
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
36, 227-239 (1976) 

Zeitschrift ftir 

Wahrscheinlichkeitstheorie 
und verwandte Gebiete 

�9 by Springer-Verlag 1976 

On Strassen-Type Laws of the Iterated Logarithm 
for Gaussian Elements in Abstract Spaces 

Gian-Carlo Mangano 
Department of Mathematics, State University of New York at Albany, 
1400 Washington Avenue, Albany, N.Y. 12222, USA 

1. Introduction 

Since Strassen's fundamental result on the limit-set form of the law of the iterated 
logarithm (LIL) for the Brownian Motion process [21], several authors have 
investigated its extension to more general Gaussian processes ([11, 13, 15, 17]). 
Starting with an idea developed in [13], an attempt is made here to give a unified 
approach to this problem by setting some general conditions under which the 
LIL for Gaussian processes with (almost all) sample paths in a separable Fr6chet 
space F can be characterized in terms of the unit ball of a certain Hilbert space 
contained in F. 

2. Preliminaries 

A number of definitions and facts used repeatedly, will be reviewed in this section. 
At the same time we shall establish a consistent notation. 

A linear topological space will be denoted by L, and by L* we shall mean its 
topological dual, i.e. the set of all continuous linear functionals on L. If A is a 
subset of L, A is its closure in L and sp(A) represents the linear subspace generated 
by all finite linear combinations of elements of A. If x*e L*, ~x*, x) is the evalua- 
tion of x* at x. We shall always be concerned with linear spaces over the field of 
real numbers. At times it will be more convenient to replace the symbol (x*, x)  
by x*(x). For more special cases, we shall use the letters F, B and H instead. A 
Fr6chet space, or F-space, is a locally convex, linear topological space which is 
metrizable and complete and we shall denote it with the letter F. Likewise, the 
letters B and H will be used to denote a general Banach and Hilbert space respecti- 
vely. The real line will always be denoted by IR, while IR n will represent the n-fold 
cartesian product of IR with itselt. The a-algebra generated by the open sets of 
L will be denoted by ~)(L) or simply by N when the underlying space is clearly 
understood. Completeness of measure spaces will always be assumed. 
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Given a probability space ((2, ~ ,  P) let X be a map from (2 into L. If for each 
x* eL*, x*(X) is a Gaussian random variable, then X is called a Gaussian random 
element on L. From now on the term random variable will be used only for 
mappings into IR. Although this definition qualifies X as a weak measurable 
map from (~2, ~-) into (L, ~(L)), it is well known (cf. [1], p. 100) that if L is metri- 
zable and separable then the inverse map of N(L), under X, is contained in ~ .  
Thus, for the case where F is a separable Fr6chet space, the set function # = P X -  1 
defines a (Gaussian) measure on N ( F ) .  

A sequence (X,, n > 1) of Gaussian elements on L is called a Gaussian sequence 
if for all positive integers k, nl, ..., n k in (n) and elements x~', ..., x* in L*: 
((x*, X~I ) . . . . .  (x*, X,k) ) is a Gaussian random vector. 

Let us suppose that L is a space of real functions on some set S. For seS let 
6~: L-+IR be the evaluation map at s, i.e. 6s(f)=f(s ) for f e L .  If 6 s is continuous 
and X is a random element inducing a Gaussian measure # on #)(L), the set 
(X(s), seS), where X(s)=6~(X) is a Gaussian process. (Relations between the 
classical definition of Gaussian processes and Gaussian measures on linear topo- 
logical spaces have been studied in [19].) Suppose EX(s)=O for all sES. Then 
the bilinear map R: S x S--+IR defined by R(s, t)=EX(s)X(t)= 5x(s)x(t)#(dx) 

L 
is a symmetric positive-definite kernel. It will be referred to, in the sequel, as the 
covariance function of #, or X. The Hilbert space H(R)~_~p (R(s, .): seS), the 
completion of sp(R(s,'):seS), is called the reproducing kernel Hilbert space 
(RKHS) generated by R. It is characterized by the following property: h(s)= 
<h, R(s, "))H, hell(R), where <', ")u is the inner product on H(R) (cf. Arons- 
zajn [2]). 

Let F be a separable Fr6chet space with topology defined by a countable 
family of semi-norms (Pl, i>  1) and X be a Gaussian element with values in F. 
Suppose Ex*(X)=O for all x* in F* and let R(x*, y*)=Ex*(X)y*(X). Denote 
by 0* the isometric isomorphism or congruence from H'-g~p (R(x*, "): x*eF*) 
onto ~p (x*(X): x*eF*) in La(• , ~ ,  P), the collection of all (classes of) random 
variables on (f2, ~ ,  P) with finite second moment. (For each x* set O*(R(x*, "))= 
x*(X).) Then H'cF** so that if z is the natural imbedding of F into its second 
topological dual we, have, by letting H='c *(H')cF and (x,y)n=(zx,'cy)w 
that 0 = 0 * z  is a congruence from H onto ~p (x*(X): x*eF*). (A detailed dis- 
cussion of this point will appear elsewhere.) The Hilbert space H, which is separable 
and whose norm will be denoted by I1" LI~ has the following properties (cf. [6, 8, 
14, 18]): 

i) if xeH, then pi(x)<Ai Nxllu where Ai is a constant independent of x. Thus 
the injection: H --* F is continuous and F* c H*. 

ii) i f  # is the Gaussian measure induced by X on F, then #In is the canonical 
normal distribution on H and Pi(') is a measurable semi-norm o n / / ;  

iii) the closure of /4  of H in F is the support of #. 

The space H is also referred to, in the literature, as the generator of #. Let 
(s be the Fr6chet space of all real-valued continuous functions on a a-compact 
metric space T. If X is a random element inducing a Gaussian measure # on 
Cg(T) then the generator of # coincides with the RKHS H(R)--g-Op(R(s, "): seT) 
where R(t, s)=E3t(X)6s(X) (cf. [8, 18]). 
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Let now (e~, i>1) be a complete orthonormal system (CONS) in H. Let 
~- -O(ei) , where 0 has been defined above. Then (~i, i>  1) is a sequence of inde- 

pendent N(0, 1) random variables and for almost all coef2: 
oo 

X(co) = ~ ~i(co) e i (1') 
i=1 

where the series is convergent in the F-topology. ([7, 10, 14, 18]). 

3. Preparatory  L e m m a s  

If E is a Hausdorff topological space, a subset A of E is said to be sequentially 
compact if every sequence in A has at least a subsequence which converges to 
some point of E. The set of limit points of A in E will be denoted by 50E(A) or 
simply by 50(A) if E is understood. When no confusion arises it will be also called 
the limit-set of A. 

The following result, that we state here as a lemma for easy reference, will be 
useful in our discussion. 

L e m m a  3.1 (cf. [-12, 16]). Let (Y,, n> 1) be a Gaussian sequence of N(0, cr 2) random 
variables. Suppose." 

lim max E Y, Y,,, < 0. 
~ o  I . . . .  p>r 

T h e n  ." 

lira sup (2 lg n) ~ Y, = a a.e. 
n ~ o o  

L e m m a  3.2. Let (V (") n> 1) be a sequence of random elements with values in 1R ~. 
Let the components 41 ") of I/i") be independently distributed N(O, 1) random vari- 
ables. For all N, N > l, the sequence (VN ("), n > 1) of vectors." Vu (") =(~]') . . . .  , ~}~)) is 
assumed to be a Gaussian sequence. I f  for all i and j: 

lira max fE~l ")~ ' )1=0,  (1) 

then for all N, N >= 1, the sequence." ((2 lg n) -~ Vu ("), n>2)  is almost surely, a sequen- 
tially compact subset of 1R u and 

5~ lg n)- -~ Vu (')) = B N a.e. (2) 

where B N = xslRN: ~ x~ <-_ 1 and 50(') denotes the limit-set in IR N. 
i=1 

Proof. To prove this lemma we shall follow an idea due to Finkelstein ([5], p. 609, 
Lemma 2). For  an arbitrary N, N > 1, let (V~4 "), n > 1) be a sequence of random 
vectors in IR N defined as in the statement of the lemma. Let T~(IRN) * be a non- 

N 

null functional over IR N. Set Y, = TV~)= ~ a~ ~I "), a~lR,  and let I1"}1 denote the 
i=1 

Euclidean norm on the space 1R N. Then (Y~, n > l )  is a Gaussian sequence of 
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N(0, II Tll 2) r andom variables�9 Since: 

max EY, Y,,< max laiajl i r--*~o 
Im-nl>r --Im-nl>r i= j= 

by (1), we get from Lemma 3.1: 
�9 

hm sup (21g n ) - -  Y~ = LI TII a.e. (3) 
n~(2o 

It then easily follows that:  

Lf((2 lg n)- ~ V~ ")) = B N a.e. (4) 

On the other hand, let x~SN=(x~IRN: Hxll = 1). Then for all n > 2 :  

ll(21gn)-+vut')-xll2=ll(21gn)-~V~')lI2+l[xll2-2((21gn)-+v~'),x). (5) 

F rom (3) we must  have: 

lim sup ((2 lg n)-~ V~ n), x)  = LI x II = 1 a.e. 
n ~ o o  

Therefore, for almost all co we can choose a subsequence (rig) such that:  

lim ((21g nk) - ~ V~ ("k), x )  = 1. 
k ~ o o  

Thus, using (5), for any e > 0, and all large k: 

Ih(21g rig) -~ mu ("~) -x l l  2 < 1 +(1 _]_ g ) 2  - 2 ( 1  - e)< 5 e. 

Hence: 

S u c &a((2 lg n)- } V~ ")) a.e. (6) 

Since (6) holds for all N we then also have: 

SN+ICS((21gn) -~V~I)  a.e. (7) 

Let PN denote the projection: IR N +1 ~ IR N. Since B N = PN (SN +~), relation (7) implies: 

BNcSf((21gn)-~ Vu (")) a.e. 

Lemma 3.3. Let (V~ "), n> 1) be a sequence of random elements defined as in the 
previous lemma and having components satisfying condition (1). I f  (el, i> 1) is an 
orthonormal system (OS) in some Hilbert space H, then for all N, N>= 1: 

N 

((21g n) ~ e i ~ l " ) , n > 2 )  
i = 1  

is sequentially compact in H and 

~ n ( ( 2 1 g n ) - '  ~e .r  i = 1  ' ' ] = K s  a.e. 

where K s = ( x e H :  xesp(e  1, . . . ,  eN), Hxll.__< 1). 
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Proof Let O N denote the congruence between 1R u and sp(el , . . .  , eu) defined in 
terms of the bases. It then follows from Lemma 3.2 that: 

N 

s  ((21g n)- ~ 2 ei~l"') =s -~ VNC"']) 
\ i = l  ! 

= 0s  (Bu) 

= K N �9 

We have used here the fact that, under a continuous map, sequential compactness 
is preserved and the image of a limit-set is the limit-set of the image points. 

Let ~(T) denote the space of all continuous functions from T, a a-compact 
metric space, into IR. We shall endow ~(T) with the topology of uniform conver- 
gence on compacta. With this topology c6'(T) is a separable F-space (Edwards [3], 
p. 205). Since T = U (Ci, i >= 1), where C i are compact, we may assume C i c Ci+ 1 
for all i. The mapping P i: cg(T) ~IR defined as: pi(x)= sup ([x(t)], t E Ci)where 
x~C~(T) is a semi-norm and the metric d, constructed in the following way: 

oo 

d(x ,  y) = F, 2 -  J [p j ( x  - y)/(1 + p j (x  - y))] 
j = l  

is compatible with the Cg(T)-topology. 
If x, x, are elements of (g(T) we set: 

IfR is a continuous positive definite kernel on T x T and H = H(R) is the reproduc- 
ing kernel Hilbert space generated by R then H(R)cCg(T), set theoretically. We 
also set: Ri=RJc,• Hi=H(Ri). Finally, let r[ .l[i=l[ "lira, Ki=(x~H~: [IxIFi<l), 
K = ( x ~ H :  ]lxlIH< 1) and cg(Ci) be the space of all continuous functions: Ci--+]R 
endowed with the sup-norm topology. 

Lemma 3.4. K is closed in ~(T). 

Proof Suppose (x,, n >  1 ) ~ K  and x,-- ,x  in cg(T) as n--, oo. We are to show that 
x e K .  By assumption: x ~) - x (0, __, --, as n ~ oe uniformly on C~. From a theorem of 
Aronszajn ([2], p. 351) we know that for each i, H i is the class of the restrictions 
to C i of the functions of H and if h i is any such a restriction, I[h~]]i is the minimum 
of I I h llu taken over the class of all h in H such that: h[c,= hi. Hence II x(, i~]li < I I x ,  ll~, < 1. 
Since Kz is compact in cg(C~) ([11], p. 256) we have x(OEK i. Thus the element x, 
~(T)-limit of(x~, n > 1) has the following properties: 

Xlc,=X(~ IIx(;)[li__< 1. 

We have assumed that the sequence (C~, i>  1) of compact subsets of Tis increasing. 
If higH ~ we shall denote by hlj, j<i ,  the restriction of h~ to Cj~C~. Hence the 
sequence (Hi, i=> 1) of RKHS's Hi satisfies the following conditions: 

(a) for every h i g h  / and every j< i :  hijeHi; 
(b) for every h i g h  i and every j<=i: Ilhij[Ij__< Ilhilli; 
(c) H i has a reproducing kernel R i. 
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Since R = lim R~, we are able to conclude from another theorem of Aronszajn 
t ~ o o  

([-2], Thm. I p. 362) that x s H .  But then Ilxll~= lim IIx(011~< 1. Hence x e K .  
t ~ o 9  

In the following lemma, let s denote the limit-set in cg(Ci). 

Lemma 3.5. Suppose there exists a closed subspace F of Cg(T) such that H ( R ) c  F. 
Let  (x,,  n > 1) be a sequence in F. 1f for each i, (x(~), n > 1) is sequentially compact in 
cg( Ci) and: 

( i )  _ 5~(0(x . ) -- Kz, (9) 

then (x, ,  n > 1) is a sequentially compact subset o fF  and: 

Proof. Let (m) be any subsequence in (n). We shall show first that (Xm, m => 1) has 
a further subsequence converging to a point of K in the ~(T)-topology. Let 
x(0 = x,,]c, For i = 1, it follows from (9) that there exists a subsequence (x m k > 1) 

m �9 \ m l ,  k '  

such that, for some x~)~Ki  �9 x (~) --*x m as k~o�9  uniformly on C a Similarly 
i n 1 .  k ~ 

(2) k-> 1) contains subsequence (X (2) k-> 1) such that: .~,.~,~ , Xml k '  a v ( 2 )  -"+X (2) as k+oo,  
, - -  \ m 2 ,  k ~ - -  

uniformly on C2 for some x (2) in K 2. But then: y(1) __+..(~) as k--+ c�9 uniformly 
on C l, And so on. By diagonalization we can find a subsequence (m')c (m) such 
that: x ,~ !~x  ~~ as m ' ~  uniformly on Ci, for all i. Hence (xm,) is a Cauchy 
sequence in F. Let y=l imoxm, .  Then for each i: Ylc, =x(~  and by the same 

argument used in the proof of the previous lemma we conclude that y6 K. Let now 

x be any element in K. Given any positive e, choose i o so that: ~ 2-J<e/2.  Then 
i o + 1  

Yo = X[cio~Kio. Thus by (9) there exists a subsequence (n(j),j >-_ 1) of (n) for which: 

Yn(j)~Yo, as j ~ o e ,  (10) 

uniformly on Cio. In (10) we have set: y,(j)=x,(j)[Cio. Since: Pl < ""<Pio, from the 
definition of the metric d on Cs we have: 

d(x, x.ci)) < [Pio (x - x.(;))/(1 + pio (x - x.(j)))] + e/2 < e, 

for all largej. This shows that x is in ~v(x . )  and completes the proof. 

Remark. One may notice that the set K defined above is actually compact in Cg(T). 

4. Sequential Compactness of Certain Sequences 
of F-Valued Gaussian Elements 

By using the notions of Section 2 and the additional results of Section 3 we are 
now able to prove the following result. 

Theorem 4.1. Let F denote a separable Fr&het space and (Xn, n > 1) be a Gaussian 
sequence on (f2, ~ ,  P) with values in F. Suppose that # = P X ~  1 is independent of n 
and Ex*(X,)---O for x* in F*. For n>_2 set Yn=(21gn)-~Xn. I f  for all x* and y* 
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in F*: 

Iim max [Ex*(X,)y*(Xm)[=O 
r ~ c o  ] m -  n [ > r  

then, with probability one, (Y,, n > 2) is a sequentially compact subset o fF and" 

~ ( r ~ )  = K 

where K is the unit ball in H, the generator of#. 

(11) 

Step 1. Suppose X, take values in a separable B-space. Let (e~, i >  1) be a CONS in 
H and O n be the congruence between H and g-0P (x* (X,): x*e  B*). If ~}")= 0, (el), then 
according to Equation (t') of Section 2 we can write for all n: 

X.  = ~, e i .~2!"), a.e. (12) 
i=1  

where the series is convergent in the norm of B. Let this norm be denoted by I[ "lIB- 
N 

Applying Fernique's theorem ([4]) 
obtain: 

E exp cd - e.~!a) < co 
i z ~ B 

to the Gaussian element X 1 -  ~ ei~l 1) we 
/ = i  

(13) 

N 

if O<c~2<(1/24se)lg(hu/1-hu), where hN=P ( X1--  i=~l e i ~ l l )  B~S) ~�89 Since 

h N ~ 1, as N ~ oo by Equation (12), if e is any positive number, c~ can chosen equal 
to 1/e provided N is sufficiently large. Taking into account that X, induces on B 
a measure independent of n, we can then write: 

P X n -  e.~! ") >(21gn)~e = P  e X l -  i~} 1) (21gn)�89 
i t z B '= 

<=ANn -2 

where N =  N(e) has been chosen so that (13) is satisfied. Thus, by the Borel-Cantelli 
lemma: 

P ( ] [ X . -  gffllB<~, all large n)= 1 (14) 

N 
where N Yi =(21g n) -~ ~Y" e ~  !'~ z - Note that the random variables o,c~! ") appearing 

i=1  

in the series expansion (12) may be assumed to be of the form x*(X,) for some x* eB* 
independent of n (cf. [14]). Hence by (11): 

lim max E~(")~")[=0 for all i and j;  r ~  [m-nl>r i 

Proof We shall give the proof in three main steps. In step 1 the claim of the theorem 
will be established for B spaces and in step 2 the same conclusion will be reached 
for the Cg(T) case. The complete proof will then easily follow by regarding F as a 
closed subspace of cg(1R). 
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consequently it follows from Lemma 3.3 that Y ~ ( Y ~ ) c K N m K  a.e. We recall, 
cf. Section 2, that on H the norm II "]IB is weaker than [I "[qn is the sense that there 
exists a positive constant A such that: 

/IxllB < A Ilxll~ (15) 

for all x in H. Using (14) it is now easy to see that, with probability one, (Yn, n > 2) 
is a sequentially compact subset o r b  and 5r is contained is an e-neighborhood 
of K. Since e is arbitrary, &oB(Yn) is contained in K a.e. TO prove K c f B ( Y , )  it is 
enough to show that for any x in a countable dense subset of K, the event (]l x -  Y~II 
< 0 occurs i.o. with probability one, for any prefixed e > 0. Thus given such an x, 
let N be chosen so that the following two conditions are simultaneously satisfied: 

X-- i=1 ~'~eixi <e,/3A ( x i = ( x ,  ei)It), 

P(II I1,- YffllB<e/3, all large n)= 1. 

(The constant A is the same as in (15)). Then, with probability one: 

e i x i -  + I1Y2 - Y, HB ]Ix-  Y, LIB < + i n 
i = 1  B 

<(2e /3)+A i~=leixi- g U 

for all large n. Hence xeS f~(Y , )  by Lemma 3.3. 

Step 2. Suppose that X, take values in a closed subspace F of Cg(T). Letting R(t, s) = 
E(St(Xn)(~s(Xn) then R is continuous on T x T and H ( R ) = F .  Furthermore H(R) is 
the generator of # = P X 2 1  (cf. 1-18] p. 292). Write T = Q ) ( C i ,  i> 1)where C i are 
compact and C i c Ci+ t. For each / l e t  X, ~i) = rci(X,) where rci: F ~ ~(Ci) is defined 
by tel(x)= X lc,, x ~ F. Since for each x* ~ ~*(  Ci), x* 7r i e F*, #i = #  7z 7, 1 is the Gaussian 
measure on cg(Ci) induced by X~ i) and Ex* (X,(i))=O. Moreover, (X(, i), n > 1) is a 
Gaussian sequence and by condition (11): 

E * X (1) * X (i) lim max [ x ( , ) y  ( re)l=0 

for all x* and y* in cg*(Ci). By step 1, ((2 lgn) -~ X~ ~ n>__2) is, with probability 
one, a sequentially compact subset of cg(C) and its set of limit points equals K i 
a.e. K i is the unit ball in the RKHS Hi generated by the covariance function of 
#i- Let Ri=R]c  ` • c,. Then one can easily check that: 

Ri(t, s) = EX~')(t) X~i)(s). 

Hence the assertion follows from Lemma 3.5. 

Step 3. Let X, be F-valued, where F is a separable Fr6chet space. Then there 
exists a topological isomorphism q~ from F onto a closed subspaee F' of (~(]R) 
(cf. [9], p. 218). Let X'~ = qS(X~). Then (X'~, n > 1) is an F'-valued Gaussian sequence 
that satisfies the conditions of the theorem. Consequently by step 2 ((2 lg n)- ~ X',, 
n > 2) is, with probability one, sequentially compact in F' with limit-set equal to 
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K', the unit ball in the RKHS H' generated by the covariance function of X;,. 
Now the Hilbert space H =  qS-I(H') with inner product (x, y ) / t=  (qSx, qSy)H, is 
the generator of #=PX21  ([-18], p. 298). Since q5 -1 is continuous, the conclusion 
follows by applying the fact mentioned in the proof of Lemma 3.3. This completes 
the proof of the theorem. 

5. Some Applications of Theorem 4.1 

In this section we shall derive a number of theorems related to the study, initiated 
by Strassen [21], of the law of the iterated logarithm in its functional form. 

(a) We start by establishing the main result of Lai that is closely connected, 
in its formulation, to our Theorem 4.1. 

Theorem 5.1 ([13], p. 9). Suppose X(t), t~[0, 1], is a separable real valued Gaussian 
process with mean zero and continuous covariance function R(t, s) satisfying: 

A) E [X(t) - X(s)] 2 < g2 (It - s l) 
co 

where g is a continuous nondecreasing function on [0, 1] such that ~ g(e ,2) du < oo. 
1 

Let (X.(t), re [0, 1], n>  1] be a sequence of Gaussian processes defined on the same 
probability space and having the same distribution as the process X(t), and set 
Y,(t) = (2 lg n) -~ X,(t). 

Then, with probability one, the sequence (Y,(.), n>2)  is sequentially compact 
in c~[0, 1] and its set of limit points in (g[0, 1] is contained in the unit ball K of 
the reproducing kernel Hilbert space H(R) corresponding to the process X(t). 
Letting • n = ( X j ( t ) , t E [ O ,  1], l < j < n )  and f f = U ( ~ , ,  n>l ) ,  suppose furthermore 
that: 

B) ~ is a Gaussian family of random variables (i.e. any finite number of elements 
in ~ is a normal random vector) such that: 

lira E[E(Xm(t)[~,)]2=O, te l0 ,  1]. 
n~co 

(m - n ) ~  oo 

Then, with probability one, the set of limit points of (Yn('), n>2)  in c~[0, 1] coin- 
cides with the set K. 

Proof. Let ((2, ~,, P) be the probability space on which the processes (X,(t), t~ [0, 1]) 
are defined. Because of condition A), each process (X,(t), t~[0, 1]) can be viewed 
as a Gaussian element X,:  t2--,~([0, 1]. As a consequence of B) (X,, n > l )  is a 
Gaussian sequence such that 

lim max IEXm(t)X.(s)[=O 
r~co [ m - n l > r  

for each t and s in [0, 1]. Since: 

IEx.(t)  x,.(s) l =< E~ [X.(t)] 2 E q X m ( s ) ]  2 = R~(t, t) R~(s, s) 

(16) 
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and R(t, s)=EX,(t)X,(s)  is continuous on [0, 11 x [-0, 1], if v 1 and v 2 denote the 
measures on [-0, 1] corresponding to arbitrary elements x* and y* of cg*[0, 1], it 
follows from (16) and Lebesgue dominated convergence theorem that 

max  [Ex*(X,) y*(X,,)[ 
In-ml>r 

< ~ max ]EX,(t)Xm(s ) []vl(dt)[ [ v2(ds)[--.0 as r ~ o e .  
[0,  I l x [ 0 ,  11 ]n-ml>v 

By Theorem 4.1 the assertion is established. 

(b) Let B denote a real, separable Banach space and let (Z,, n > 1) be a sequence 
of independent, identically distributed Gaussian random elements on B such that 
Ex*(Z,) =0  for all x* in B*. For any two elements x* and y* in B*, our assumptions 
on the sequence (Z,, n > 1) imply: 

Ex*(Z,)y*(Zm)=O, if n#:m, 

~x*(z.) y*(z.)= c(x*, y*) 

where C(x*, y*) = ~. x*(x) y*(x) u(dx), /~ = P Z ,  1. Thus 
B 

Ex* Z i y* ~ Z j  =(nAm) C(x*,y*). (17) 
i \ j = l ,  : 

Let now: X , = n  --~ ~, Z i. Then (X,, n>  1) is a Gaussian sequence in B such that 
i = 1  

for all n: PX2 1 = #  and Ex*(X,)=O for all x* in B*. Along the subsequence: 
nk= [ck], k >  1, c>  1, we have from (17): 

E x*(X,k) y*(X,~) = (Const.)(c Ik- hi)- ~. 

n 

Set ( , = ( 2 n  lglg n) -~ ~ Zi=(2  lglg n). ~ X,  and Yk=(2 lg k) -�89 X,k. From the re- 

sults of the previous section we then have that (Yk, k > 2) is a sequentially compact 
subset of B and: 

~B(Yk)=K a.e. (18) 

where K is the unit ball in H, the generator of/~. Since lglg nk~lg k, as k ~  o% 
Equation (18) implies that K~5~ a.e. On the other hand, given any e>0,  
there exists a number c = c(e) sufficiently close to one, such that: 

P( sup ] l ( , - ( , ] ] ~ < e ,  all large k)---1 
?Zk=< tl< nk+ 1 

([15], p. 106). In other words, 5fB(~,)cK ~ a.e., where K~ is an e-neighborhood 
of K. Since e is arbitrary this yields ~B(~,)c  K a.e., i.e. the conclusion of the the 
following theorem has been established. 

Theorem 5.2 ([-15]). Let B denote a real separable Banach space and (Z,, n >= 1) be 
a sequence of independent Gaussian random variables on (f~, Y ,  P), having mean 
zero and taking values in B. Suppose I~=PZ2 ~ does not depend on n and set for 
n > 3 : ~, = (2 n lglg n)- ~ (Z 1 +- . .  + Z,). 
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I f  K is the unit ball in the Hilbert subspace of B which generates #, then the 
sequence ((, ,  n>= 3) a.e. converges to K and clusters at every point of K in the sense 
of B-norm. 

(c) Let  H be a real, separable Hilbert  space. For  t > 0 ,  let m t denote  the ca- 
nonical  normal  distribution on H. Let IF'lIB be a measurable norm on H and B 
denote  the closure of H with respect to el" I[B. Then B is a separable Banach space 
(cf. Gross  [6], Kal l ianpur  [8]). Let  #t be the extension of m t to the Borel subsets 
of B. We call #t the Wiener measure on B, generated by H with variance parameter  
t. Let  now g2 B denote  the space of cont inuous functions co: [0, o o ) ~ B  such that 
co(0)=0 and f f  be the a-field of f2 B generated by the functions c o ~  co(t). Then 
there exists a probabil i ty  measure P on f f  such that if 0 =  t o < t~ < . . .  < t,, then 
co(tj)-co(tj_l) ( j =  1 . . . .  , n) are independent  increments and CO(tj)--co(tj_I) has 
distr ibution #tj- t j_l .  Thus the stochastic process W t defined on (f2B, ~-, P) by 
Wt(co)=co(t ) has s tat ionary independent  increments and it is called Brownian 
Mot ion  on B. 

Let now cg B denote  the space of cont inuous functions from [0, 1] into B which 
vanish at zero. IffscgB let: []fllc = s u p  (][f(t)l[B , t~[0,  1]). Then cg B is a separable 
Banach space and the Brownian Mot ion  on B induces a probabil i ty measure P 
on c~ B which is a zero-mean Gaussian measure ([11], p. 254). Let m>n and set 
% = W(m "), VV, = W(n "), ~ =a(W(t),  re [0 ,  n]). We define: V,,,, = E(W~, I ~ )  and 
observe that  V,,,, is well defined as condit ional  expectat ion (cf. [20], p. 353). If 
f *  and g* are any two elements in cg, we obtain by interchanging E and f * :  

Eg*(W,)f*(W~) = E [g* (W,){E(f*(W,~) I ff,)}] = Eg*(W,)f*(V,,,,).  

Hence:  

IEg*(W~) f *(W,~)I < ][g*][ Ilf*ll E(]I W, Ilc~ II Vm,,llc,). 

Let 6s denote  the evaluation map:  ~B ~ B at s e [0, 1]. Then by using independence 
of increments:  

6s(v, . , , )  = E(w, . ( s )  I ~ )  = E(W(ms) I ~ )  = W(ms ~ n). 

Since by assumption m > n we also have: 

IEg*(W,)f*(W,,)l =<(Const.) E( sup II W(nt)llB sup II W(mt A n)ll•) 
O < t < l  0 < t _ < l  

=(Const . )  E( sup ]] W(nt)]iB) 2. 
O_<t< l  

Now X , ( ' ) = n -  ~ W(n ' )  induces the same measure P on cg 8 as W. Consequently:  

E( sup II W(n t)ll,) 2 = hE( sup IP w(t)lIB) 2 = nE(ll Wile.)  2 
O_<t< l  0 < t _ < l  

where E ]] WH2 < oo by Fernique 's  theorem ([4]). In other  words: 

Eg*(W,,)f*(W,,) = (Const.) (m A n). 

Again, we let n k = [ck], k > 1, c > 1 and define: 

~,( ' )=(2nlglgn)  -~ W(n.),  Yk=(21gk)-~ X,~(.). 
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T h e n  ( [11] ,  p. 260) g iven  a n y  ~ > 0 ,  it is p o s s i b l e  to  f ind  a n u m b e r  c, suf f ic ien t ly  

c lose  to  o n e  s u c h  t h a t :  

P( sup II~.k(')-~.(')llc~<~, a l l l a r g e  k ) = l .  
nk~n<nk+l 

T h e  s a m e  a r g u m e n t  u s e d  u n d e r  b) s h o w s  t h a t  t he  f o l l o w i n g  t h e o r e m  h o l d s :  

T h e o r e m  5.3 ([11]) .  Let B denote a separable Banach space with norm I[-[[n and 
~gB the Banach space of  all continuous functions from [0,  1] to B. ~8 is endowed 
with the norm of the uniform convergence on [0,  1]. I f  (W(t), t >O) is the Brownian 
Motion on B and for each t~ [0,  1] and n > 3: f t , ( t )=  (2 n lglg n)- ~ W(n t) then, with 
probability one, the sequence (~,( . ) ,  n > 3 )  converges in ~ to a compact set K and 
Clusters at every point of K. The set K is the unit ball in the Hilbert subspace of CgB 
which generates the Gaussian measure induced by W on ~B. 
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