb - a 1 - 1 .  

2. In the case of Brownian motion the exact modulus of continuity of L'~ is 
known (see [121 and [15]); (4.1) is only worse than this exact modulus by a 
constant factor. 



Continuity of Local Times for L6vy Processes 33 

3. A Family of Asymmetric L~vy Processes, Including Some Critical Cases 

Let a = 6 2 --- 0 ,  and 

v(dx)= x -  2 g(1/x)(p l(x>o) + q l(x <o)), (4.2) 

where p, q>0 ,  p + q = l ,  and where 

g(y) = (log I yl)~(log log ly]) p l(ly I > e), ~,/?EN.. (4.3) 

This family of processes includes the asymmetric Cauchy (e=/~ =0,  p #q),  and 
contains both processes with continuous local time, and processes with un- 
bounded local time. We shall examine the continuity of L'. for these processes, 
but as some of the calculations of ~(2) and 6o(X ) are rather tedious, we shall 
just present an outline. We shall denote unimportant  constants whose values 
depend only on c~,/~ by c,c', and use the notation a(x)~b(x) as x ~ o e  to mean 
that a(x)/b(x) is bounded away from 0 and oo as x ~ o o .  

We begin by checking (1.6): 

1 
IxJv(dx)=oo if c ~ > - 1 ,  or c ~ = - i  and / ~ > - 1  

- I  
< ~ otherwise. (4.4) 

We restrict our attention to the first case: in the second the paths of X have 
finite variation, and X does not have a local time. 

From (1.2) we have 

O(2)~c[2[g(2)+ic'(p-q)2(logf2[)g(2) as [2[ ~oo .  (4.5) 

Note  that ImO(2)>>ReO(2) if p#q: the asymmetry plays an important  role. It 
follows immediately that as [2[ ~ oo 

1 
R e - -  ~ E[,tl(log 1~1)2 g(Z)3 -1 if p4=q 

1 + r 
~ EI,tl g ( , t ) ]  - I  i f  p = q  (4.6) 

Many aspects of the detailed sample-path behaviour of X are governed by the 
behaviour of Re(1 + 0(2)) -1 as 2 ~ o o :  we see that the symmetric process with 
parameter  e behaves in a similar fashion to the asymmetric process of index 
e - 2 .  From now on we take p>q. Checking (1.5), 

1 
~ R e ~ d 2 < c ~  if c ~ > - l ,  or e = - l ,  /~>1 

= oo otherwise. (4.7) 

From (4.4), (1.5) and (1.6), we see that, in the first case, X has a local time: we 
restrict ourselves to this case. 
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We now consider the condition (1.13): 

1 ~ d2 
~ R e - - d ) ~  >_c ~ -W2 

y+~b(2) - , )~(log2) g(2) 

c(log y)- 1 -~(log log y)-~. 
Hence 

1 
l i m i n f l o g y f R e  d 2 > 0  if ~<0,  or e=0 ,  fi<0, 

and in these cases, by [13], L" t is unbounded. 
We now check (1.10): with a little work we find that 

1 
60(x)~ as x ~ 0 ,  

(log 1/x) g(1/x) 

so that 6(2-")~ n -~- l(log n) -~, and 

• 6 ( 2 - " ) I n - i < c o  if ct>O, or c~=O, f i>2  
n = l  

= oe otherwise. 

In the first case L'. is jointly continuous by Theorem1.1. The cases e=0 ,  
0 < f i < 2  are not covered by either (1.10) or (1.13), so that the behaviour of I2 t is 
unknown. We conjecture that in these cases L is unbounded. 

We may summarise the properties of L for these processes as follows: recall 
that we are taking p > q. 

c~<-1 ,  ~ = - 1 ,  f l < - 1  

c ~ = - l ,  - l < f l < l  

~ = - 1 ,  f l > l ;  
- 1 < ~ < 0 ;  
~=0,  fl<=O 

c~=0, 0 < 3 < 2  

c~=0, f i>2;  ~>0  

paths of finite variation, no local time; 

paths of infinite variation, no local time; 

local time exists, unbounded in 
every interval by (1.13); 

local time exists, other properties 
unknown; 

local time continuous by (1.10). 
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