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Contributions to Maximum Probability Estimators 

Uwe Kul3 

1. Introduction 

In [4]-[6] L. Weiss and J.Wolfowitz developed the theory of "maximum 
probability" estimators (m.p.e.'s). This new estimation method as a generalization 
of R.A. Fisher's well-known maximum likelihood method, does not possess the 
inadequacies of the "classical" estimation method. 

We will briefly mention the important theorems, upon which the maximum 
probability method is based, from [4], See. 2 and [51 Secs. 2-4 with some modi- 
fications in the formulation which would hold for any dimension of the parameter 
space. 

2. Maximum Probability Estimators (m.p.e.'s) 

For n~N let (P0,.)0~o be a family of probability distributions on the space of 
the observed outcomes X., where O is assumed to be a connected closed subset of 
R" (O is called the parameter space). Let the space of possible decisions be also a 
connected closed subset O of R m, containing all points of O as inner points. 
(There is no compelling reason for giving the space A of decisions this special 
form; we do this merely for technical reasons.)f.( ']0) denotes the density of 
P0,. with respect to a a-finite (positive) measure #.. Consequently the family 
(Po,.)o~o is dominated by #.. Let L.(O, a) be the value of the loss function at the 
point 0~O, aeO.  Suppose that L,,(O, a)>O. 

For a given null sequence h 2 (n) > 0 we define 

s(n): =sup {L,(O, a): ]10-alI <h2(n)} (2.1) 

where, for x, y e R  m, 

I Ix -y l l=  max Ixl-yil  or IIx-ytl--  (xi-yi)  2 . (2.2) 
i = 1  . . . . .  m i 

We will assume s(n) to be finite for all n. Let Y. be an estimator (i.e. a Borel meas- 
urable function of X. in O), whose values Y.(r ~ .sX.  all maximize the integral 

I(d)= ~ (s(n)- L,(d, 0))f,(~,[ 0) dO (2.3) 
{lld-0[I <=h2(n)} 

as a function of d, under the assumption, of course, that (the integral exists and is 
finite and) there is such a Y.. As the authors of [4] remark, it is also sufficient to 
assume that 

I(Y,)/sup I(d) > 1 - l,, (2.3') 
d 

, where I. is a null sequence with I, > 0. 
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Let 0 o e 0 be arbitrary, but fixed, 

H.= (0cO- II0-00ll <hi(n)}, 
where h 1 (n)> 0 is a null sequence, for which 

lim hz(n)/h 1 (n) = 0 

holds. Let us remark that the formulation "F.(0) converges uniformly in H. to 
F(O)" means that 

lim [ sup IF.(0) ~ F(O)[] = 0. 
rt~eo O~Hn 

Weiss and Wolfowitz prove the following theorem (see [5]): 

Theorem 2.1. Let the estimator Y,, satisfy the following conditions: 

lim E (L.(Y., 0) 10) =,  fi (2.4) 

uniformly in H. 

uniformly in H. and 

lira s (n) P.(I[ Y . -  0 [I > h2 (n)[ 0) = 0 (2.5) 

lim ~ L.(Y.({.), O)f~({.fO) d~t,,({.)=O (2.6) 

uniformly in I-J~, where 

B,(O) = {~.~X: n Y~(~,)- 0]] > h2(n)}. (2.7) 

I f  T. is any estimator which satisfies the two conditions 

lira [E {L,(T., 0) 10} - E {L.(T~, 0o)[ 0o} ] = 0 (2.8) 
n o o o  

uniformly in H. and 
lim s(n) P.([I T~-0[h > h2(n)[ 0 )=0  (2.9) 

B---~ oO 

uniformly in H~, then we have 

f15 lim E(L.(T., 0o)100), (2.10) 
n ~ o o  

the optimality property of Y.. 

We formulated the Theorem for one 0 o ~ O; we are, of course, interested in 
the case where a maximum probability estimator Y. satisfies the hypotheses for 
all 0 o e O, and thus (2.10) is valid in general. 

We make the following remark concerning the uniqueness of Y.: The formula- 
tion (2.3') itself shows that Y. is not uniquely defined. Furthermore, it is clear 
that an estimator U. with 

fl= Jim E (L.(U,,, 0) 10) (2.11) 

uniformly in/4.  has the same optimality property as Y., as has been stated above 
(2.10). That is the reason why every estimator possessing this optimality property 
will be regarded as a maximum probability estimator. 
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Theorem 2.2. I f  for all n>n o L,(z, O) is a monotonically increasing function 
of tlz-0ll, Theorem 2.1 holds even without the condition (2.9). 

Theorem 2.3. I f  for all n >= n o L,(z, O) = s (n) for II z -  0 II > h2 (n), Theorem 2.1 
holds even without (2.9). 

Detailed statements on the m.p.e?s-including the idea and the conception 
underlying the new m e t h o d - a r e  to be found in [4]-[7], especially in [4], Sec. 1, 
[5], Secs. 1 and 5, and in [6], Sec. 1, which contain further references. In [5], 
Sec. 5 there is also a statistically operational justification of (2.8) and (2.9) of the 
conditions on competing estimators. 

3. Sufficient Conditions for Equivalence, Especially for Condition (2.3') 

According to [4], Sec. 5 (and [6], Sec. 5), in the so-called regular case, the 
m.l.e, is also a m.p.e, for the important loss function 

L,(a, O)=z~tl,_oLl>r. ~ with r ,>0  and lim r ,=0  (3.1) 

(ZA denotes the indicator function of A), where we have to set r n = r n-~; for this 
loss function the optimality property (2.10) yields the result of R.A. Fisher on 
the asymptotic efficiency of the m.l.e. However, we now know that the m.l.e.'s 
(=m.p.e.'s) are not only better than asymptotically normally distributed (and 
unbiased) estimators but also than other estimators. 

A sufficient condi t ion-wi th  arbitrary density func t ion- for  equivalence in 
the case (3.1) is contained in the following 

Theorem 3.1. We proceed from the same situation as in 2. and use the same 
notation, but we consider only the case m= 1, i.e. O, O~_R. Let L,(a, O)-as we 
have announced- be of the form (3.1). 

Suppose that there exists a maximum likelihood estimator 0~, i.e. fn(~,lO) is 
maximized at the point O,(~,) for each ~, as a function of O. 

In addition, we assume that, from a certain n on, say, for n > n o, the following 
holds for all ~,eX~: 

Let h (n) ---- min (h2 (n), r,), 

(a) [ 0 , -  h(n), 0,+ h(n)] _ O, 
(b) lira P~{I0,-01 >h2(n)lO}--O 

~--* o0 

uniformly in H,, and 
~im P~{lO,-Ol> r~[O} 

exists uniformly in H~ (for a null sequence h 2 (n) with lira [h 2 (n)/h 1 (n)] = 0), 
(c) 

f~(~nlo)>L(~lO*) for all Oe[On,On+h(n)] , O*>O~+h(n) 
and 

t f~(~,[O )> f~(~lO) for all O' e[O~-h(n), On], O<O~-h(n). 

(Hence, it is not assumed thatfn(~,l O)>fn(~,[O* ) holds for all 

Oe[On-h(n),On+h(n)], O*6[O,-h(n),O~+h(n)]! 
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(c) is satisfied, for example, for functionsf,(~nl 0) which admit a single mode with 
respect to 0.) 

(d) For a null sequence ~n there holds: 

flog [ fn (~n I O. + h (n))/f n (~nl On -- h (n))] I < en- 

Then, 0 n is a maximum probability estimator (and fulfiUs the conditions of Theorem 2.1). 

Proof. The proof is quite simple. Write for short: 

K(~):=[O-h(n), 0+h(n)-], f(O):=f,(~,lO). 

Let 6n~K(O,)- {0n}. We define 

0 SOn+h(n), if 6,<0 n 
l=],On-h(n), if 6n>O n 

and 0 z defined with the signs reversed. 

On account of (c) and (d) we have for all Or O*eK(fn)-K(On): 

f(O) > f(O 1) > exp ( - e,)f(02) > exp ( - r 
Hence, 

f(O)dO= ~ f(O)dO+ j f(O)dO= ~ f(fn+O,,-O')dO' 
K(On) K(On) - K(6n) K(On) n K(On) K(On) -- K(On) 

+ ~ f(O) dO 
~(o.)  n K(,~.) (.) 

> e x p ( - ~ , )  ~ f(O')dO' +exp(-~n) ~ f(O')dO' 
K(6n)-K(On) K(On) n K(On) 

=exp(--en) ~ f(O')dO'; 
K(6n) 

Since (.) is, of course, also valid for 6nCK(O,), the condition (2.3') of Theorem 2.1 
is satisfied for 0 n instead of Yn. On account of s(n) = 1, (2.4)-(2.6) also hold for 0 n 
according to (b). Theorem 2.1 yields the assertion. 

It is, of course, sufficient to require (a)-(d) only for all ~n~X,-Mn, where 
!irn P.(Mnl 0)= 0 uniformly in H,,  because for such M,'s the existence of the limit, 

uniformly in H,,  
110.-01L>r.10) 

is tantamount to the existence of the limit (uniformly in/4,) 

]imP.(r II0.-0tl >rnlO), 

and both limits are equal. 
The transformation of (2.3') in [4], 3.2 and [6], p. 198 et sq. can be used in 

(a)-(d), Theorem 3.1, to consider only the set 

I0 n - h 1 (n), 0n + h 1 (n)] _ 
instead of ~ .  
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Basically, Theorem 3.1 is only a sufficient condition for (2.3'). The following 
two examples of densities f(O)=f,(~,lO)-as functions of 0 - s h o u l d  clarify the 
significance of (c) and (d); that (a) is to hold is clear in any case. The loss function 
(3.1)-as  in the T h e o r e m -  is taken as a starting point; let O = O = R. 

Example I (Fig. 1). Let f b e  as is shown in Fig. 1, a(x)=O,+xh(n). We have 
I'(O,)/I'(~)n) = 0.7 h (n)/(2 h (n)) = 0.35, where 

I ' (0")= ~ f,(~.lO)dO and 6,=O,+2.5h(n); (3.2) 
lll0*-oll =< h(n)l 

i.e. (2.3') is not satisfied for 0,. (a) and (d) hold, but (c) does not/ 

/ 
- . ~ - - - u s  . . , 0 , I ~  ~ o , o  

Fig. 1. Functionfof Example I 

Example I1 (Fig. 2). Let f(O) be defined according to Fig. 2 (graph o f f ) ;  the 
only important points are that f(O) has the value (4h(n))-l(O-O.)+0.375 for 
Oe[O,-h(n),O,-O.5h(n)], its maximum value 0.75 when 0=0 , ,  and the value 
(-4h(n))-l(O-O,)+0.625 for Oe[O,+h(n),O,+l.5h(n)], and that condition (c) 
of Theorem 3.1 is satisfied, a(x) is as in Exampte I, 6,=O,+0.5h(n). We have 

t t 3 1  I (0,)/I (6,)<35, hence (2.3') is not fulfilled. The reason for this is that although 
(a) and (c) are satisfied, (d) is not. 

0,75 l 
0,504 

0,375-~ 
0,25-i 

0,125-] 

a(-1) al-o,5) 8~n am~ a(U Q(~,5) 
I I  0(0,5) 

Fig. 2, Function f of Example II 

Both examples can be modified to yield continuously differentiable functions; 
in the same way one can findf,(~,l 0) such thatf,(~,l 0), as a function of 0, is of the 
given form for a set N, of ~,'s with lim P, (N,10) > 0. 

n ~ o 9  

A generalization of Theorem 3.1 for other "reasonable" loss functions and 
arbitrary dimension of the parameter space, which is now under question, requires 
a suitable modification of the conditions (c) and (d); viz., we will assume L,(a, O) 
to be a monotonically increasing function of l a -0 t ,  because, without such an 
assumption, useful sufficient conditions for (2.3') can hardly be found. The following 
example shows that it is not sufficient to require (d) and to replace (c) (for m = 1) 
by the condition "f,(~,10) increases monotonically for 0 < 0 ,  and decreases 
monotonically for 0 >  0, for all r  
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Example III  (Fig. 3). Choose 

/ ~ 
L.(a, O)= 9 ;  

(1; 

hence, s(n)= 1. Let f(0): =f.(r  0) be defined as in Fig. 3. The only relevant points 
are that f(0), for O s [ a ( -  1), a(- �88 w [a(1), a(1.25)] is equal to 1 and assumes the 
value (4/h 2 (n) (0 - 0.) + 3) for 0e [a ( - 0.5), a ( -  0.25)] and the value 

(4/h2(n) ( 0 . - 0 ) + 5 )  for 0e [a(0.5), a(0.75)]. 

la-OI < 0.5 h2(n) 
0.5 h 2 (n) < l a -  01N h2 (n), 
otherwise 

J 
7 1  I I t ~ 0J 

a(-1) ak3/z,) a(-V2) a(-1/4) e[~Jn [ ~  a(v2) a(3/~} a(1) a(5/~) 

Fig. 3. Function/of Example III 

Parallel to the above examples, let a (x):= x h z (n)+ 0,. We have I ( f i , ) - I (0 , )= 
2.25 h2(n ) (where I is as in 2., (2.3)), and since the first integral is definitely smaller 
than, or equal to, 12h2(n ), (2.3') does not hold for Y,=O,; our example for f(0) 
h a s -  as can immediately be s e e n - t h e  above-mentioned properties. 

That is why we will require a condition corresponding to (d) not only for 
O. -}- h 2 (n), but also for all 0. _+ a, [at < h 2 (n), and instead of (c) require monotonicity 
for 0 > 0. or 0_-< 0., or only supplement (c) by the requirement of monotonicity 
in [0,, 0. + h2(n)] and [0~ -h  2 (n), 0~, respectively. 

In addition, the function in the example of  Fig. 4 (for m = 2) shows why it is 
not sufficient to require the generalized conditions we have just described for m = 1 
for the functions go(t)=f.(r where 0 runs, say, through all 
points with It... Il-distance h2(n) from 0.. 

Fig. 4. Example of a function f ( O )  (here f ( O )  is a "surface") 

We summarize these considerations in the following way: 

Theorem 3.2. Notation as in 2. We assume that for n> n o 
(a*) L.(a, O) is a monotonically increasing function of [la-0ll, where now 

m 

lla-Oll=Eo-ol= ( r, 
\ i =  i / 
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For all 4. ~ X.  we have 

(b*) K(O.) = {0  : [O.(~n ) -- O[ ~ h 2 (n)} _~ 0 ,  

where O~ is again the maximum likelihood estimator whose value 0.(~.) we have 
again shortened to 0.. 

(e*) There exists a null sequence e. with 

[log {f.(r162 +a')}l<e. 

for all a, a' with ]a[ =la'l<=h2(n). 
(d*) c~) For any O~boundaryK(O.) there holds: L(~.]O.+t(O-O.)) is (as a 

function oft)  monotonically decreasing in [0, 1]; 

f.(~.l 0)>f.(~.}0') exp( -8 . )  (or log (f(O)/f(O'))<8.) for all O~K(O.), O'r 

(Remark: It is also sufficient to require the monotonici ty in (d*) modulo a 
factor exp ( - 8.).) 

Then, (2.3') is satisfied for O. instead of Y.. 

Proof Next, we write following abbreviations: 

f(O),=f.(~.lO); L(O,O):=(s(n)-L.(O,O)); 

K(Oo) = {0~ O" 10-  0o1 < h 2(n)}. 

Let 6.~6): We define 

K =  {O6K(O.)c~K(6.): 1 0 - 0 . l < [ 0 - 6 . l }  
and 

g={O~K(O.)~K(6.): 10-0.l---_10- 0.l). 

~) For arbitrary O~K, if tl=[O.-O[/h2(n), t2=[6.-O[/hz(n), there holds 
tl, tz~[0 , 1] and t a <rE, hence, according to (d*), ~): 

f(O.+tl(O-O.))> f(O.+t2(O-O.)); since f(O)/f(O.+ta(O-O))>exp(-e.) 

and 
f ( O. + t 2 (0-  O.) )/f (O. + 6. - O) < exp ( - 8.) 

according to (c*) (because 0 = 0. + (0 -0 . )  and 0~ boundary K(O.)), we obtain 

f (O)/f (O. + 6. - O) > exp ( -  28.). (3.21) 

fl) ~ L(O., O)f(O) dO = ~ L(O., O. + 6 . -  0'), 
K(On)- K(6n) K(6n)-- K(On) 

f(O. + ~ . -  0') dO'= (according to (a*)) 

= ~ L(5., O')f(O. + 6 . -  0') dO' (3.22) 
K(,~n)-- K(O.) 

' O' > e x p ( -  8.) ~ L(g.,O)f(  )dO'; 
K(6.)-- K(O.) 
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the inequality holds according to (d*), fl). 
~) 

S 
K(On) n K(tSn) 

L(O., O)f(O) dO 
(3.23) 

= l"" + I . . . .  ~ L(O., O)f(O)dO+ I L(3., O')f(O.+ 6.-0')dO'. 
K K K K 

Likewise: 
L(~.,O)f(O)dO= ~ L(f.,O)f(O)dO+ ~ (L(O.,O')f(O.+6.-O')dO'. (3.24) 

K(On) c~ K(On) K g 

From (3.23) and (3.24) there follows: 

L(O., O)f(O) dO- ~ L(6., O)f(O) dO 
K((~.) n K(6.) K(On) c~ K(6n) 

= ~ (L(O., 0)-  L(6., 0)) ( f(O)-f(6.  + 0 . -  0)) dO 
K (3.25) 

> (exp(- 2 e . ) -  1) ~ (L(O., 0)-  L(6., O))f(6. + 0 . -  O) dO 
K 

= (exp(- 25.)-  1) ~ (L(6., 0')- L(O., O')f(O')dO'; 

the inequality holds, because L(O., O)>L(6., O) for all O~K andf (0 ) - f (0 .+  6.-O) 
> (exp ( -  2 e . ) -  1)f(0. + 6 . -  0) according to (3.21). 

We set 
A1 = exp ( -  25.) ~ (L(6., 0)-  L(O., 0)) f(O) dO, 

K 

A 2 = ~ L(O., O)f(O) dO and A 3 = ~ L(6., O)f(O) dO, 
K K 

and we transform (3.25) into 

L(O., O)f(O) dO >= exp(-  2 ~.) ~ (L(6., 0)-  L(O., 0))f(O) dO 
K(On) n K(an) K 

+ ~ L(O., O)f(O) dO- ~ L(6., O)f(O) dO 
K K 

+ ~ L(6., O)f(O) dO 
K(On) n K(~.) 

= A 1 + A 2 + ~ L(6., O)f(O) dO 
K 

> exp ( - 2 ~.) ~ L(6., O)f(O) dO + exp ( -  2 %) A 3 

=exp(-2~.)  ~ L(b.,O)f(O)dO; 
K(6n) c~ K(O.) 

thus (3.22) and (3.26) yield 

L(O.,O)f(O)dO>exp(-2e.) ~ L(f.,O)f(O)dO, 
K(~.) K(6,,) 

qed .  

(3.26) 
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Corollary 3.3. (a') Let L,(a, O) be the loss function (3.1). 
(b') (b*) holds for h (n)--min (rn, h 2 (n)) instead of  h 2 (n). 
(c') There exists a null sequence ~n with (d*), fl) (where h2(n ) is replaced by h(n)). 
Then (2.3')is also satisfied for 0 n instead of  Yn (and the loss function (3.1)). 

Proof The proof is clear, because (3.22) of Theorem 3.2 is likewise valid. 
The remarks on the possible restriction of O and X n (p. 126) in the hypotheses 

hold correspondingly here. One chooses M n so that 

lim ~ Ln(On(~,),O)fn(~nlO)l~,(d~n)=O 
n ~  oO M n  

uniformly in H,. 

The theorems make it possible to confine oneself to the conditions of probability 
theory (2.4)-(2.6) in proving the equivalence of the two estimation methods. They 
thus apply to nonparametrical investigations as well. As in "regular" cases the 
equivalence of the two methods has been proved only for (3.1); in these cases the 
theorem can still be useful for other loss functions. 

In most cases it would be more difficult to verify sufficient criteria for (2.4)-(2.6) 
(for (2.4) this is hardly imaginable) than to verify these conditions (2.4)-(2.6) 
themselves, which are in the most usable form possible, as is proved in [4]-[6]. 
For loss functions which are constant outside of { ]1 a-0H < h2(n)} and for which 
s(n) is bounded (e.g. (3.1)), (2.5) and (2.6) mean that lirn P,~10n-0ll >h2(n)[O}=O 

uniformly in H,, a property similar to that of consistency, which can usually be 
proved easily. The reason why necessary conditions for (2.3') are of no great 
importance is that maximum probability estimators (according to the definition) 
need not satisfy (2.3'). 

Consider the classical problem of the estimation of the expected value of a 
sequence of independent, identically normally distributed random variables. As 
it is well-known that the normal distribution belongs to the regular cases, the 
maximum likelihood method always leads (see p. 125) to m.p.e.'s for (3.1) with 
rn= r n -~. Other loss functions are not considered in [4]-[6] 

Ln(a, O) = n ( a -  0) 2 (3.3) 

is only mentioned. Taking (3.3) as a starting point we obtain, as an application 
of Theorem 3.2, that 

1 n 

0n(f)=n ~ i ,  ~=(~, . . . .  , ~n )  
i =  = 1  

satisfies (2.3'), and even maximizes (2.3). We set, say, 

h 2 ( n ) - -  - ~ ~" n , hl(n)=n- , 

then (2.4) and (2.5) are trivial; a proof of (2.6) requires, however, a longer calcula- 
tion (see [9], pp. 21-27). Hence, we have 

Theorem 3.4. 0.(4)= ~i is a m.p.e, for (3.1) and (3.3). 
'~ i = l  

An application of Theorem 3.1 will be given in 4. 
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4. E (0, 0) as an Application of Theorem 3.1 

(See [1] and [3] for comparison.) 

The density function of the exponential distribution E (a, 0) is 

f(ct, 0)=0 e x p { -  0 ( x -  ct)}, x > ~ ,  (4.1) 

and otherwise equal to 0; 0 > 0. 

We will estimate 0 where e is known; hence, we can assume ~ = 0 without 
loss of generality. Then we have 

f,(~lO)=O" exp ~ , ~eX,=R", ~i>0 all i=  1, ..., n 

and f,(~[0)=0 otherwise, and 0e]0, oo] = O. 
The loss function (3.1) is taken as a starting point, r,=rn -~, which is 

the only reasonable possibility, and proceed in the following way. Let 0*cO: 
We choose n o such that 0 " -  1/n o >0, set 

O ' =  [0" - 1/(n o + 1), 0* + 1],  6 ) '=  [0" - 1~no, O* + 2] 

and apply Theorem 3.1 to O,  O instead of O, tg. 

The maximum likelihood estimator is 

1 n --1 

,   R":Xn 
~ni=l  ! 

Consider 

M . =  {~eX.: 0.(3)<(0 * - 1/no+r.)} u { ~ X . :  0.(4)>(0* + 2 -  r.)}. 

We have 
limt'.lM.lO } =0  

uniformly in /4.. Then (a)-(c) are obvious; (d) is shown as follows: We have 

z . ,  = Ilog {L(~I0. + r.)/f.(~]O.- r.)} I = n ]g.(0.)l, 
where 

g.(x): = log(x + r.) - log (x - r.) - 2 r,]x. 

Let n be so large that 2r.<O*-l/no; g.(x) is monotonically decreasing and 
negative for x > 2 r.. (g. (2 r.) = 2 log r . -  1). Therefore, [g.(x)[ < [g.(0* + 2)[ for all 
xeO'; hence, Z.<nlg,,(O*+2)[. The fact that nig.(0*+2)l is a null sequence, 
is shown by applying Taylor's theorem. Then (2.10) is true for all 0oSO', i.e. 
for 0* in particular; 0* was arbitrarily given from O, hence (2.10) holds for all 
0*cO, and thus we have 

Theorem 4.1.0,(~) is a m,p.e, in the case of the exponential distribution E(O, O) 
for (3.1). 

Acknowledgment. The author wishes to thank Professor K. Krickeberg for stimulating discussions 
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