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1. Introduction

In this paper we shall obtain a sufficient condition for the continuity of the
local time of a 1-dimensional Lévy process, which improves that of Getoor and
Kesten [7].

Let X, be a 1-dimensional Lévy process: that is a process with stationary
independent increments. We denote by P* the law of X starting at xeR, and
by E* expectation with respect to P*. We write P, E for P°, E°. The character-
istic function of X is given by

EeilXt:Eeii(Xt-r-s—Xs)=e_t‘/’()')’ (11)
where
o i)
W)= —ial+ia?i? — _foo (el“—l—lliz) v(dy). (1.2)

Here v is a measure on R satisfying | (1 Aly|?)v({dy)<oco, v({0})=0. We may,
and shall, take a version of X, which is right-continuous with left limits: X is
then strongly Markovian.

We shall restrict ourselves to Lévy processes for which

0 is regular for {0} (1.3)
and for which

P*(X,=y for some t=0)>0 for all x,y. (1.4)

The first of these conditions ensures that, for each x, a local time I exists,
while the second excludes the (in this context) uninteresting case when X is
compound Poisson.

* This research was conducted while the author was a visiting scientist at the University of
British Columbia
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These conditions may be expressed in terms of a,¢* and v: a necessary and
sufficient condition for (1.3) and (1.4) to hold is that

¢ 1

and
either 6°>0, or [(x|A1)v(dx)=oo. (1.6)

(See Bretagnolle [5], Kesten [9].)

If X satisfies (1.3) and (1.4) then a version of Li(w) exists which is jointly
measurable in (x,f,w) - see [2] or [3, V.3.41]. The normalisation of L is
somewhat arbitrary; here we shall normalise L so that it is the occupation
density of X; we then have

t o0

[f(xX)ds= | f(a)Iida for all bounded Borel f. (1.7

o]

Conditions which ensure that (x,t)— L% can be chosen to be jointly con-
tinuous in (x,t) have been given by Trotter [16] (for Brownian motion), Boylan
[4] (for a class of Markov processes), and by Getoor and Kesten [7], who also
found conditions on X under which (x,t)— I could not be continuous. Millar
and Tran [13] improved the latter result, showing that, under the same
conditions, L, is unbounded in every interval around X,. There is a gap
between the necessary and sufficient conditions for the continuity of L, which
1s illustrated by some examples in [7].

The key result of this paper is given in Sect.2, where we obtain an estimate
on the size of [I7—I?|, when a and b are close together, which improves the
estimate in [3, V.3.28]. Feeding this estimate into Garsia’s lemma (very much
as in [7]) we obtain a sufficient condition for the joint continuity of L, and a
modulus of continuity in x for L. If X is Brownian motion this modulus of
continuity is a constant multiple of the correct modulus of continuity (see
McKean [12], Ray [15], Knight [11]).

Theorem 1.1. Let X, be a right-continuous 1-dimensional Lévy process with a
characteristic function given by (1.1) and (1.2), and satisfying (1.3) and (1.4). Let

| e 1
50(x)=;#§ (1—COS /1x) Remdi, (18)
and
o(x)= |slup Oolu). (1.9)
Then if o
Z 32 Min"* < oo, (1.10)
n=1

there exists a version of L% which is jointly continuous in (x,t). Further, i
¢ J

()= g (log (1 +u~2))* d5*(u), (1.11)
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then p is finite, and for all t =20 there exists e,{w) with P*(e,>0) such that
|, Lb|<c(supL) p(lb—al) for 0<s=t, la—bl<elw), as.  (1.12)
Remarks. 1. We may compare (1.10) with the condition of [7], which is
Y 8(27")% < o0, and also with Boylan’s condition Y nd(2~")* < co.
2. In [13] Millar and Tran proved that, if

lim sup (log o Re di>0, 1.13
msu ) tﬂ( 7 (1.13)
then Po(supL" oo)=1 for every t>0. There is a small gap between (1.10)

and (1.13), %Vhlch will be illustrated by some examples in Sect. 4.

In the remainder of this section we introduce the notation which will be
used in Sects. 2 and 3. X will always be a Lévy process satisfying (1.3) and
(1.4). We set

T.=inf{tz0: X,=x} for xeR,
and
Yix)=E%e *T==E%¢~*T=+»  for a>0.

It is well known (see Bretagnolle [5]) that, under (1.3) and (1.4), the
potential kernel has a continuous density u*(x), so that, for every bounded
Borel f,

B[ f(X)ds= ] wlr=x) [0)dy

Using the density of occupation formula (1.7) we deduce that

u(x)=E° | e~ dI%, o (114)

0

and, applying the strong Markov property of X at time T, we have

u*(x)=yr*(x) u*(0). (1.15)
It is shown in [7] that
u*(x) +u*(—x) % 0j;cos Ax Re }P(A)dl {1.16)

from which it is immediate that
8o(x)=2u(0) —u'(x) —u'(—x). 1.17)

The layout of the paper is as follows. In Sect.2 we perform some prelimi-
nary calculations, and then go on to obtain the fundamental estimate on |I”
—I?|, (Proposition 1.6, Lemma1.7). The calculations with Garsia’s lemma are
made in Sect. 3, and in Sect.4 we give applications of Theorem 1.1 to the range
of a Lévy process (see [1]) and [10]), and to the modulus of continuity of the
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local time of a stable process. Finally, we describe a family of asymmetric
processes, which includes the asymmetric Cauchy process, and which illustrate
the gap between (1.10) and (1.13).

2. Preliminary Estimates

For a,b in R let
h(a,b)=h(b—a)=E"L7,. 2.1

Lemma 2.1. (i) For each >0
E“ije‘“dL"szu‘(O)(l —yHb—a)y*(a—b)). (2.2)

(ii) h(x)Zu' )1 —y(x)) Y (—x) for all x.
Proof. From (1.14) and the strong Markov property,

Ty fe's]
uH0)=E° [ e **dI5,+ E%e *ToE? [ e dI2,
0 0
Ty
=E* [ e dL+ b ~a)y*(a—Db)u(0),
0

proving (i). Since h(x)=E° fodL(;gEO foe‘de‘i, (i) is an immediate con-
sequence of (i). ’ ’

Corollary 2.2. h(x)=h(—x).

Proof. From (2.2) we see that, for all 1>0,

Ty Ta
E° [ e *dIi=E" [ e *dll: the result follows on letting 1—0.
0 0

We recall that y*(x)—1 as x—0 (see [5]).
Lemma 2.3. Suppose that |x| is small enough so that W' (x)=3/4. Then
h(x)<4u'(0)(1 =¥ () ¥'(—x). (2.3)
Proof. Let t>0: then

Yrx)=E% "1y ,+E%e <1
<PYUT.£t)+e 'PUT. >1).

Rearranging, we have that POT.<t)=(1—e )~ '(Y}(x)—e ™), and, in particu-
lar, P%(T,<log2)=1.
Now h(x)=E°L)._, ,+E%L}_—L%_,), and

EO(LOTx _LOTx at)= E° 1(Tx>t)(L0Tx - L(zj) =E 1(T,C>1)E},(t LOTx'
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However, E’L%, <E°L,_for any y, and so E®(L%_—L%_, ) SPYUT,>1)h(x).
Thus
PO(Tx§t)h(x)§EOL%~xM

§E°e'T(j)xede2
= u'(0)(1 -y () ¥*(—x),
by (2.2), and taking t =log 2, we obtain (2.3).
Lemma 2.4. Suppose that |x| is sufficiently small so that y'(x)=3/4. Then
3/46,(x) S h(x)£464(x). (24)
Proof. It is shown in Getoor and Kesten [7, p.297] that
So(x)=u'©O)(1 =¥ (x) +1—¢*(—x)).

3o(x)= 01 ¢ ()Y (—x) +u' )1 =y (X)L = (—x)), (2.5

and combining this with (2.3) we obtain the right hand side of (2.4). Adding
(1 —y'(x)) to the term inside the final bracket of (2.5) we obtain

8o(x) Sul(O)(1 =y () Y (—x)) + (1 = (x)) 3p(x),

and from this and Lemma 2.1(ii) the left hand inequality of (2.4) is immediate.

Let a,b be fixed points in R; we now proceed to obtain an estimate on the
tail of the distribution of I# —1I%. Set h=h(a,b)=h(b, a).

Let Y, be a symmetric Markov chain, with state space {a,b}, Y,=a, and Q-
matrix given by q,,=4g,,=h 4,,=q,,=—h (If X is time-changed by the
inverse of I°+I%, we shall see that the resulting process has the same law as Y

t

Thus

killed at the time I% +I%.) For x=a, x=b, let Hf={1,__, ds, and let 7, be
0

the right-continuous inverse of H* t,=inf{s:H?>t}. Set M,=H{—-H’ =t
—H?: it is easily seen that M is a martingale.
Let N be the number of excursions Y makes to b before time 7,, and let Z,

N
be the length of the i excursion to b. Then H? =3 Z,, N is Poisson with
i=1
mean h~'t, the Z; are exponential with mean h, and N,Z,,Z,,... are inde-
N

pendent (see, for example, Ito [17]). Therefore EM?=E Y Z?—t>=2ht. We
i=1

require an estimate on the tail of the distribution of M,: this could be done by

direct calculation, but it will be simpler to use a Bernstein’s inequality for

martingales.

Lemma 2.5 (Theorem 1.6 and Proposition 3.3 [8]). Let &,,..., &, be a sequence of
martingale differences relative to a filtration (%,). Suppose that there exist
constants ¢, 6> >0 such that
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() ¢ =c,

(i) Y E(?% _,)<q%
im1

Then, for all x>0,

p (max iépx)éexp (~2—>:—zl// (C—)ZC)),

1<rgnja1 g
A
where Y(A)=21"2 [ log(1L +1t)dt.
[¢]
Lemma 2.6. For any x>0, t>0,

x2
P M < e
(sslg) > X)Sexp ( 4ht)

Proof. Let nz1, {=M,,—M; i, and % ;=d(M,s<it/n). By the strong
Markov property of Y, the &; are actually independent, and so Y E(¢Z|%; ;)

i=1
=EM?=2ht. As M, makes only downward jumps ¢;<t/n, and, applying
Lemma 2.5, we have

P(max 3 eon)zem (~50v (5)
(Ef‘;i; > X)X~ Vi) )

Let n—oo: then y(x/2hn)— 1, and we deduce the desired result.
Now let 7,=17 be the right-continuous inverse of L.

Proposition 2.7. For all x>0, t>0, yeR,
PP(sup (I£ — I2) > x) < exp (—x?/4th(a, b)). (2.6)

Proof. Using the Strong Markov property of X at time T,, it is clearly
sufficient to prove (2.6) in the case y=a. Under P% L7, is exponential with
mean h - see Kesten [10]. It follows from this and the Strong Markov
property of X that, if ¢,=inf{s: 1%+ %>}, then X, is a Markov Chain killed
at time {=1I% +I? with state space {a,b}, and Q-matrix

,_{ —hiab)  h(ab)p(ab)
Q”(h(b,a)p(b,a) —h(b,a) )

where p(x, y)=P*(T,<o0). Let Y, Y” be independent copies of Y, but with
Y;=a, Yy =b, and let

Y., ifZ,_=b

X, 0gi<{
z[
Y, if Z,_=a.

Then Z has the same law as Y. Let N, be the martingale obtained from Z in
the same way that M was from Y: we have, for t<I% , I% — I’ =N,. Then, by
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Lemma 2.6,
P"(sup (L= L) >x)=P(sup (L, — L, )>x)
u=t

S=1

ZP%sup N,>x)

ust

<exp(—x2/4th(a,b)).
The final form of our estimate on L?—L? is the following.

Lemma 2.8. For each >0, x>0, yelR

2
¥ a_ b < __x
P (ggMALS ANE|>x)<2exp ( 4/1h(a,b))' 2.7

Proof. Suppose we{sup(AALi—AAIZ)>x}. Then, for some s, AAI%w)
—AAD w)y>x. As AALi(w)<4, we must have I(w)<4, and so LA I%(w)>x

+ L(w). Hence, if u=sat (o), Lw)=ialo)>x+Lw)zx+LE(w), and
therefore we {sup (L% —I%) > x}. (2.7) is now immediate from (2.6).

S=T,

3. A Sufficient Condition for Continuity

We are now ready to obtain a modulus of continuity for L from the estimate
(2.7) by using Garsia’s lemma, which we use in the following form.

Lemma 3.1 (see Garsia, [6]). Let p and ¥ be strictly increasing functions on
[0, o), such that p(0)=Y(0)=0, lim Y(t)=0c0, and ¥ is convex. Let N >0, and

t— 00

let f be a measurable function on [ —N, N such that

j j" ( f(y)l)dxdy§F<oo.

NN 1)
Then for (Lebesgue) almost all x,y in [—N,N]x[—N,N],

[x—yl|

Ifx)—f)I=8 g ¥ Tu~?)dp(u).

Proof of Theorem1.l. We begin by remarking that (1.10) implies that the
function p defined in (1.11) is finite. For

oo 2-27n

p()= Zl ZL (log (1 +u~2) do*(u)
=c Z n}(0%(2-27") =55 27")
<cz (n+1)F —n?) 632 <cZn 532" <

(In this calculation, and elsewhere, ¢ denotes a universal constant, the value of
which may change from line to line.)
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Let P(x)=¢*"—1, so that ¥~ '(y)=(log (1 +))?, and let

8= sup hiw.  p( ) =759, 61
s0)=] (toe (1+-;)) de* 62)

By Lemma 2.4, if |x| is sufficiently small, 3/4 p(x)< ¢ (x)£4p(x); and in particu-
lar ¢ is finite.
Set _
Y(4,a,b)y=sup|LAIL—AALL).
520
By (2.7)

p (av (%%) >a> — P*(Y(%,a,b)= p(J la—b|)(1og (1 +))?)
log(1+a)-81g(la—b])
47h(ab) )

<2exp(—2log(l+a)=2(1+a)~2

<2exp (—

Hence, integrating, we have

Y(4,a,b) )gz. (3.3)

p(4,la—bl)
Now let N>1 be fixed, let I=[ —N,N], and for A>0 let

_ Y(4,a,b) )
L= (p(z,m—bl))d“db’

then, by (3.3) and Fubini,
E*T,<2N?2 (3.4

So, for each 4, PX(I, <o0)=1, and hence, throwing out a P*-null set, I}(w)< oo
for all Ae@Q ., weQ. Now for any t=0, 1eQ,

[AAL—AAL

‘F( )dadb£F<oo,
WY U otuta—b) =

and therefore, using Garsia’s lemma, with p(4,-) for p(+), there exists a set
A(t, A, )= x I such that |A(t, 4, )} =0 and, for (a,b)e(I x ) A°(t, 4, w),

la—b|

AAIE—AADE <8 | W' 2L)d,p(4,u). (3.5)
0

The right-hand side of (3.5) is

la =2l WAl uP+1\%
. 8A)Fdg*
8 ”.[ (log (u2+1 2 )) (8A)*dg=(w)

<8#2*[(log (1 v )} g*(la—bl)+¢(la—b])] < 0.
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Following Getoor-Kesten [7], we define, for all (x,t, w),

x+1/m

—hmsupr; [ Idy. (3.6)

m-— oo x—1/m
Let Ij=[—N+1,N —1]: using (3.5) we have

|AAL— A D) ScA¥(@(b—al)+(g(b—al)log (1 v I)*)
for all t=0, (a,b)el,x1,, 1eQ,. (3.7
Now (see [7]), P*(IX=IX)=1 for all (x, 1), so that I* is a version of I*.

Let
F={ow: [i(w)=1(w) for all se@Q,, ac®, and s— [%(w)

is continuous for all ae@}.

Then P*(F)=1, and it follows from (3.7) that, on F, (x, t)— A AL is continuous
on I, xR, for Ae@_. To conclude that I; is continuous, we need to show that
sup I, < co.

xelg

From (3.7), setting b=0, we have
ANBZAANL+ A [cd(N)+cg®(N)(log(1 v IL)*]  for all ael,.

Hence, on {supIX> 4},

xelg
AZSAAL+ 23 cp(N)+cg(N)(log (1 v I))).
Now if y2< A4+ By, then y><2A4+B?, and so, on {supLi> 1},

2L+ c(p(N)+g(Ny*(log (1 v I))** z A
Thus

) . A $(N)?
P(i‘el}zL > ) S P(L0> A4+ P ( ZexXp (4cg(N)_ g(N) ))

<SPI0 > A/4) + (1 +2N?2) e N/e) = Hacg®)
Integrating, we have

EsupX<4EI2 +cN*h(N)~let™e®), (3.8)

xelp

so that, in particular, supIX<oo P*-as. Taking A greater than this supremum,

xelg
it follows that (x,t)— L is jointly continuous on [—N+1,N—1]xR, for any
Nz=1, and hence on R xR .

To conclude the proof of Theorem 1.1 it remains to establish the modulus
of continuity (1.12). We may choose £¢>0 small enough so that ¢(u)<4p(u) for
O<u<e Now let t>0, let N=N(w) be large enough so that | X |<N for
0<s=t, let Ae@Q, be such that sup L < /1<2sup IZ; then if ¢(w) is chosen small

enough so that (g(e(w))log( 1vF )i o(e t(cu)), (1.12) follows immediately
from (3.7).
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4. Applications and Examples
1. Range of a Lévy Process

Let R (@)={X ), X, (0)}v{X(0),X, (w),0<s<t}. For t>0 R, is as. a
closed perfect set of positive Lebesgue measure, and in [1] it was shown that
either, with probability 1, R, is nowhere dense, or else, with probability 1, R,
=cl(int(R,)) and R, contains an open interval around X . In [10] Kesten gave
examples of symmetric Lévy processes for which R, is nowhere dense, and
proved that if for some >0 §(27")<n~'~% then R, contains an open interval
around X, as. Since (as is shown in [10]) if I is continuous then R, must
contain an open interval around X,, Theorem 1.1 gives immediately a slight
improvement on Kesten’s result.

Corollary4.1. If Y 6(27")*n~* <o, then R, contains an interval around X ,, a.s.

Remark. In Pruitt and Taylor [14] it is proved that the asymmetric, but not
completely asymmetric, Cauchy process has a nowhere dense range.

2. Modulus of Continuity in Space of the Local Time of a Stable Process

The symmetric stable process of index o, where 0<a=<2, is a Lévy process for
which Eé*¥t=¢~'** For O<a<2 this process arises by taking v(dx)
=c,|x|7*~*dx, for a=2 the process is a multiple of Brownian motion. For
L <a<?2 these processes have local times, which Boylan [4] proved are jointly
continuous in (x, t).

Using the notation of Theorem 1.1, it is not hard to see that

do(x)~c, x|t as x—0,

1\? .
while p(y)=<c, (y"“llog;) for sufficiently small y. Hence, by (1.12), for all

t 20 there exists ¢(w) with P(e,>0)=1 such that

1 1 —%
18- 18 Seup 2 (jp—allog )
x |b—al
for 0<s<t, |b—a|<eg(w). 4.1)

Here ¢, is a constant depending only on «.

Remarks. 1. The modulus of continuity which follows from the results in [7] is
clb—al® " 2log|b—a| .

2. In the case of Brownian motion the exact modulus of continuity of L; is
known (see [12] and [15]); (4.1) is only worse than this exact modulus by a
constant factor.



Continuity of Local Times for Lévy Processes 33

3. A Family of Asymmetric Lévy Processes, Including Some Critical Cases

Let a=0?=0, and

v(dx)=x"2g(1/X)(P1 (x5 0+ 9L ix< 0 (4.2)
where p, ¢>0, p+g=1, and where
g(y)=(loglyly(loglog|ylf’ 1y,  ® BER. (4.3)

This family of processes includes the asymmetric Cauchy («=f=0, p=+q), and
contains both processes with continuous local time, and processes with un-
bounded local time. We shall examine the continuity of L, for these processes,
but as some of the calculations of ¥/(1) and J,(x) are rather tedious, we shall
just present an outline. We shall denote unimportant constants whose values
depend only on o, § by ¢,¢’, and use the notation a(x)=~b(x) as x>0 to mean
that a(x)/b(x) is bounded away from 0 and «© as x—co.
We begin by checking (1.6):

1
fIx]v(dx)=c0 if a>—1, or a=—1 and f= —1
~1
<o  otherwise. 4.4)
We restrict our attention to the first case: in the second the paths of X have
finite variation, and X does not have a local time.
From (1.2) we have

Y(A)~c|A gD +ic'(p—q) Allog|A) g(A)  as |A]—oo. (4.5)

Note that Imy(1)>Rey(4) if p=q: the asymmetry plays an important role. It
follows immediately that as [A] > o0

Re

~[1Al(loglA)? g1 ™" if p#q
~[Alg()]1~! if p=¢q (4.6)

1
1+y ()

Many aspects of the detailed sample-path behaviour of X are governed by the
behaviour of Re(1+1(1))~! as A—oc: we see that the symmetric process with
parameter « behaves in a similar fashion to the asymmetric process of index
o —2. From now on we take p>¢. Checking (1.5),

1

§R61+l//(,1)

di<oo if a>—1, or a=—1, f>1
=o0  otherwise. 4.7

From (4.4), (1.5) and (1.6), we see that, in the first case, X has a local time: we
restrict ourselves to this case.
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We now consider the condition (1.13):
1 o0 da
e———dizc | ——-F—r
yHy@ T { A(log 2)* g(4)
~c(logy)~ ! ~*(loglog y)~*.

fR

Hence

1
lim inflo Re———di>0 if a<0, or a=0, <0,
minflogy fRey 55y

and in these cases, by [13], L, is unbounded.
We now check (1.10): with a little work we find that

1
" (log 1/x) g(1/x)
so that 8(2~")~n"*"Y(logn)~*, and

0(x)

as x—0,

Y oR™Ein"i<oo  if a>0, or =0, f>2
n=1

=co0 otherwise.

In the first case L. is jointly continuous by Theorem1.l. The cases o=0,
0<f <2 are not covered by either (1.10) or (1.13), so that the behaviour of L, is
unknown. We conjecture that in these cases L is unbounded.

We may summarise the properties of L for these processes as follows: recall
that we are taking p>gq.

a< —1, o= —1, f< —1 paths of finite variation, no local time;

o=—1, —1=2p=1 paths of infinite variation, no local time;

a=—1, f>1; local time exists, unbounded in

—1<a<0; every interval by (1.13);

=0, =<0

a=0, 0<p<2 local time exists, other properties
unknown;

=0, f>2; >0 local time continuous by (1.10).
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topic, and Charles Goldie for telling me about the martingale version of Bernstein’s inequality.
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