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Martingales and Stochastic Integrals 
for Processes with a Multi-Dimensional Parameter 

Eugene Wong and Moshe Zakai 

1. Introduction 

In this paper our interest is to develop a stochastic calculus of the Ito type 
for multi-parameter processes. The experience with stochastic integrals in one 
dimension makes it clear that the Ito calculus is a calculus of continuous-parameter 
martingales and local martingales [5, 7]. Thus, a useful generalization of the 
stochastic integral must necessarily involve a generalization of the martingale 
property to multidimensional parameter spaces. From this point of view, it is 
natural to consider martingales as random functions parameterized by subsets 
of R" rather than points in R". Set inclusion provides a partial ordering in terms 
of which the martingale property can be defined in a natural way. 

An important example of martingales with a partially ordered parameter is 
the following generalization of Brownian motion. Let ~"  denote the collection 
of all Borel sets in R" having finite Lebesgue measure. Let {XA, Ae~"} be a real 
Gaussian additive random set function with 

EXa=O, EXAX,=SF(AnB) (1.1) 

where ~ denotes the Lebesgue measure. Intuitively, XA can be thought of as the 
integral over A of a Gaussian white noise. We note that for n = 1 Xt0 ,tl is just 
the ordinary Brownian motion. In the multidimensional case the process 

W(z,, z2 ....... )= Xto, z,l • ~o. z21 . . . . .  ~o, z,l (1.2) 

is a sample-continuous process provided a separable version is chosen, and the 
probability measure that it induces on C([0, 1]") generalizes the Wiener measure. 
The process defined by (1.2), which we shall call Wiener process, has been studied 
by a number of authors [6, 8, 9]. In particular, results of the Cameron-Martin 
type on absolutely continuous affine transformation of the Wiener measure have 
been obtained [8, 10]. 

Martingales with a partially ordered parameter are not new. Cairoli [1, 2], 
in particular, has considered martingales in a context very similar to ours, and 
has introduced a stochastic integral with respect to a two-parameter Wiener 
process, which will be referred to as integrals of the first type in this paper. We 
shall show that for Wiener processes with a two-dimensional parameter, stochastic 
integrals of a second type are necessary both for the purpose of representing 

Research Sponsored by the National Science Foundation Grant GK-10656X2 and the U.S. Army 
Research Office-Durham Contract DAHCO4-67-C-0046. 
8 Z.Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 



110 E. Wong and M. Zakai 

Wiener functionals and martingales and for the development of a two-dimensional 
stochastic calculus. It should be noted that although Cairoli derived a differen- 
tiation formula for Wiener processes with a two-dimensional parameter, it 
involves differentials in one parameter at a time and hence is really a differentiation 
formula of one dimension. 

In Section 2 we briefly introduce martingales with a partially ordered parameter 
and show that Gaussian white noise in general, and the Wiener process in particu- 
lar, have a natural interpretation as martingales. In Section 3 we focus on the 
parameter space T= [0, 1]" together with a partial ordering defined by component- 
wise ordering. By introducing increasing paths in T, we can study martingales and 
local martingales with the aid of the theory of one-parameter martingales. In 
Section 4, we consider functions f(M,,z) of a path independent martingale M, 
which are themselves martingales. Using a differentiation formula for such func- 
tions on increasing paths we prove an important characterization of Wiener 
processes. We shall also prove that every square-integrable Wiener functional 
is expressible as f(Wl, 1) (1 = (1, 1 . . . . .  1)) for some f of this class. In Section 5, 
we introduce stochastic integrals of the first and second types and consider 
some of their properties. In Section 6, we shall develope a differentiation formula 
for two-parameter Wiener processes using the two types of stochastic integrals, 
and prove that every functional of a two-parameter Wiener process admits a 
representation in terms of integrals of these two types. 

2. Martingales 

Let 5: be a directed set. That is, S: is a nonempty set partially ordered by a 
binary relation -( satisfying the condition that for every pair x, y in 50 there is a 
z~S: such that x~(z and y~(z. Let (9, d ,  ~)  be a probability space. A collection 
of sub-a-fields {ds, s e ~ }  is said to be increasing if sl )~s2 => ds  I ---~r Given a 
family of random variables {X~, seS:} and an increasing collection {d~, se5:}, 
we shall say {X~, ds ,  s~5:} is a martingale if s~-s o implies 

E ~~ X~ =)(so, almost surely. (2.1) 

Let # be a a-finite Borel measure on R". Let ~"  denote the collection of all 
Bore1 sets of R" which are #-finite. Let {X~, s ~ " }  be a real Gaussian additive 
set function with EX~ = 0 and 

EXsX~, =#(s  ~ s'). (2.2) 

If we take 5: to be any subcollection of Y/" which is a directed set with respect to 
set inclusion, and take d~ to be the tr-field generated by {X~,, s'~_s}, then 
{Xs, ds ,  s~5 p} is a martingale. More generally, we can take { ~ ,  s~5:} to be any 
increasing collection such that X~o is ~-measurable  if So - s, and d~-indepedent 
if s o and s are disjoint. It is customary to refer to {X~, s ~ " }  as a Gaussian white 
noise. Thus, we see that a Gaussian white noise has a natural interpretation as a 
martingale. From (1.2) it is easy to see that the Wiener process W~, zeR+, has a 
natural interpretation as a martingale with respect to the partial ordering defined 
by: z~-z'~:>z~>z'i for every i. 
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3. Martingales on Increasing Paths 

Consider the parameter space T=  [0, 1]" together with the partial ordering 

z>-z'~zi>z~, i = 1 , 2  . . . .  ,n.  

We define a path in T as a continuous function 0: [0, 1] ---, T. We shall say a path 
is increasing if e>fl~O(a)~-O(fl). Let {M~,~z, zeT} be a martingale and 0 an 
increasing path. Clearly, {Mo(~), ~o~o, te[0,  1]} is a one-parameter martingale. 
Therefore, a multi-parameter martingale defines a one-parameter martingale on 
every increasing path. Conversely, an n-parameter process which is a one-para- 
meter martingale on every increasing path is a martingale. This is because if 
z>-z' then we can take the path O(t)= z'+ (z-z')  t and find 

E~Z'M~=E~~176 

The characterization of n-parameter martingales as one-parameter martingales 
on increasing paths allows one to make use of results in one-parameter martingale 
theory. 

Let {M~, ~ ,  z~ T} be a martingale such that almost all sample functions are 
continuous. Then for every increasing path 0, {Mo(t) , ~oo(t), 0<= t< 1} is a sample 
continuous martingale. As such, it is necessarily locally square integrable, and 
there exists a unique continuous increasing function At such that M~(t)-At is 
an ~0(o-local martingale [7]. We shall say {M~, ~ ,  zeT} is path-independent 
if At is the same for all increasing paths 0 having the same pair of endpoints 
0(0) and 0(1). For a path-independent martingale M we can define a function 
(M, M)~, ze T as the increasing function A~ for all paths connecting the points 
0(0)=0 and 0(1)=z. It will then follow that {M~-(M,M)~,  ~ , z ~ T }  is a 
martingale if EM~ < m and otherwise a local martingale. Here, we define a multi- 
parameter local martingale as a process which is a local martingale on every in- 
creasing path. We can call (M, M> the increasing process of M, since z>-z'=~ 
(M, M)z >= (M, M)~,. Conversely, a sample continuous martingale M is necessarily 
path-independent if we can find an increasing process (M, M )  such that 
M 2 - (M, M )  is a local martingale. It is easy to verify that a Wiener process is a 
path-independent martingale with 

(W, W>~ = Volume (~-< z). (3.1) 

Let Mz = (Mlz, M2 ... . .  , M,,z) be a set of sample continuous local martingales 
so that each linear combination ~ eiM~z is a path-independent local martingale. 
Since both Miz+Mjz and Miz-Mj~ are path-independent, we can define 

(MI,Mj>z=I/4[<MI+Mj, Mi+Mj>z--(Mi-Mj,Mi-M~>z]. (3.2) 

For such an M a differentiation formula can be established almost immediately 
by using the differentiation rule for one-parameter martingales on increasing paths. 

Let f(u, z), u~R", ze T, be a real or complex valued function, having continuous 
mixed second partials with respect to the components of u and a continuous 
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gradient with respect to z. We adopt the notation 

Of(u, z) ~" f(u, z) gf(u, z) = grads f(u, z). f i(u,z)= c~ui ' fiJ(u,z)= t?Ui~Uj ' 

Let 0 (t), 0 < t < 1, be an increasing path. Since M~oto, 0 < t < 1, are one-param- 
eter continuous local martingales the familiar differentiation formula of Ito and 
Kunita-Watanabe [7] yields 

f(Mo(o, O(t))- f(Mo(o~, 0(0)) 
t 

i = ~ ~ f (Mo(,~, O(s)) dM~o(~ ~ (3.3) 
i 0 

t 

+ ~ [1 Efi i(u,  z) V<Mi, Mj)s + Vf(u, z)]z=or �9 dO(s). 
0 i , j  u = M o ( s )  

Eq. (3.3) can be expressed in a simpler and more suggestive way as 

gradf (Mz ,z )=~f ' (Mz ,z )VMz+�89  (3.4) 
i i , j  

4. Wiener Integral and Hermite Functionals 

Let { Wz, z ~ T = [0, 13"} be a Wiener process and let { ~ ,  z~ t} be an increasing 
family of a-fields such that {Wz, ~ ,  z~ T} is a martingale. Let L 2 (T) denote the 
collection of all real valued functions r on T such that ~ r (~)d~ < ~ .  For 

T 

r the Wiener integral [-63 ~r is well defined by the following 
conditions: r 

(a) ~ r (~) W(d~) = Wz if r is the indicator function of ~I [0, zi), 
T i = i  

(b) ~ [.ar162 W(d()=a ~ r  W(d~)+b ~ t~(() W(d~), 
T T T 

(c) 0 . r  
T T T 

The Wiener integral has the important properties: 

E [ ~ r W ( d ~ ) l ~ ] =  ~ r W(d(), (4.1) 
T ~ z  

E {[ ~ r (() W(d()12 I~}  = ~ r (() dC. (4.2) 
T ~-<z 

If we define Mz = ~ r W(d~), then {M s, ~zz, z~T} is a martingale. Furthermore, 
s  

M is sample-continuous provided that a separable version is chosen. If we define 

M~z = ~ r W(d~), i= 1, 2 . . . . .  rn, (4.3) 
~-< z 

then 
<Mi, Mj) z= S r Cj(~) d~ = Vij(z) (4.4) 

~-<z 
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so that any linear combination ~ ai Mi~ is a path-independent martingale. Eq. (3.3) 
now becomes ~= 1 

t 

f(Mo(t), 0 (t)) - f (Mow ), 0 (0)) = ~, I f '  (Mo(~), 0 (s)) dM~o(s) 
i 0 

t (4 .5)  

+ S I_S 1 r r i j  tlu, z) V Vii (z) + V f(u, Z)]z = o(~)" dO (s). 
0 i , j  u=Mo(s) 

It is clear that if f(u, z) satisfies the equation 

I ~ f i J (  u, z) VVij(z)+ Vf(u, z)=0 ,  (4.6) 
i , j  

then f(M~, z) is necessarily a local martingale. Therefore, the class of f satisfying 
(4.6) is of some interest. 

Let f~ (u, z) be defined by 

f~ (u, z) = exp {i Z Uj O~j AC 1 Z ~J ~k b k } "  (4.7) 
j j , k  

It is easy to verify that f~ satisfies (4.6) for every ~e R  m. Therefore, any linear 
combination of elements of the family {f~, ~eR m} satisfies (4.6) and so does the 
limit of a suitably convergent sequence of linear combinations. Specific examples 
include the polynomials 

O ~ : ~ . N k ?  f , (u ,z  e i = 0 ,  l < j < m ,  (4.8) 

and 

f(u, z) = ~ f~ (u, z) dp (c~) 
R m 

where # is any Borel measure satisfying 

1l=ll21L(u,z)ld~(~)<~, ueR m, zeT .  
R m 

A celebrated result of Cameron and Martin [3] states that every square- 
integrable functional of a Wiener process {Wz , zeT}  can be represented in a 
series of Hermite functionals, a Hermite functional being a product of the form 

v = l  T 

where Hp are Hermite polynomials. 

Theorem 4.1. For every Hermite functional there exists a function f(u, z), 
ueR  ~", ze  T, such that 

[ I  Hp~( f ~ ( ( )  W(d~))=f(M,,  1) 
v = l  T 

t (4.10) 

= Z I fi(Mo(~), O(s)) dMio(~) + f(O, O) 
i 0 
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where 0 is any increasing path connecting 0 and 1, and 

M~z= j (0~(~) W(dO. 

?n 

Proof. For each p = (Pl, P2 . . . . .  Pro), H Hpv(uv) 
v = l  

(ul, u2 . . . . .  u,,) of degree p. Therefore, we can write 
n 

Fl H,,,, (',',,) = E fl.kA( , 
v = l  k < p  

where fk satisfy (4.8). It follows that there is a function 

f(u, z)= ~ flpk fk(U, Z) 
satisfying (4.8) such that k<-P 

m 

H Hw(u~)=f(u, 1). 
v = l  

Eq. (4.10) follows immediately from (4.5). 

is a polynomial in u =  

5. Stochastic Integrals 

Let T= [0, 1]" and let {Wz, 4 ,  z~ T} be a Wiener process. Integrals of the form 

I1(r j r W(dz) (5.1) 
T 

where ~ is a random function satisfying appropriate conditions can be defined 
in a way so as to generalize the Ito integral. Cairoli [2] has done this for n = 2, 
and extension to arbitrary n poses no problem. We shall refer to integrals of the 
form (5.1) as stochastic integrals of the first type. The definition and some of the 
properties of these integrals are summarized below. 

Let qb (co, z) satisfy the following conditions. 

H1 : ~b (co, z) is a bimeasurable function of (co, z) with respect to ~ |  50 where 5 ~ 
denotes the a-algebra of Borel sets in T. 

H2: For each z~ T, ~bz is G-measurable. 
j 

T 

Suppose q~ is simple, i.e., c b(co, z)=~(co),  z~A~, v= 1, 2 . . . .  , k, and ~b=0 else- 
where, where A~ are disjoint rectangles 

A~= f i  [a~, bT). 
i =1  

Then we define 
t 1 ( r  r W 

V 

where we have used A W to denote the white noise integral over a rectangle A. 
i l l  

That is, if A = [-I [ai, hi), then 
,=1 Aw=Z (_ly( )Wz 

2~ 
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where the sum is taken over the 2" vertices {z: zi= ai, bi} and II(z) is the number 
of bi's in z. The definition of /1  is then extended to q9 sa t i s fy ing / /1 -  H3 by a 
standard completion argument. Principal properties of/1 include the following, 

(a) linearity: 11 (~ ~b + fl ~) = c~ 11 (qS) + fl 11 (~), 

(b) inner product: EII(~)" I1(0) = ~ ~bz ~'z dz, 
T 

(c) martingale: E(Ii(~b)]~)= y ~b(0 W(dO. 

It is clear that I1 is a straightforward generalization of the Ito integral. Hence- 
z 

forth, we shall adopt the rather obvious notation ~ instead of ~. 
0 ~<z 

Stochastic integrals of a second type, to be denoted by 

12 (~,)= [ ~ ~] q,(z 1 , z2) W(dz 0 W(dz2) 
T T 

will turn out to be necessary if a full-fledged multi-parameter stochastic calculus 
is to be developed. For motivation consider the following simple example. Let 

z 

0 i=1 

which is easily seen to be a martingale. To obtain a stochastic integral representa- 

tion for X, subdivide the rectangle IZI [-0, zi) by a rectangular subdivision {Av}. 
i=1 

We shall use v>-p to denote z>z' for all zeAv and z'eAu. We use A~ W to denote 
the white noise integral over A~ (i.e., A~ W= I W(dz)) so that VV~ = E  A~ W and 

-'Iv V 

X ~ = ( E  A~ W) 2 -  f i  zi= E [(A~ W) 2 -  I d e ] +  2 E E Au WA~ W 
v i=1 v a~ v # < v  

+ ~ A~ WA u W. 
v, # unordered 

As ~ d ~ 0 ,  the first sum goes to zero, the second sum converges to 2 ~ W~ W(dO 
Av 0 

which is an integral of the first type, and the last will converge to a stochastic 

integral of the second type [ fo i] W(dO W(d~'). Hence, we will have a represen- 
tation 

X==2iVV~W(dO+[~o ~o]W(dOW(d~'). 

We now turn to the definition of the integral of the second type. 

For two points z and z' in T we use z v z' to denote 

( (Z1, Z;) (Z2,  Z2) (Zn, Zn) ) max , max , ..., max . 

Let G denote the subset of T x T consisting of pairs of points (z, z') which are 
unordered, and let h o denote the indicator function of this set, so that 

hG (z, z') = 1 if z, z' are unordered 

= 0  if z, z' are ordered. 
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Let ~ (o~, z, z') be a random function defined on t2 x T x T satisfying: 

HI :  ~(~o, z, z') is jointly measurable with respect to f f | 1 7 4  

H~: for each pair z, z' the function r z, z') is measurable with respect 
to ~ , .  

H'3: E ~ ~ ~2(z,z ')dz,  dz '<oo. 
T T 

Let q~ be a simple function, i.e., there exist rectangles A~ and A 2 such that 

~(~o,z,z')=~(~o), zeal, z'eA2 

= 0 otherwise. 

First, assume that A1 • A2~G. Then I2(~t) is defined by 

I2(r WA2 W. 

Without the assumption A1 x A 2 c G, we define 12 (r as follows. Let there be an 
e-lattice defined on T. For each z~ T there is a largest lattice point [z] ~ satisfying 
[ z ] ~ z ,  because if a and b are lattice points then a v b is again a lattice point. 
We now define an approximation to ]2 (r by 

1"2 (~) = Y'. r ( i~, fl) ho (i ~, fl) d i e WAj e W 
i ~, j~ 

where the summation is taken over all lattice points, or equivalently, because 
of ho, over all unordered pairs of lattice points. If 2 2 is a subpartition of el then 

E(I~ - I~2)2 =Etx2  I I [h~([z] ~', [ z ']"l)-  h~(Ez]"Z, [-z']"2)] 2 dz dz'. 
T T 

It follows from the result of the appendix that E(I~2 ~ -i~2)2 converges to zero as el 
and e2~0 .  Therefore, 1~ converges in quadratic mean and we can define 

I2 (~) = lim in q.m. 1~ (0). 
e---~ 0 

It is easy to verify that this definition is consistent with the definition for A 1 x A 2 c G. 

We can now extend the definition of 12 (0) to all functions satisfying Hi - H ;  
by approximating r by linear combinations of simple functions in the usual way. 
It follows that I 2 (~t) is defined for all ~ satisfying Hi - H ~  and inherits from I 2 (~/) 
the following properties: 

(a) linearity: I2(ar162 
(b) off diagonal: I2(r 
(c) inner product: E I2 (qJ) I2 (~") = E ~ ~ he (z, z') ~ (z, z') r z') dz dz', 

T T 

(d) orthogonality: E 11 (c~) I2 (~) = O, 

(e) martingale: E [ / 2 ( ~ ) I ~ ] = [ i  f ]  r  

These properties are easily verified for 1~ (~) and extended to 12 (~0) by standard 
arguments. 
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Cairoli [ I ]  has proved that if Mz, z~T= [0, 1]", is a martingale then there 
exist constants Ap,, such that 

E (sup [M~ ]P) < Ap. sup (E [Mz IP). 
z ~ T  ' z ~ T  

Using this inequality for p = 2, we can easily show that separable versions of the 
martingales 

Mz= 0~= W(d~), X 2= ~;,r W(d() W(d(') 
0 

are sample continuous. Proofs follow exactly the same line as the one-dimensional 
case, viz., by showing that M and X are a.s. uniform limits of sample continuous 
martingales, and will not be repeated here. 

Both 11 and 12 call be extended to integrands q9 and ~ which do not satisfy H3 
and H~ but instead satisfy the conditions 

dz < o o  a . s .  
T 

I z') dz  a.s. 
T T 

The extension is by approximating ~b (resp. ~b) by a sequence of bounded functions 
qS, (ft,) converging almost surely to ~b (resp. 4/) at every point z (resp. every pair 
(z, z')). I~ and 12 can then be defined as 

I~ (~b) = lim in prob. I, (~b,), I 2 (~,) = lim in prob. I 2 (~/n)" 
n ~ o o  n---~ oo 

So defined, I~ and 12 retain most of the properties, except that they need not be 
square integrable and need not have the martingale property. 

We will show in the next section that for the two-parameter case stochastic 
integrals of the first and second types are complete ha the sense that they suffice 
for the representation of every Wiener functional. For higher dimensional 
parameters this is not the case, which suggests that stochastic integrals of other 
types need to be defined for the general n-parameter case. As yet, it is not clear 
to us how this should be done. 

6. Representation of Two-Parameter Wiener Functionals 

We begin, with an elementary differentiation formula. Let {W,, 4 ,  ze[0,  1] 2} 
be a two-parameter Wiener process, and define a martingale 

M= = (Mlz, M2 . . . . . .  Mm~) 
by the Wiener integrals 

Mw= ~ (a~(() W(d() (6.1) 
0 

where q~ are non-random functions in L 2 ([0, 112). We shall derive a differentiation 
formula for f(Mz, z) where f is a function satisfying 

�89 ~ fi;  (u, z) V Vii (z) + Vf(u, z) = 0 (6.2) 
i,j 
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where 
z 

v,j(z)= 14,(0 4~j(0 d~. 
0 

We note that (6.2) is identical to (4.6) so that f(Mz, z) is a local martingale which 
has a representation on any increasing path 0 given by 

f(Mo(,), O(t))-f(Mo(o), 0(0))= Z i ~ M f (o(s), O(s)) dMio(s ). 
i 0 

(6.3) 

Theorem 6.1. Let f satisfy (6.2) and have continuous mixed partial derivatives 
with respect to the components of u through the third order�9 Then, 

f[M(zl ,  z2), (zl, z2)] - f [M(zx ,  0), (zl, 0)] - f [M(0 ,  z2), (0, z2)] + f [M(0, 0), (0, 0)] 

= i ZTi(M~, 0 (o~(() W(dO (6.4) 
0 i 

+ �89 .~. fij  (M; v ~', ~ v ~') ~)i (0 ~j (~') W (dO W(d~'). 
t , J  

Proof. It is clear that we only need to prove (6.4) for the case z = (1, 1), since the 
general case follows from the martingale property of both sides. Now, let the unit 
square T be partitioned by a sequence of square subdivisions. It is convenient to 
take the squares to be of the same size (say fig) in each partition and we assume 
6k ~ O. We can order the lattice points of each partition in some arbitrary 
way and denote them by Zkv = (Xkv , Ykv). We can now write 

f(M(1, 1), (1, 1 ) ) - f (M(1,  0), (1, O))-f(M(O, 1), (0, 1))+ f(M(O, 0), (0, 0)) 

= ~ {f(M(Xk~ + 6k, YRv + 6,), (Xk~ + 6 k, Yk~ + 6k)) 
ti 

- f (M(Xk,  + 6k, Yk ~), (Xkv + 6k, Yk ~))-- f(M(Xk~, Yk~ + 6k), (Xk~, Ykv + 6k)) 

+ f (M (Xk~, YkO, (Xk~, Yk~))} �9 

Since f satisfies (6.2), we can use (6�9 for the bracketed terms and write 

f(M(1, 1), (1, l ) ) - f (M(1 ,  0), (1, 0)) -  f(M(0,  1), (0, 1))+ f(M(0, 0), (0, 0)) 
1 

= Z Z S { f i [M (Xk~ + 6k, Ykv + S •k), (Xkv + 6k, Yk~ + S 6k)] 
v i 0 

�9 Mi(Xk~+6k, yk~+6kdS) 

_ f i  [M(Xkv, Yk~ + S 6k), (Xk~, Yk~ + S 6k)]" Mi (Xk~, Ykv + 6k ds)} 
Ykv+6k  

= E Z  ~ {T~[M(Xkv+6k'Y)'(Xk~+6k'y)]Mi(Xk~+6~'dY) 
v i y ~  

_ f i  [M (xk~, y), (xk~, y)] Mi(Xkv, dy)}. 
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Because of the forward-difference nature of one-parameter stochastic integrals, 
we can write 

f(M(1, 1), (1, 1))-f (M(1,  0), (1, O))-f(M(O, 1), (0, 1))+ f(M(O, 0), (0, 0)) 

= lim in prob. ~ ~ { f i  [M(x{~, Ykv), (Xk-v, Ykv)] [Mi (X~-v, Y{~) -- M~ (x~-v, Yk~)] 
k--*  oo v i 

_ f i  [M (Xk~, Yk ~), (Xk~, Yk ~)] [Mi (xk~, y+v)- Mi(Xk~, Yk ~)] } 
+ m where x k~ - Xk ~ + (~k and y~-v = Yk v -f- (~k" 

Rearranging terms and using (6.3) for the difference 

i + + i f [M(Xkv, Ykv), (Xkv, Ykv)-l--f [M(Xkv, Ygv), (Xk~, Ykv)] 
X k v + ~  

= .( ~ f i J [ M ( X ,  ykv),(X, ykv)] Mj(dX, ykv) 
Xt:v J 

we find 

f [M(1,  1), (1, 1)3 - f [ -M(1,  0), (1, 0)3 - f [ M ( 0 ,  1), (0, 1)3 + fl-M(0, 0), (0, 0)3 

= l im in prob. {Z Z f i  [M (xk~ ' Yk~), (Xk~, Ykv)] Ak~Mi 
k-~ oo v i 

+ Z Z f~J [M(Xkv, Yk ,'), (Xkv, Yk ~)]" (61~ ]Vii)(6k2v Mj)} 
v i , j  

where we have adopted the notations 

_ _  + + + + 
A k ~ Mi - Mi (Xk~, Yk ~) -- Mi (Xk v, Yk~) -- Mi (Xk~, Yk ~) + Mi (Xk ~, Yk O, 

1 __ + 6k ~ Mi -- Mi (Xk~, Yk ~) -- Mi (Xk ~, Yk O, 
2 fikv Mi -- Mi (Xk ~, y~) -- Mi (Xk ~, Yk ~)" 

From (6.1) we have AkvMi'~(Oi(Xkv, Ykv)Akv W. Therefore, 

lim in prob. ~ f~[M(xk~,  Yk,), (Xkv, Yk,)] Ak,M~= ~ f~(Mr () (a~(() W(dO. 
k ~  oo v T 

Now, we observe that for any function g 

2 s  ykvvyku)AkvMiAkuMj=Zg(xk~  ' 1 2 2 , Yk ~) [ 6k~ Mi 6kv Mj + 6g M i 6k~ M j]. 
v 11 V 

re:I t  

Since fiJ fjl a = a  , wehave  

lim in prob. ~ ~, f~J [M (Xk~, Yk~), (Xk~, Yk~)] (61vMi)(6~vMj) 
k ~  i , j  v 

-2-• lim in prob. ~ ~ fiJ[m(Zkv V Zk~), Zkv V ZkU'] AkvmiAkum j 
k ~ o e  i , j  v ~ I t  

1 --5 [ ~ ] fiJ(M~v~', ( v (') ~)i(() (Pj(~') W(d() W(d('). 
T x T  

The proof of Theorem 6.1 is now complete. 
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We now observe that as a corollary of Theorem 6.1 we have the following: 

Corollary. Let X be a square integrable functional of {W~, z~ T}. Then X has 
a representation of the form 

x =  j 05~ w(a~)+ [ j ] q,~,~, w(d~) w(a~')+Ex. 
T T x T  

Proof First, we observe that from (4.10) and (6.4) every Hermite functional 
has a representation 

I~I Hp~(j qG(~) W(d0)= constant + ~ Z f~(Mr () 05,(~) W(d~) 
v = l  T T i 

+�89 J ] ~,f'J(M~,,~v~')05,(~)05j(~') W(d~) W(d('). 
T x T  i , j  

The assertion of the corollary now follows from completeness of Hermite 
functionals in the space of square-integrable Wiener functionals and from q.m. 
closure of stochastic integrals. 

If we denote by ~ the a-field generated by {W~, (<z}, then it is obvious from 
the corollary that every square-integrable ~fzz-martingale is of the form 

z [ i i ]  Mz=Mo+ ~ 05r W(dO+ $~,r W(d() W(d~'). 
o 

Results of this section generalize the well-known result in the one-dimensional 
case that every square integrable Wiener functional and martingale can be 
represented as an Ito stochastic integral [4, 6, 7]. They also provide an interesting 
connection with multiple Wiener integrals with a two-dimensional parameter. 
In [-6] Ito proved the formula 

~ ... ~ 4'1 (zl) ... 05. (Zp, + p2+... + ~.) W(dzO ... W(ctz,,~ +,2+... + p,) 
T T 

v=l ( i l l )  "v 

v~here the left hand side is a multiple Wiener integral, {051 . . . . .  qS.} is an ortho- 
nomial system and Hp are Hermite polynomials. It follows that if we denote 

Z 

Miz = j 05i(0 W(dO then there exists a polynomial f(u, z) in u satisfying (6.2) such 
that o 

j ... ~ 051 (zl) . . .  05.(z,1+,2+... +,.) W(azl ) . . .  W(az , ,+ ,2+ . .+ , . )  
T T 

= J Z f'(M~,r W(d~) 
T i 

+�89 [ S ] Z f'~(Mr ~ v ~') 05r 05~(~') W(d~) W(d(') 
T •  i , j  

+ constant. 
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Appendix  

In this appendix we state and prove a lemma which is referred to in Section 5. 

Let A1, A2 . . . . .  A,, be a set o fm rectangles in T = [ 0 ,  1]', and let h a denote the 
indicator function of Aa • A 2 •  • A,, so that h A (t), t~ T", is defined by 

m 

ha (t) = 1, t ~ IF[ d v 
v = l  

= 0 elsewhere. 

Now define sets F and G in T m as follows: 

t = (tl, t 2 . . . . .  tTn ) ~ F ~:~ t m 5- ti, i = 1, 2 . . . .  , m - -  1 

t6G<:>t m and tin-1 are unordered and 

t , .  v t m _  ~ 5 -  t i ,  i = 1,  2 . . . . .  m - 1 .  

Let h F and ha denote the indicator functions of F and G. Let T be partitioned by 

n - [ i N ' - - N - ' " "  N- ' 

For  each zE T, [z] N denotes the largest lattice point dominated by z. For t~ T m 
we denote [ t ] n= ( [ t l ]  N . . . . .  [train). Finally, let dt denote the m-fold product of 
the Lebesgue measure on T. 

L e m m a .  
[ha (t) he ( t ) -  h a (It] N) he ([tin)] 2 d t ~  0, 

T m 

[h A (t) ha ( t ) -  ha (It]N) ha (It]n)] 2 d t ~ 0. 
T m 

Proof. The proof for h a and he are nearly identical, and we will use h to denote 
both of them. Adding and subtracting h a ([t] N) h(t), we get 

[h a (t) h (t) - h a (It] N) h (It]N)] 2 dt 
T m 

< 2 j h 2 (t) [h a (t) - h a ([tiN)] 2 dt + 2 S h2 (It] N) [h (t) - h ([tiN)] 2 dt 
T rn T m 

< 2  ~ [ h a ( t ) - h a ( [ t ] s ) ]  2 d t + 2  j [h(t)-h([ tJN)] 2 dt. 
Trn  T m 

The first integral obviously goes to zero. The integrand in the second integral is 
either one or zero. Take the case h = h e. In order that [hF ( t ) -  h e (It]N)[ = 1, we must 
have for some i ~: m [tm]ns- [ti]n and t m ~ ti. (The other case, t m 5- t j, [ tm]n~  [tj]n for 
somej  ~: m, is impossible.) Therefore, a necessary condition for [he ( t ) -  h e ([t]N)[ = 1 
is that at least one t i ( i~  n) should differ from tm in one of its coordinates by no more 
than 1IN. We shall now upper-bound the Lebesgue measure of this set in Tm. 
Assume that points are placed in T at random with a uniform distribution. A 
sequence of m independent samples gives us tl, t2 . . . .  , tin. The probability that 

1 
t 1 and tm differ in the first coordinate by ~-  or less is upper-bounded by 2IN, 
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similarly, for the other coordinates and t~, 2 < j < m -  1. Therefore, the probability 
that at least one ti (i 4= m) and tm differ in at least one coordinate by no more than 

2 n (m--  1) 
1/N is bounded by N which goes to zero as N---, ~ .  The case of hG follows 

very similar lines of argument and we omit the details. 

References 
1. Cairoli, R.: Une inegalit6 pour martingales/l indices multiples et ses applications. S6minaire de 

Probabiliti6s IV, Lecture Notes in Mathematics 124, 1-27. Berlin-Heidelberg-New York: Springer 
1970 

2. Cairoli, R.: Sur une 6quation diff6rentielle stochastique. Compte Rendus Acad. Sc. Paris 274 
(June 12, 1972) Set. A, 1739-1742 

3. Cameron, R. H., Martin, W. T.: The orthogonal development of nonlinear functionals in a series 
of Fourier-Hermite functions. Ann. of Math. 48, 385-392 (1947) 

4. Clark, J. M. C.: The representation of functionals of Brownian motion by stochastic integrals. 
Ann. Math. Statist., 41, 1282-1295 (1970) 

5. Dol6ans-Dade, C., Meyer, P.A.: Int6grales stochastiques par rapport aux martingales locale. 
S6minaire de Probabiliti6s IV, Lecture Notes in Mathematics, 124, 77-107. Berlin-Heidelberg- 
New York: Springer 1970 

6. Ito, K.: Multiple Wiener integral. J. Math. Soc. Japan 3, 157-169 (1951) 
7. Kunita, H., Watanabe, S.: On square integrable martingales. Nagoya Math. J. 30, 209-245 (1967) 
8. Park, W.J.: A multiparameter Gaussian process. Ann. Math. Statist. 4, 1582-1595 (1970) 
9. Yeh, J.: Wiener measure in a space of functions of two variables. Trans. Amer. Math. Soc. 95, 443- 

450 (1960) 
10. Yeh, J.: Cameron-Martin translation theorems in the Wiener space of functions of two variables. 

Trans. Amer. Math. Soc. 107, 409-420 (1963) 

Eugene Wong and Moshe Zakai 
Dept. of Electrical Engineering 
and Computer Sciences 
Univ. of California 
Berkeley, Cal. 94720 USA 
and Technion, Haifa, Israel 
(Address for reprints to Berkeley) 

(Received August 15, 1973) 


