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Markov Additive Processes. II* 

Erhan ~inlar 

I. Introduction 

Markov additive processes were introduced in [2] in a general setting in the 
non-terminating case. Below we shall define time-homogeneous Markov additive 
processes in a modern setting. Throughout we use the notation and terminology 
of Blumenthal and Getoor [1]; in referring to it we write BG IV.3.5 to mean the 
expression or statement (3.5) in Chapter IV of [1]. 

We recall, in particular, that if (G, f~) and (H, W) are measurable spaces and 
if f :  G ~ H  is measurable with respect to ~ and 3/f then we write f~f#/W. If 
H = R = [ - o o ,  +oo]  and 9f~=~- the  Borel subsets of N, then we write f~f#  
instead of f e ~ / ~ .  Further, b fq={f~f~:  f is bounded}, fq+={f~fr  f > 0 } ,  
b fg+={ feb fg :  f>O} .  

We will in addition introduce the following notation. If {f#t; t > 0} is an increas- 
ing family of sub-a-algebras of a a-algebra ~ '  on a set 12 and if the function 
T: 12~[0,  + co] is a stopping time with respect to the family {f#t} (that is, if 
{ r__< t} e fft for every t __> 0), then we write T~ s (fgt)- 

Let X=(12, JCL, JOlt, Xt, Or, px) be a Markov process with state space (E, g) 
augmented by A (cf. BG 1.3.1 for definition). We let 

~=inf{t :  Xt=A};  

3 f  will denote the completion of W ~  t>0)  with respect to the family of 
measures {P": /~ a finite measure on 8~}; ~ will be the completion of ~ o =  
a(Xs: 0 < s__< t) in W with respect to the same family {P"}. 

Let G be a topological group with the group operation denoted by "+" ,  and 
let f# be the Borel subsets of G; (f9 is the a-algebra generated by the open sets in 
G). A family A={At ;  t>0}  of functions defined on (12, ~r and taking values in 
(G, f#) is called an additive functional of the Markov process X provided that 

a) almost surely the mapping t ~ At is right continuous, has left-hand limits, 
and Ao=0,  Ar = A~ , At = A ~ for t>~;  

b) At e ~'~/f9 for each t > 0; 

c) At+s=At+AsoOt almost surely for each pair (t, s); t, s>0 .  

A family M = {Mr; t => 0} of real or complex valued functions defined on (12, 5r ~ 
is called a multiplicative functional of X provided that 

a) almost surely t ~ M t  is right continuous; 

b) M t e ~ for every t > 0; 

c) Mt +s = M~ (Ms o 0~) almost surely for each pair (t, s); t, s > 0. 

* Research supported by NSF grant GK-4196. 
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The following two definitions introduce our subject matter. 

(1.1) Definition. Let (E, g) be a measurable space, and let F = N " ,  ~-=/~m for 
some fixed integer m > l .  A family {Qt; t>0}  of functions from E x (~ x ~ )  into 
[-0, 1] is said to be a semi-Markov transition function on (E, 8, ~-) provided 

a) for each t > 0 and x ~ E, F ~ Qt (x, iv) is a measure on g x ~ ;  

b) for each t, s>O, xsE, AeS, B ~  

Q,+~(x, AxB)= S Q,(x, dyxdz)Q.~(y, Ax(B-z ) )  
E x F  

where B - z = { u - z :  ueB}. 
(1..2) Definition. Let X=( f l ,  Jll, J/lt, Xt, Or, W) be a Markov process with state 
space (E, g), write (F, ~ ) =  (IR", ~"),  and let Y= { Yt; t > 0} be a family of functions 
from (~2, Jg) into (F, ~ ) .  Then (X, Y) = ((2, J/l, JOlt, X,, Yt, Or, px) is called a 
Markov additive process (MAP) provided the following hold: 

a) almost surely the mapping t ~ Yt is right continuous, has left-hand limits, and 
satisfies Y0 = 0, Y, = Y~ for t > ~; 

b) for each t e [0, ee), Yt e J l t /~- ;  

c) for each te l0,  co), Aeg ,  Be~,, the mapping x ~ W { X t e A  , Y,~B} orE into 
[0, 1] is in g;  

d) for each t, ss[0 ,  co), Yt+s= Y~+ Y~o0t almost surely; 

e) for all t, s e [0, ee), x e Ea, A e 8~, B e 

px{XsoO~eA, Y~oOteBlJg~}=PX(O{X~eA, Y~eB}. 

By redefining Y on a set F e d~/with px (F)= 0 for all x e E~ if necessary, we may 
assume that the regularity properties in (1.2 a) hold for all co e 9. We put Yo~ = lim Yt; 

clearly Y~o = Y~. Further, if Y is not continuous at (, we may redefine it at ( so that 
Y~_ = Y~; this will not alter the validity of other conditions. These alterations we 
will assume done without special mention. 

It is easy to check that, if (1.2a, b, c) hold, then (1.2c) remains validwhen E, g, 
[0, + co) are replaced by E~, g~, [0, + co]. Thus, by the monotone class theorem, 
x~px{(xt ,  Yt)eF} is in ~A for any te[0,  + co], eed~ x 

The exceptional set in (1.2d) depends on both s and t generally. In view of the 
right continuity of Y assumed in (1.2a) however, for each fixed t>0 ,  Y~+~= Yt+ 
Y~o0t for all s > 0  except possibly on some set Ft with W(F~)=0 for all x. In this 
connection we introduce the following 

(1.3) Definition. A MAP (X, Y) is said to be perfect provided there exists a set 
F e ~ '  with P~(F)=I  for all x such that Yt+~(co)= Yt(co)+ Y~(0tco) for all s, t > 0  
whenever co e E 

(1..4) Definition. A MAP (X, Y) is said to be strong Markov i fX is strong Markov 
and 

P~ {X, oOTeA, YtoOreB[J/[r} =pX(r) {XteA, Yte B} 

for all xeEn, Aeg~, B~ , ,  t>O, T~s(~i{,). 
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We shall show in Section 3 that, i fX  is standard, then every MAP (X, Y) with 
Y non-decreasing real-valued is strong Markov. 

(1.5) Definition. Let (X, Y) be a MAP. Y is said to be continuous if almost surely 
t ~ Y~ is continuous; Yis called a pure jump process ift  --, Y, is a step function almost 
surely. When E is a topological space, Y is said to be natural if almost surely t ~ X t 
and t ~ Yt have no common discontinuities. Y is called quasi-left-continuous if 
lim Y(T,)= Y(T) almost surely for every increasing sequence {T~}=s(~'t) with 

n 

lim T, = T. 
tl 

If in Definition (1.2) the condition YteJClt/~ is replaced by Y t ~ / ~ ,  then Y 
becomes an additive functional of X (in this case the conditions (1.2c) and (1.2e) 
are superfluous). If, further, Y is numerically valued and t ~ Y~ almost surely non- 
decreasing, then Y is an additive functional of X in the sense of BG IV.I.I. We 
remark that in this case our definitions of the terms perfect, strong Markov, 
continuous, etc. coincide with those given in BG IV.I.3, BG IV.I.11, BG IV.l.15. 

Throughout the following X will be a standard Markov process: the state 
space E is locally compact with a countable base, g is the set of all Borel subsets of 
E, A is the point at infinity if E is noncompact and is an isolated point if E is 
compact; {J~t} is right continuous and "complete"; t ~ X ,  is right continuous 
on [0, co) almost surely; X is normal, strong Markov with respect to {J[~}; X is 
quasi-left-continuous on [0, (). We will sometimes assume X to be a Hunt process 
(a standard process which is quasi-left-continuous on [0, co)); but this will always 
be explicitly stated. 

In addition to the canonical a-algebras {~}  introduced already we define 5O 
to be the completion of 5 ~ -- a {X,; Y~; t > 0} with respect to {PU: # a finite measure 
on ga} and 5or to be the completion in 5O of 5o~ =a(Xs,  Ys; O<s<t) with respect 
to the same family. We write d ~ Y*, ~*  for the universally measurable subsets 
of E, F, [0, co] respectively. 

In the next section various preliminary results will be given; most of these will 
be without proofs. In Section 3 we examine the strong Markov property. 

The process Y can be decomposed as 

Y = A +  YS+ yc+ ya 

in a manner analogous to L6vy's decomposition of additive processes; here A is 
an additive functional of X, yS is a pure jump process whose jump times are 
"fixed" once the path of X is known, yc is continuous, yd increases or decreases 
by jumps but these times are not fixed by X. In Section 4, y I  is further decomposed 
as y I  = yq + yn 

where Yq is quasi-left-continuous and not natural, whereas yn is natural and not 
quasi-left-continuous. In both cases their structures are completely characterized 
by using the known results for additive functionals. In Section 5 the component yd 
is examined; roughly speaking, it is of the form 

ytd = ~ Zt dM 

where M is a Poisson random measure independent of X and Z, is an additive 
functional of X. 
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2. Dependence of Y on X 

Let (X, Y) = (82, rig, ~lt, Xt, Yt, Or, px) be a MAP with X taking values in (E, 8) 
and Y in (F, ~)=( IR ' ,  ~"). X is standard; and {Y4t}, {Gat} are as defined before. 

(2.1.) Proposition. For xsE ,  FeN x ~ define 

Q , ( x , r ) = w { ( x , ,  Y,)er}, t>O. 

Then {Qt; t>O} is a semi-Markov transition function. 

Proof is omitted. Clearly, if {Qt; t>O} is a semi-Markov transition function 
and if 

(2.2) Pt(x,A)=Q,(x, A x F ) ,  x~E, A ~ 8  

for all t>0, then {P,; t>0} is a Markov transition function. It was shown in 
~inlar [2] that a MAP (X, Y) with a given semi-Markov transition function {Qt} 
exists if and only if there exists a Markov process X with transition function {Pt} 
defined by (2.2). A MAP(X, Y) is not a Markov process in the sense of BG 1.3.1, the 
main difference being in the way the shift operators 0t work. However we have 

(2.3) Proposition. For each XeEA, the stochastic process {(Xt, Yt); t>0} defined 
over (f2, ~ ,  px) is a Markov process adapted to {J/t; t~0} with state space 
(EA • F, 8~ • ~ )  (in the sense of BG 1.1.1). 

The transition function for this Markov process is translation invariant in 
the (F, ~-) variables. For this reason Ezhov and Skorokhod 114] refer to it as a 
"Markov process with homogeneous second component." Of course, it is easy to 
construct a Markov process in the sense of BG 1.3.1 from a given MAP. However, 
that is not of interest to us. 

(2.4) Proposition. For each t >= O, 0 t e ~s  +t/~LPs for any s >_ 0; and therefore, O t ~ e / ~ .  
For any ZeboL, ~ the mapping x--, Ex[Z] is in 8*. 

Proof follows easily from the Definition (1.2). Following is a consequence of 
(1.2e) and (2.4). 

(2.5) Proposition. For each t >=O and Z e b  ~e, 

e x 11Zo o,I ~,3 = U ( ' ) [ z ] .  

The following propositions examine the conditional behavior of Y given X. 

(2.6) Lemma. For any xeE~,  t >_O, Z e b  Lat~ 

ex l -Z l~  o] = e~ l-Zl ~ o ] .  

Proof. The right-hand side has the required measurability property. Let 
H e ~  ~ Ge~f  ~ Then, from the Markov property for X we have, since ZeJP/t, 

e ~ 11ZH(Go 0,)3 = e ~ [ z n e  x") [~3] 
= e ~ [ H E  x(') [G] E ~ [ Z l ~ ~  

= e~ [e~ [/4~x 11z1~ o] ~o 0,1~o]]  

= e ~ [ i 4 ( 6 o  0t) e ~ 1 1 z 1 ~ ~  
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Since functions of the form H(GoOt) with H s ~  ~ and G e X  ~ generate X ~ this 
completes the proof. 

(2.7) Proposition. For any xeE~, t_>0, Zeb &ot, 

ExEzPs] =Ex[z[~;]. 

Proof The right-hand side has the proper measurability property. Since any 
A~JK differs from a set A o ~ r  ~~ by a PX-negligible set, it is sufficient to show that 

(2.8) E ~ [Z; A] = E x [E ~ [ Z [ ~ ]  ; A], 

for A ~ S  ~ By the definition of &o r, there exist Zxeb&o ~ and Fs&O ~ such that 
{Z+Z~} c F  and PX(F)=0. Then 

(2.9) E~[Z; A]=Ex[Z~; A]=EX[EX[ZxIXt~ A] 

for any A ~ S  ~ by Lemma (2.6). On the other hand, (2.9) holds for Ae~f~ ~ c X  ~ 
also, which implies that 

(2.10) E~[ZrXtt] = E~ [Z~I.~, ~ 

since for any F ~  there is A ~ , ~  ~ and M, NsYF ~ such that A - N ~ F c A w M  
and P~ (N)= px (M)= 0. Now (2.8), (2.9), (2.10) together yield the desired result. 

In the preceding proposition the dependence of conditional expectations on 
x can be dispensed with by choosing the proper versions: 

(2.11) Proposition. For any Z~b&O there is a random variable W~b~g" satisfying 

E~[ZIX]-- W 
for all xeE~. 

Proof a) Fix t > 0 ;  let {J,} be an increasing sequence of finite subsets of I-0, t], 
each containing 0 and t, and such that d = U J, is dense in [0, t]. Let i f "  be the 

n 

completion in s (  of a(Xs; seJ,) with respect to {P": # a finite measure on god}. 
Since X is standard, E is locally compact with a countable base and X is right 
continuous. Therefore (cf. BG 1II.2.2 and the remark following it), we have 

(2.12) U J l " = ~ t .  
n 

b) There is no loss of generality in assuming Zeb&ot. Since g has a countable 
base and J, is finite, d os" has a countable base and therefore o-(X~; t~J,) has a 
countable base. Thus, we can apply a result in Doob [3, p. 3441 to obtain a version 
of 

(2.13) W,X = E~ [ZI~(" ] 

so that the mapping (x, co)---, W,X(co) is in do* x gf". Define 

(2.1.4) W, = W. x(~ 

for each n; then W, s J l "  and for any Ae.3(5" 

~x[w.+~; A]=E~[W.+~; Ac~{Xo=x}]=~x[w~+~; An{Xo=x}] 



100 E. ~inlar: 

by the normality of X and (2.14). Now using (2.13), the fact that :r  "+1, 
(2.14) and the normality of X again, we get 

Ex[W,+I; A]=Ex[W~; A]. 

Hence {W., Jr"} is a martingale with respect to the measure W for any x. Since 
W, e J f ' c ~  for each n and since the W. are uniformly bounded (because Z is 
bounded), W=limsup W.~b~.  By the martingale convergence theorem, for 
each x, lira W~ exists and W{lim W~---W}= 1. By the normality of X, (2.13) and 
(2.14) we have 

E x [Wl  x ~3 = Wn = E~ [ Z l ~ " 3  ; 

thus, letting n ~  ~ ,  we have 

(2.15) W= e~ [Zl U XC"] =e~ [ Z I ~ ]  

by (2.12) for any xsEA. Since Z ~ b ~ t ,  by Proposition (2.7), the last term in (2.15) 
is E~ [ZlYf]. 

(2.16) Notation. Making use of the preceding proposition we will simply write 
EZ for the version of Ex[ZIYF] constructed in the proof above for any Z e b ~ .  
Note that if Z e b ~ t  then EZeb~f~,. 

(2.17) Proposition. For any t >O, xe  En, and Z~b Ge, 

F~ ~ [ Z  o 0,1~', v Y~]  = ( e Z ) o  0,. 

Proof It is sufficient to show that 

E ~ [H(G o 0,) (Z o 0,)3 = E ~ [H. (G o 0,) (EZ o 0,)] 

for all x, HebJ//t, G~b ~,, Z ~ b ~ .  But this follows from Proposition (2.5) and the 
observation that 

e~ [ o z ]  = e~ [GE ~ [ZlYC]] = e ~ [ o e z ]  
for all y e E d . 

The next theorem states that, roughly speaking, conditional on the history 
YF of X, Y is a process with independent increments. We will make this more 
precise in Theorem (2.22) by choosing a proper version of "the conditional 
probability given Yf". 

(2.18) Proposition. For any integer n>= 1, 0 < t o < t  1 <.. .  <t . ,  and fl  .... , f , ~ b ~ *  
we have, almost surely, 

E - Y,~_~ = l - I  e [ f~  (y,~ - Y , j _ , ) ] .  
t-j=1 j = l  

The proof follows from Proposition (2.17) by induction on n. The following 
corollary is easy to derive by using Propositions (2.18) and (2.17) along with 
(1.2 a, b, d). 

(2.19) Corollary. Let 
M~=E[ei~'r~q, ,~eF, t>=O, 
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where (2, y) is the usual inner product in F=~," .  Then {M~; t>0} is a muhiplicative 
functional of X for each fixed 2eF. 

The following is what we needed to make the rough statement of(2.18) precise. 

(2.20) Proposition. There exists a regular version of P~{.]~} on ~LP which is 
further independent of x; that is, there exists a function P~(A) on 0 • ~ such that 

a) for any A e ~ ,  co~Po(A) is in ~," 

b) for any cocO, A--,P,o(A) is a probability measure on 5s 

c) for any BeJ~ff and xeEA, 

S P~ (A) P~ (dco) = P~ (A c~ B). 
B 

Proof By Theorem (3.7) of ~inlar [2] there exists a regular version P* {.IW} 
on 5 ~ for any fixed x. That this version can further be selected to be independent 
of x is what is being claimed. The proof is exactly the same as in [2] except that, 
in the notation of Lemma (3.2) of [2], we need to choose 

Q,, (w, B)=(P~ {~ - ~BI~r 

so that it is independent of x. That this is possible follows from (2.11). 

We will write P~ to denote the conditional probability (evaluated at co) whose 
existence is shown above. When suppressing co, we write simply P. We note that, 
referring to Notation (2.16), we have 

(2.21) (EZ) (co)-- ~ Z(co')Po(dco') 
o 

for any Z e b ~  almost surely for all co. Thus, E is the "expectation" operator 
corresponding to P. 

(2.22) Theorem. For any fixed co~(2, the stochastic process (0,//[, tilt, Yt, Po) has 
independent increments. 

The proof is immediate from Proposition (2.18) and (2.21). Appealing to the 
theory of additive processes (cf. Doob [3; Chapter VIII] and Ito [5; Section 4]) 
we obtain the following analog of L6vy's decomposition for processes with in- 
dependent increments. We shall omit the proof and only remark that a) independ- 
ence with respect to P means conditional independence given J l  with respect to 
px for each x, and b) if Z~ ~ ,  is constant with respect to P then Z s St. 

(2.23) Theorem. We have 

(2.24) Yt=A,+ Ytf+ YtC+ Yr a, t__0, 

where a (Yt I; t >__ 0), ~ (YtC; t > 0), a (Ya; t > O) are conditionally independent given ~d 
with respect to Px for each x. This decomposition is unique up to the addition of 
functionals of X. The components satisfy the following: 

a) A = {As; t >~ 0} is an additive functional of  X. 

b) yS={y/ ;  t>0} is a pure jump process; (X, yI)  is a MAP; if T is a jump 
time of  YY, then Tr 
8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 24 
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c) yc={y[; t>0} is continuous; (X, YO is a MAP. Thus, yc is a Gaussian 
process over (O, A ~ P). 

d) yd= { ytd; t > 0} is a stochastically continuous process with independent in- 
crements over (~, ~ ,  P); (X, ya) is a MAP. 

(2.25) Corollary. Let Mt ~ be defined as in (2.19). Then, for each t_>0, 2~F, cosQ, 

M:(o,):{ 1-I {exp [i(;, 
~4w)_-<t 

(2.26) 

where 

a) for each j, z j e ~  and each Fj ~ is a characteristic function in 2 and is J~ff- 
measurable for fixed 2; 

b) A = {At; t > 0} is an additive functional of X;  
c) C= {Ct; t>0} is a continuous additive functional of X taking values in the 

space of non-negative definite symmetric operators on F = ~m; then (2, C2) is the 
usual quadratic form; 

d) for each t>O and o~e~, A--*Bt(m, A) is a finite measure on ~," and for fixed 
Ae~,, B(A)={B,(A);t>O} is a numerical valued non-decreasing continuous 
additive functional of X. 

In the decomposition (2.24) A is completely determined by X; the jumps of 
yI  are fixed by X but the amounts of jumps themselves may depend on other 
variables; Y~ is continuous and is obtained from a multidimensional Brownian 
motion which is independent of X through a random time and scale trans- 
formation, the rules of the transformation being determined by X; yd is, up to a 
normalizing continuous additive functional, a pure jump process and is obtained 
from a Poisson random measure by certain transformations whose laws are 
governed by X again. In sections 4 and 5, the structures of yI  and ye will be 
examined further. 

Ezhov and Skorohod [4] give a decomposition by using (2.18) directly without 
the aid of the version P of the conditional probability PX {.loft}. Then they assume 
t~M~ to be continuous and give something close to our Corollary (2.25). As a 
result, the component yI  is missing in their decomposition, and t~At  must be 
continuous. They do, however, give a complete decomposition in the case where 
X is a regular step process (with each x a holding point). They use characteristic 
functions exclusively. 

3. Strong Markov Property 

As before (X, Y) = (~, Jr J/4t, X ,  Yt, 0,  px) is a fixed Markov additive process, 
X = (f2, J4, J4,  Xt, Ot, px) is a standard Markov process with state space (E, 8), 
Y takes values in (F, ~)=(~m,  ~m). The families of a-algebras {~r {~,} are as 
before. We remind that s (~t) denotes the set of all stopping times with respect to 
the increasing family of a-algebras {~,}, and that P and E refer to the conditional 
probability and expectation discussed in (2.20) and (2.21). 
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It was shown in Theorem (2.22) that the process {Yt; P,o} has independent in- 
crements for any fixed co~(2. Thus, Proposition (2.18) remains true if q . . . .  , t. 
there are replaced by T1, ..., T. where each Ti: O ~ [ 0 ,  + eel is in oU and T1 < - "  < T, 
almost surely. We will be able to say somewhat more on this later. 

(3.1) Proposition. For any x~Ea, Z e b ~ ' ,  TEs(~Ct) we have OTE~/[T+t /o~  t for 
each t and 

E = [Zo 0 d  = E = [E = m  [ z ] ] .  

Proof Since X is strong Markov, for each xmEA, if we write # = W X T  ~ then 
P~ = W Or ~. Further, the completion of ogaT in s with respect to the family {W; 
/~ a finite measure on ~a} is equal to s r. Thus, O w ~ / ~ T + t / ~  t for each t, and there- 
fore OTeJI/s Now, 

Ex[ZoOT]= I ZoOrdnX= ~ Z d(nxoT~)= ~ Z dP u 
Y2 s 

= ~ Er(Z)#(dY) = I E Y ( Z ) d ( W X T  ~) 
Ea Ea 

= ~ E x m  (Z) d W  = E ~ [E x(r) (Z)] 
s 

as claimed. (We have used the fact that y-~E y (Z) is in ~*; this follows from Propo- 
sition (2.4).) 

Following shows that (X, Y) has the strong Markov property in the sense of 
Definition (1.4). 

(3.2) Theorem. For any T~s(~{,), f ~ b S * ,  g~b~-* 

E x [ f  (X, o OT) g(Yt ~ 0T) [ JIT] = EXIT)[f (X,) g (Y,)] 

for all xeEa and t >O. 

Proof For 3eJgr define T a = T on a and T A = + oo on A c. Then Taes(J{t) 
also. Noting that 0oo co=~oa and X,(coA)=A, ((COA) =0, Y,(coa)= Y~(~oa)=0 we have 

E ~ [ f (Xto  OTA ) g( Y,o Oz~)] = E x [ f ( X  t o Or) g (Yto Or); A] + f ( A )  g (0) W ( A  c) 

EX [ Ex(z~) [f(Xt)  g (Yt)]] =EX [EX(T)(f(X,) g (Y,)); A] + f ( A )  g(O) pX(A O. 

By Proposition (3.1) the left sides of these equations are equal. 
This yields by the usual induction methods, using the monotone class theorem, 

the following 

(3.3) Corollary. For any T~s(J/4), Z~b5~  and all x~Ea, 

E x [Z o O TI~/[T] • E x m  [Z] .  

Next is a result concerning {off,} stopping times. 

(3.4) Proposition. For any T~s(~t), Z ~ b  ~ ,  x ~ E  a, 

E ~ [Zo OT[./fi[ T V ~ ]  = (EZ)o O r. 

Proof Let ~ r  be the completion in ~ of a(XT+,; t>O) with respect to {W; 
# a finite measure on ga}. Then, since T ~ s ( ~ ) ,  the completion of a ( S r U ~ T )  
8* 
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in ~ with respect to {PU} is equal to X itself (cfi BG III.4.20 for a proof). Since 
XT ~ ~[T, it suffices to show that 

(3.5) E ~ [GH(Z o Or)] = E ~ [GH(EZ o OT) ] 
n 

for G ~ b J l r ,  H=I--If~(XT+,j)~WT with fj~bB*, j = l  . . . . .  n, 0 < q < . . - < t , .  We 
j=l 

can write H = F o  OT where F ~ b ~ .  Then, since FZ~bSY,  by Corollary (3.3), 

E ~ [G(Fo Or) (Zo Or)] = E ~ [GE x~r) [FZ]] .  (3.6) 

On the other hand, 

(3.7) E y [FZ] = E y [FE y [ZI ~r = E y [F(EZ)] ; 

and by strong the Markov property for X, since F(EZ)~ b X,, 

(3.8) E x~r) [F(EZ)] = E x IF o Or (EZ)o 0r I jk'r]. 

Now (3.6), (3.7), (3.8) yield (3.5). 

(3.9) Corollary. For any Z E b s  r T ~ s ( ~ )  

E ~ (Z o O T [ ~  ) = (EZ) o OT 
for all x. 

If Yis perfect then YT+,= YT+ Yz~ for all t almost surely for each Tss(J//~). 
This put together with Proposition (3.4) gives the following 

(3.10) Corollary. Suppose Y is perfect and let T, S s s ( ~ ) ,  f sb  ~ * .  Then 

E~ [ f  ( Ys ~ 0 T)] = (Ef  (Ys))o OT. 

Note that, when Y is perfect, Ys o 07-= Yso0~(0r) = Yr+soo~- Yr. 
If Y is not known to be perfect, results above do not enable us to handle 

expressions such as E~[f (Xr+t)g(Yr+t) l~T]  for T~s(Jg,). Following are some 
results in that direction. 

Assume Yis real valued and non-decreasing. Then M z= {MtZ; t > 0}, defined by 

(3.11) M~=E[e-Z~(t)], t>=O, 

is a multiplicative functional of X in the sense of BG III.l.l. Since Yo--0, Mo ~= 1 
almost surely. Hence, for fixed 2>0,  M z is exact (in the sense of BG III.4.13), 
regular (in the sense of BG III.4.11), and therefore (cf. BG III.4.12) has the strong 
Markov property: 

(3.12) E ~ [M~ +7 f (XT +t)] = EX [M~ E x (7") [M~f (Xt) ] ] 

for all x~ En, t > 0, f ~  b gA*, and Te s (Jgt). Of these properties, exactness especially 
will be used below. 

(3.1.3) Proposition. For any 2>0,  f ~ b g * ,  and T6s (d//z), 

E ~ [f(XT+t) e -zrtT+t)] = E ~ [e -zYCT) E x~T) [ f  (X,) e-  zr,]] 

for all XeEA and t>O. 
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Proof For each n define 

T~= on ~ ; - -  < T<  ~ - ~ ,  

1+oo  on { r = + o o } .  

Then T~es(J//,) for each n, and T~$ Tas  nToc. 

Suppose first that f is non-negative and continuous. Then tof(X~) is right- 
continuous, and t ~  Yt is right-continuous by (1.2a). Thus, for a >  0, 

co 

E x ~ e-~tf(XT+t) e x p ( -  2 YT+t)dt 
0 

oo 

-- lira E x ~ e - "tf (XT, + ~) exp ( -- 2 YT, + t) d t 
n 0 

co 

=l im ~ E ~ [~oe-~tf(Xt+k/2.)exp(-.~Yt+k/2.); Tn=~-n ] 
co T. k 

=li~E*[exp(-2Yk/2,)(~oe-'tf(Xt)e-ar'dt)~ , = ~ - ]  

co 

=limEX[exp(-2Yr,)EX(r")~oe-"f(Xt)e-ar*dt ] 

where we used (l.2d) and applied Proposition (2.5) after noting that { T~ = k/2"} e 
~ / ~ k / 2 n  " 

As n-~ z~, T.$ T and Yr.~ Yr by the right continuity of Y On the other hand, 

co co 

g~(x) = EXo ~ e-~tf (Xt) e-ar~ dt = E~  e-~tf (Xt) M~ dt 

where M a is as defined in (3.11). Since Mo a = 1, by BG III.4.10, g" is a-excessive and 
hence t ~g"  (X,) is right-continuous almost surely. Thus, g" (XT,)~g~ (Xr) as n + oo; 
and we have 

co 

e~[. e-~tf(Xw+t) e -arT+* dt 
0 

co 

=E x [e-aY(T) EX(T) ~ e-~tf (Xt) e -at' dr]. 
0 

Hence the functions t ~ E  x [ f  (X r +t) e-  a y(r +t)] and 

t~EX[e-ar(r) EX(r) [ f  (Xt) e-at ' I ]  

have the same Laplace transform. By the right continuity of these two functions 
and the uniqueness of Laplace transforms, it follows that they are identical. This 
shows that (3.13) holds for f continuous non-negative; and therefore (3.13) holds 
for any f e b  d ~ 

(3.14) Remark. For Tes(~), E[e-ar(r)]=M~. However, this is not true for 
general Tes(Jg,). Thus (3.13) does not follow from (3.12). 
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(3.15) Proposition. For any xeEa, f ebSJ,  t >O, 2>0,  and Tes(J//t), 

EX[f(Xr +t) e-~rr = e-~r(r) Ex(r)[f (Xt) e-;~rt]. 

Proof. The method of proof used in (3.2) may be used to complete this proof 
once we show that 

(3.16) E ~ [f(XT+t) e -~r(r+t)] = E ~ [e-~r(r)EXtr)[f(Xt) e-  ~r']] 

for all Tzs(~gt) and 2>0 ,  f~br  and xzE~. 
If f z b S * ,  then this follows from Proposition (3.13). On the other hand, for 

f=IE~, going through the same proof as in (3.13) and using the exactness (cf. 
BG 111.4.13) of the multiplicative functional M a to show 

limEXCr,) e-~t e-~r, dt =Ex(r)~ e-~t e-~r, dt 
o 

(cf. BG III.4.23 to see that this holds even though M~ is possibly non-zero in our 
case), we see that (3.16) still holds. Since any function f s  b 8~ is a linear combination 
of a function in b~f* and IE~, and since the set of functions in bN* for which (3.16) 
holds is a vector space, (3.16) holds for all f s  b ~*. 

(3.17) Proposition. For any x~E~, t>O, Z ~ b ~ ,  Tes(Jr 

E x [Zo 0T e -zr~r +t) I J / r l  = e -~r~r) E x~r) [Z e-~r")] .  

t l  

Proof. It is sufficient to show this for Z=l-Ifj(Xtj  ) where 0 < t o <  q < . . .  <tn; 
t 

f j sbS* .  For t,=< t, this follows by induction on n from Proposition (3.15). Suppose 
next that 0 < to < . ' -  < tj < t < tj +~ <. . -  < t,. Then, using the strong Markov prop- 
erty of X for the stopping time T+t,  

=E ~ fi~ XT+t, e-;tr(T+t) Ex(T+t) fi~ Xti-t J//[T 

which now falls in the previous case. Thus, this last expression is 

e-;~r(T) EX(T) fio XttEx(t) fio Xti_t e -ar, 

This completes the proof. 

4. Structure of  YY 

In this section we will consider the second component in the decomposi- 
tion (2.24). By the first statement of Theorem (2.23), the a-algebras generated by 
different components are conditionally independent given 3r and by (b) of the 
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same theorem, (X, y.r) is a MAP. In considering this component, then, there is 
no loss of generality in assuming that all the other terms in (2.24) are zero. 

Let, then, (X, Y) be a M A P  so that Y= Yf; that is, Y is a pure jump process 
taking values in (F, i f )  = (IR', ~"),  each jump time of Yis fixed by X, the amounts of 
jumps themselves depending on X and on further variables. As before, X is 
standard, the a-algebras ~ c ~ t  ~ JC/t are as before. 

Let {z j} be the finite or countably infinite set of times of discontinuity of the 
mapping t ~  Yt; and for each j, let Uj be the amount of jump at zj, that is, Uj= 
Y~j- Y~j. Then we can write 

(4.1) Yz=~ Uj I~s=<t~, t > 0 .  
i 

Since a centered separable process with independent increments is "almost surely" 
bounded on any finite interval (cf. Doob  1-3, p.411]) for any finite interval 
J c  1-0, oo] we have that ~ UjI~j~s~ converges almost surely. 

J 
By Theorem(2.23), each zj~3{" and the Uj are conditionally independent 

given ~ .  The next result makes this dependence on X more precise. 

(4.2) Proposition. Each zj~s(~t), each Uj~ZP~j. 

Proof For each t>_0, 2 ~F  we have 

Mt a = E  [e izr'] = M E [e izvj] 
~j<_t 

by (4.1) and the conditional independence of Uj given X. Each zj is a time of 
discontinuity of t -~ M~ for some 2 > 0, therefore the zj are the times of discontinuity 
of the function t ~ M~ where 

M,-- ~ IM,~ld2, t_>-0. 
IZl<a 

Since the mapping (2, co) ~ M, z (~o) is in ~ • ~ ,  by Fubini's theorem 

(4.3) Nits ~ 

for each t > 0. 

It is clear that t ~ M t is right continuous and has left-hand limits. For ~ > 0 
define 

(4.4) T=inf{t :  Mr_-Mt~e};  

put To=0 and T,+~ = T,+ ToOt. It follows from (4.3) and (4.4) that T~s(~),  and 
thus each of its iterates is also in s (~t). Letting e ~ 0 we obtain the desired result 
for the zj. 

Since ~ c ~ for any t >  0, each zj is also in s(~0. Thus 5r is well defined. 
That U j e ~ j  is evident from (4.1). 

The following gives a further decomposition of the component we are studying. 
Here we call the attention to the definition of natural given in (1.5). 

(4.5) Theorem. Let X be a Hunt process. We can then write 

(4.6) Yt = Ytq+ Y,", t > 0 ,  
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where the following hold: 

a) Yq= {Ytq; t>0}  is quasi-left-continuous and not natural; (X, Yq) is a MAP;  

b) Y"= {Yt"; t>0}  is natural and not quasi-left-continuous; (X, Y") is a MAP;  

c) Yq and Y" are conditionally independent given ~ .  

Proof For each t > 0 let 

Y,q = I tx ,_  ,x l 
(4.7) ~=<t 

Y,"= Y,- V. 

a) Let {T,} =s(.///~), T, TTes(J/Q. Since Yq is continuous except at its jump 
times, Yq(T,) T Yq(T) except on the set 

F =  U { T , < T f o r  all n; T, TT; T=z~; T < ( }  
J 

where the z~ are the jump times of Yq. But by (4.7), every jump time of Yq is also 
a jump time of X; therefore, lim X(T,) 4= X(T)  on the set E Thus, since X is quasi- 
left-continuous, we must have PX(F)=0 for every x. Hence, Yq is quasi-left- 
continuous, and obviously not natural. 

b) By (4.7), Y" has no discontinuity in common with X; so, it is natural. Let 
z be a jump time of Y". By Proposition (4.2), z~s(~,~t). Since X is a Hunt  process 
and X,_ =X~ almost surely by (4.7), the stopping time z is accessible; that is, for 
each xeE,  there is a sequence {T,}cs(~t )  such that T,T z a.s. PX and T,<z for 
all n a. s. P~ on {z > 0}; (cf. Meyer [6; no. 120 p. 147, no. 114 p. 146] where the term 
used is "previsible," our use of the term is in the sense of BG IV.4.5). Then 
lim Y(T,) = Y~_ + Y(z) a.s. W on {z > 0}. Hence Y is not quasi-left-continuous. 

n 

c) Given ~ ,  the jump times of Y are fixed by Proposition (4.3), and further, 
the magnitudes of jumps are conditionally independent. Hence o-(Y~"; t >  0) and 
o-(Ytq; t>0)  are conditionally independent given X. 

The regularity conditions (1.2a), (l.2b), (1.2c) and homogeneity (l.2d) are easy 
to check for Yq and Y". The condition (1.2e) for each of the Yq and Y" follows 
from their independence given ~ .  Hence, (X, Yq) and (X, Y") are both MAP's. 

In the remainder of this section we assume F = IR, ~ = N and Ynon-decreasing. 
The following theorem characterizes the quasi-left-continuous part completely. 

(4.8) Theorem. Let X be a Hunt process for which there is a reference measure, 
and suppose Y is real valued, non-decreasing, quasi-left-continuous. Then, each zj 
is a time of discontinuity for X and the conditional distribution of Uj given 2~ r 
depends only on X,~_ and X,j. More precisely, 

(4.9) m• = E [e-  ~ Y'] = YI Fz (xs_, xs) 
s<=t 

where 

a) for each 2>0,  Fa(x, x)=Fa(x, A)= 1 for all xeE~;  
b) ). o F~(x, y) is completely monotonic for all x, ye  Ea; 
c) (x, y)--* FZ(x, y) is in gd x 84 for any 2>0.  
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Proof Fix 2 > 0 and define 

(4.1.0) At= - log M{, t > 0 .  

Then, {At} is a pure jump type additive functional of X. Since Y is quasi-left- 
continuous, the monotone convergence theorem implies that the same is true for 
{At}. Under our hypothesis that X is a Hunt process with a reference measure, 
every quasi-left-continuous, non-decreasing pure jump type additive functional 
is of the form 

A, = ~ f ( X , _ ,  X~) I{x,_ *x~} 
s<=t 

where f :  E2--* [0, oo) is in gz (cf. Watanabe [8]). Using (4.10) now gives (4.9). 

This theorem shows that a quasi-left-continuous process Yq jumps only when 
X jumps, the amount of jump depending only on the values of the left-hand and 
right-hand limits of X at the time of jump. Next is a characterization of a natural 
process Y". It shows that Y" is the limit of a sequence of natural processes, a 
typical one of which, say yO, behaves as follows. Corresponding to yO there is an 
a-excessive function x ~ g~(x) so that yO (co)jumps at time t if and only if s ~ gZo 
Xs(co ) has a jump at t and s--,X~(co) is continuous at t. The amount by which yO 
jumps at a jump point z is a random variable whose conditional Laplace transform 
given ~ is the amount by which s--*gGXsjumps at z. Following is the precise 
statement. 

(4.1.1) Theorem. Let X be a Hunt process, Y real valued, non-decreasing, natural. 
Then there exists a sequence of functions g~, each g~, being a,-excessive for some 
a. > O, such that 

(4.12) M{=E[e-art]=~im I-Iexp{[g~,oX~ -(g~,oX~)_]I{x~_=x~}}. 
s<=t 

Proof Let A ~ = - l o g M ,  ~. Then A =  {A~; t>0} is an additve functional of X 
which is of pure jump type, non-decreasing, natural. Let 

Bk(t)= ~"(As--As-) I{As-as-s[~ ' t )}  ~ t>=O. 
s<t 

Then, from Meyer [-7, Propositions 2 and 3], it follows that every jump time of 
B k is a terminal {sf~} stopping time without any regular points, and thus, B k can 
be written as a sum of countably many additive functionals of X each of which is 
a non-decreasing natural pure jump process and has a bounded a-potential for 
some a > 0. Thus, we can write 

(4.13) A , = ~  AT, t>=O, 
n 

where, for each n, A" is natural non-decreasing pure jump type additive functional 
of X having the a-potential 

oo 

bounded for some fixed a = a. > 0. 
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For fixed n, u, is a,-excessive and 

(4.14) (u. o X~)_ = lim u, o X t >_ u, o X~ a.s. 
t ~ s  - -  - -  

(the limit defining (u.o X~)_ existing almost surely). Using the fact that every 
jump time of A" is accessible, and that the strong Markov property holds for A", 
we can show that (cf. BG IV.4.29 for a proof) 

(4.15) lim (a" (T) - A"(T,,)) --- lim u,o Xr,. -- U, o X r 

= ( u .  o X T ) _  - u .  o Xr 

for each jump time T of A" and {Tin} ~s(o~t), TmT T, Tin< T for all m on {T>0}  
almost surely. Thus, we can write 

(4.16) A~= ~ [(u,o X~)_ - u ,  oX~] l(x,=x,_ ~. 
s ~ t  

Define 2__ g,--UI + ""+Un; /~,=max(~l . . . . .  ~,). Then g. is//.-excessive, and from 
(4.13), (4.14), (4.15) we have 

(4.1.7) At= lim ~, [(g,~oXs)_ -g,ZoX~] I(xs=xs_~. 
n ~ o o  s < t  

This is equivalent to (4.12). 

(4.18) Corollary. Let X be a Hunt process. I f  X is continuous, then Y= Y". I f  X 
is a regular step process (in the sense of BG II.5.5), then Y= Yq. 

Proof The first statement follows trivially from (4.7). To prove the second, 
in view of Theorem (4.5), we will suppose that Y is natural and X is a regular step 
process and show that Yt = 0 almost surely for all t > 0. 

Define A, A" as in the proof of Theorem (4.11). Each jump time T of A" is then 
accessible. Let { T,,} c s ( ~ )  be such that T,, T Tand Tm< Tfor all m on { T > 0} a. ~. P~. 
Then, since XT = Xr_  a.s. P:' and since every point in E is a holding point for X, 
we have Xrm (09)= Xr  (o9) for large enough m for all 09 except possibly over a set of 
P~-measure zero. Thus, the right-hand side of (4.15) vanishes and we have 
A " ( T ) - A " ( T - ) = O  a.s. P~. Since such a sequence {T,,} exists for each x, we have 

A " ( T ) - A " ( T - ) = O  

almost surely. This implies that A t = 0  almost surely for all t > 0  and by (4.17) 
A ,=0  almost surely. Since 2 > 0  this can happen only if Yt=0 almost surely for 
all t>0 .  

The same proof also yields the following 

(4.1.9) Corollary. Suppose the state space E of X is discrete; then, Y is quasi-left- 
continuous. 

We remark, in closing, that both of the Theorems (4.8) and (4.11) have obvious 
converses that may be used in constructing the compoent yI .  
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5. Structure of yd 

In this section we are interested in the last term of the decomposition (2.24). 
In view of the first and the last statements of Theorem (2.23) we may, and do, 
assume that Y= yd. 

We are then considering a Markov additive process 

(X, Y) = (f2, Jr Jgt, Xt, Yt, Or, px) where X = (~, Jd, J/#t, Xt, Or, Px) 

is standard and has state space (E, g) and where {Y~; P~} is a stochastically con- 
tinuous process taking values in (F, ~ ) = ( l R m , ~  m) and having independent 
increments for each co; (cf. Theorem (2.23) and (2.20), (2.21) for the description 
of P~). 

If {T,} is a sequence of stopping times in s(~t) with lira T,= T~s(~t), then 
we must have 

P {lira Y(T,,)= Y(T)} = 1 

identically. Thus, Jim Y(T~)= Y(T) almost surely for any sequence {TJcs(Ga,) 
n 

with lira T, = T; that is, Y is quasi-left-continuous on [0, + oo] for {G.qo } stopping 
times. 

If X is continuous then Y is natural trivially. Next let X be a regular step 
process, that is, each x~E is a holding point. Then, almost surely, t ~ 32,(o9) has 
countably many discontinuities. {Y t; P~} being stochastically continuous, Po~- 
probability of t ~ Y~ having a jump at one of these times of discontinuity is zero. 
Therefore, t--*Xt and t ~ Yt have no discontinuities in common almost surely. 
Thus, if X is a regular step process, then Y is natural. However, Y may fail to be 
natural in general: Suppose E is discrete, xoeE is instantaneous, and x 0 is regular 
for the set {Xo}; then it is possible to define a process Y whose all jumps are con- 
centrated on the set {t: Xt=xo}; but these times are also jump times for X since 
E is discrete and x o instantaneous. (See Proposition (5.12) for such processes.) 

In the remainder of this section we will show under certain conditions that 
[ 

we can represent Y minus a suitable centering term in the form 

A t dN 

where {At} is a functional of X and N is a Poisson random measure roughly 
independent of X. In certain cases it is further possible to express Yt as 

= y~ Z~(L9 
x ~ D  

where D c E  is countable, each Z ~ has stationary independent increments 
independent of X, and U =  {El} is the local time at x. This means that Y is the 
" sum"  of a collection of processes with stationary independent increments which 
are defined over disjoint parameter sets, parameter set of each being a random 
set {t: Xt=x}. 

By Corollary (2.25) we have 

(5.1) (Eexp[i(2,~)])(eO=exp[y(ei(Z,y'-i i(2, y) 1 

for all t>O, 2 e F  where 
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a) for each t and co, A--+Bt(A, co) is a finite measure on 
a non-decreasing b) for each Ae~ ,  B(A)={B,(A);t>O} is continuous 

additive functional of X. 
Let Bt = B, (F), t > 0, and define 

(5.2) R(co)=inf {t: B,(co)> 0}, coef2 

(we set R(co)= + oo if the set in braces is empty). Then, R e s ( ~ )  clearly and the 
set of its regular points, namely 

(5.3) D={x6E: PX{R=0}= 1}, 

is called the support of B. We remark that R is almost surely equal to the hitting 
time of the set D. 

For each coefL t-+Bt(co) is non-decreasing continuous and thus induces a 
measure dB~(co) on the Borel subsets of [0, + oo). The support of dBt(co) is the set 

(5.4) J(co)= {t: Bt+~(CO)-B,_e(CO)>O for all e>0} 

which is also the closure of the set 

(5.5) I(co)= {t: Bt+~(co)-Bt(co)>O for all e>0}. 

Furthermore, J(co)-I(co) is at most countable and therefore all the mass of 
dB, (co) is carried by I (co). In view of (5.1), this implies that 

(5.6) P~{ ~ lye-  Y,_I=0}=I,  
se[O, oo)- l(eJ) 

and we have the following 

(5.7) Proposition. For each coef2, the stochastic process {Yt; teJ(co)} defined 
over (f2, ~LP, P~) is a process with independent increments and without fixed disconti- 
nuities. We can write 

(5 .8 ,  Y,=lim[ Y, (Y*- {-1_) Y ~ - ) - ! [ ~ I  2B'(dy,] 

for all t almost surely. 

Since the set 

(5.9) K={t: X, eD} 

is such that I ~ K = J almost surely by BG V.3.8, in view of (5.8) we have also 
proved the following. 

(5.10) Corollary. Almost surely 

Yt = lina [s~< Ys-)ID(Xs)I(1,.)(Y~ - ( : )  ] 
m _ 

for all t. 
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Corollary (5.10) is the analog of BG V.3.9 which, in this instance, states that 

t 

(5.11) = I Io 
0 

almost surely for all t. 

The next two propositions characterize the process Y completely in the case 
where D consists of a single point. We will use these results as building blocks for 
the more general cases. A rough explanation of the next proposition is the follow- 
ing. By (5.7), Y is a process with independent increments and with a parameter 
set J which is roughly the set of times t for which Xt=xo,  xo~E is fixed and x o is 
regular for {Xo} = D. The picture is easier to see if Xo is a holding point; then J is a 
countable union of disjoint closed intervals, say J = U J , .  Then {Y~; teJ ,}  is a 

n 

process with stationary independent increments over (f2, s p); further, if J,(o3)= 
[a,b], J,+l(o3)=[c,d],  then Yb(CO)----Y~(O3). Now, let us hitch these processes 
{Y~; teJ,}  onto each other so that the point b of J ,(o)  coincides with the point c 
of J,+l(co). The resulting process Z has stationary independent increments over 
the interval [0, Boo(o3)] and further Z is independent of X given Boo. Following is 
the precise statement; we do not assume Xo to be a holding point. 

(5.12) Proposition. Suppose D consists of a single point, say D= {Xo}, xoeE, and 
suppose Y is perfect. Define 

(5.1.3) z,(o3)=inf{s: Bs(o3)>u} 

(5.14) Z,  (co) = Y~(~o~ (o3) 

for all u>O and o3eO. Then the following hold. 

a) Almost surely, Zo=0,  t ~ Z t  is right continuous and has lefthand limits, 
Z, = ZBo~ for all t >= Boo. 

b) For each u>O, z, es(Jt'~t)cs(Jgt) and ZueJ//[~ . 

c) Z,+ v = Z ,  + Zv o 0,(,) for all u, v > 0 almost surely. 

d) Y~=Z~t for all t >_O almost surely. 

e) For 0 =  t o < tl <"" < t, and A~ . . . .  , A , e ~  we have 

n 

P~{Z( t j ) -Z( t j_ l )eAj ;  j =  1, ..., nl J{'} = [IPY{Z(t j - - t j_I)eAj}  
j = l  

on {z(t,)< co} independent of x, yeE.  

Proof. Let z~ be defined by (5.13). Since D consists of the single point Xo, B is a 
local time at Xo. We may, and do, assume that B is perfect and that t~B,(o3) is 
continuous and non-decreasing for all o3. By BG V.2.3, 

(5.15) ~+~ = ~t + ~~ 0~ 

for all t, s > 0  almost surely (see also BG V.3.14ff.). Further, for any co, t~zt(o3 ) is 
strictly increasing on [0, B| and r~ (o3)-- oo on [Boo, o0]. 

a) Let R = T o be the hitting time of D = {Xo}. Then z o = R by (5.13); B R = Bo = 0 
by the continuity of B, and YR = Yo = 0  almost surely by (5.1) since BR=0. Hence 
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Z o = 0  almost surely. Right continuity of Z follows by the right continuity of 
t--* Y~ and t~zt; similarly for the existence of left-hand limits. Finally, for t>B~o, 
zt = + cz and thus Zt = Y~. 

b) For each u, Zu~S(~t) by BG V.2.3; %~s(~/t) also and Y, ~dg,~ since Y is 
progressively measurable. 

c) By the perfectness of Y, (1.2d) holds when t, s are replaced by stopping 
times. Using (5.15), 

y(~. + ~) = y(~. + ~o  0 d = ~~ + ~o0~o(0d = ~ .  + ~o o 0~. 

almost surely. 
d) Since z(B,)=t + R oOt, Z(Bt)= Y(t + R oOt)= Y~ + YRoO,= Yt almost surely 

because YR = 0 almost surely by (a) above. 
e) It is clear that, for each A~o ~, B(A)= {B,(A); t>0} has as support the same 

set D = {Xo}. Thus, each B(A) is a local time for X at xo; cf. BG V.3.12 for definition. 
By BG V.3.13, then there exists a constant H(A) for each A ~ f f  so that 

(5.16) Bt(A, co)=H(A) Bt( @ 

for all t > 0  almost surely. Since A~Bt(A,o)) is a measure, A~H(A)  is also a 
measure on ~- and obviously O<H(A)< 1. Putting (5.16) in (5.1.) we have 

(5.1.7) 

where 

(5.18) 

E exp [i(2, Y~)] =exp [h(2) Bt] 

i(2, y) 1 + [y] 2 H(dy), ,~F. 
h(2)=~ ( ei~'y)-I l + , y ] 2 ) , y ] ~  

For u, v>=0, 2 e F  we have, by Corollary (3.9) and (5.12c) above, 

E x [ei(.~, (Z~u+ v)-z(u)))[ oT'] = E  [exp [i(2, Y~v ~ 0~u)]] 

= (E e "~' r (~v~)o 0~. 

for all x. But, in view of (5.17), since zs e s (3((~t), this last expression is equal to 

(exp [h(2) B j ) o  0~u. 

On the set {%< ec}, B~.=v; and obviously %< oo on {'c,+~< oc}. Thus, 

(5.19) E~[ei(a'tzt"+~)-z(")))l~,~"] =e "h('z) on {z~+~< oo}. 

This completes the proof since 
n 

P~ {Z (t~)-- Z(tj_t)zAj, j  = 1,..., nlJY'} = I-I px {Z ( t j ) -Z ( t j _ l )~Aj l f }  
j = l  

using Theorem (2.22) since z (t j) E s (~#t) for each j. 
We note that, if W~ oo}= 1, then {Z; W} is a process with stationary 

independent increments in the ordinary sense. Otherwise Z is obtained by stopping 
a process with stationary independent increments at Boo. The following converse 
to Proposition (5.12) follows easily from it. We omit the proof and merely point 
out that, by BG V.3.13, any local time at Xo is a constant multiple of the local 
time U ~ at x o (i.e. a continuous additive functional of X with support D =  {Xo} 
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and normalized so that 
oo 

for all y where R is as defined by (5.2) with L~ ~ replacing Bt). 

(5.20) Proposition. Suppose the support D of B consists of a single point xoeE. 
Then there exists a MAP (2, Y)= (~, ~/ ,  Jg~, Xt, Yt, Or, fix) equivalent to (X, Y), 
i.e. they have the same finite dimensional distributions, such that 

(5.21) 
where 

a) Z is a process over (~2, ~ ,  px) with stationary independent increments and 
without a Gaussian component for any x, 

b) Z is independent of X, i.e., a(Z~; s>O) and a(2~, s>O) are independent," 
c) L is the local time.for 2 at xo. 

(5.22) Remark. By BG V.3.19, in (5.12), the process {'ct; pxo} itself has stationary 
independent increments. Thus, roughly speaking, when D =  {Xo}, Y is obtained 
from a L6vy process Z with stationary independent increments by a random 
time change Y~=Z(Lt) where Lt is the time inverse of a process �9 (i.e. Lt= 
inf{s: z~> t}) with non-negative stationary independent increments. This is a 
converse to subordination where the random time itself (rather than its inverse 
as in our case) has stationary independent increments. 

For the construction of a process Y of the type we are considering in (5.20) 
then, all we need is a point xosE which is regular for {Xo} (so that the local time 
at Xo exists) and a probability measure H on ~ with H({0})= 0. It is, for example, 
possible to do this when X is the Brownian motion on IR and Xo = 0. In this case 
the process Y constructed through (5.20) has a parameter set J(co) which is perfect, 
nowhere dense, closed, and has Lebesgue measure zero. The same is true if X is 
a process with E discrete, Xo instantaneous but not fictitious. 

Below we shall generalize (5.12) and (5.20) to the case where D is countable 
and later to the case where D is uncountable. 

(5.23) Lemma. Suppose D is countable. Then, for each x~D the local time U= 
{/~; t__> 0} for X at x exists and we can write 

(5.24) B,(A, co)= ~ H(x, A)L](co) 
x~D 

almost surely for all t>O and A ~ ;  here A~H(x ,A)  is a measure on ~ for each 
fixed x ~ D. 

Proof For any A ~ ~,, Bt = Bt (A) + B~ (A ~) for all t > 0 and each one of {B,; t > 0}, 
{B~ (A); t > 0}, {B, (A<); t > 0} is a continuous additive functional of X. Since D is 
countable, this implies by BG V.3.11 that 

t 

(5.25) B,(A) = I G(X~, A) dB, 
0 

almost surely for each t > 0 and A e g  where x ~  G (x, A) is in g and 0 <_ G(x, A) < 1. 
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I 

On the other hand, for each xeD, ~ I~(Xs)dB~ defines a continuous additive 
o 

functional of X whose support is {x}; thus, this is a local time at x and by the 
uniqueness theorem for local times (cf. BG V.3.13) 

t 

S I   (X3dB =b'L  
0 

for some constant b ~. Writing H(x,A)=b~G(x ,A)  for x~D, noting that 
t 

b ~' L~ = Bt, and further that S G (Xs, A) dL~ = G (x, A) L~ we obtain the represen- 
x~D 0 

tation (5.24). Since A ~Bt(A,  ~o) is a measure on o~, the same is true of A ~ H ( x ,  A) 
for each x~D by (5.24) and the monotone convergence theorem. 

(5.26) Theorem. Suppose D is countable and Y is perfect, and let L ~ be the local 
time for X at x for each xeD. Define, for each u>O and xeD, 

(5.27) v~ = inf {s: L~ > u}, 

s (5.28) Z~=l im [ ~ (Y~- Y~_)I~(X~)Ip_ ,)(Y~-- 
n) 

1 

on {z~< co} and on {z~= co} the same expression except that the u in the second 
term on the right is replaced by L~. Then for each x~D the following holds: 

a) almost surely, Z~=O, t--*Z~ is right-continuous and has lefthand limits, 
Z~ = Z ~  for all t-> L~ ; 

b) for each u>O, z'~s(~'~) and Z~J/[~;  
c) ZX,,+v = Z~ + Z~ o O~ n for all u, v >___ 0 almost surely; 
d) given Uo~, Z ~' is independent of ~ with respect to any probability pr ; 
e) Z ~ is a process with stationary independent increments with respect to 

Pr {'IL~}. 
Furthermore, given a(IY~;x~D), the processes Z ~, x~D, are conditionally 

independent of each other, and 

(5.29) Y~ = ~ Z ~ (/:~) 
x~D 

almost surely for each t >O. 

Proof. By Corollary (5.10), when D is countable we can write 

(5.30) Y,= E Z ~ 
x~D 

almost surely by defining 

(5.31) Yt~=lim[~(Y~-Y~_)I{~,(X~)I(, Y~_)-U. f Y~H(x ,  dy)]. 

Let K~(co)= {t: Xt(~o)= x} for each x~O. Then, just as in (5.8), we have 

t a (co)} 
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defined over (O, ~ ,  P~) as a process with independent increments where JX(c0) is 
defined as in (5.4) by replacing Bt by E~. And, each Kx(co) differs from J~(o)) by 
at most countably many points and the KX(o)), xeD, are obviously disjoint. 
Since {Yt; P~} has independent increments, this implies that y x, xeD, are in- 
dependent (Pj  random variables for each t. Since each Y~' has independent in- 
crements, this is equivalent to saying {YJ;t>0},  xel), are P~-independent 
processes. 

To complete the proof we need only note that for each xeD, (X, Y~) is a MAP 
for which (5.1.) becomes 

i(2, y) 1 
E(ei(~'rr ei(z'r)-I l+ lYl2)  +]Yl2 ly12 B;(dy)] 

where, in view of Lemma (5.23) above 

B~(A) =H(x, A) L~. 

Thus, Proposition (5.20) holds for YX and the properties listed for Z ~ in (a)-(e) 
above hold. 

Conditional independence of the Z x, xeD, given {L%;xeD} follows from 
(5.26 d) above since the yx are conditionally independent given ~ Finally, (5.29) 
follows from (5.30) and (5.20d). 

Following analog of (5.20) is easy to see; we omit the proof. 

(5.32) Theorem. Suppose D is countable. Then there exists a MAP (2, f ' )=  
((2, J/l, J~,  Xt, ~, Or, P*) equivalent to (X, Y) such that 

(5.33) ~ = E Z~(E~) 

where =eD 

a) o-(Z~'; t>0), xeD, are independent of each other and of o.(,~'~; t>0) ;  
b) for each x~D, Z == {Z~'; t>=0} is a process with stationary independent in- 

crements and without a Gaussian component over (~2, .~, PY) for any y; 
c) for each xeD, U =  {E~; t>0} is the local time for ~ at x. 

Next we will discuss the situation in cases where D is not countable. For this 
purpose we first introduce the following definitions and a useful result. 

Let (G, fr be a measurable space and m a o.-finite non-negative measure on f#. 
Let (W, ~, P) be a probability space and suppose, for each A~ff, we have a map 
w~M(A,  w) from W into [0, col which is in ~.  M =  {M(A); Aef#} is called a 
random measure if A-~,M(A, w) is a measure on ~ for P - a l m o s t  all w. It is called 
additive if M(AO,. . .  , M(A,) are independent whenever A1, ... , A,E~# are disjoint. 
An additive random measure M on (G, ~) is called a Poisson measure with mean 
m if M(A) has the Poisson distribution with parameter re(A) for each Aef# (if 
re(A)= +co  then M(A)= +oo a.s.). Following is a characterization which is 
easy to prove. 

(5.34) Lemma. Let M be a random measure on (G, f~) defined over the probability 
space (W, ~, P). Then, M is a Poisson measure with mean measure m if and only if 

/~ [exp ( -  I f (x)  M(dx))] = exp ( - I (1 - e-Y(~)) m (dx)) 
G G 

for every f e  f# +. 
9 Z. Wahrscheinlichkeitstheofie verw. Geb., Bd. 24 



118 E. ~inlar: 

In the notation of Theorem (5.26) assume g ~ =  + oo for each x~D almost 
surely; then each one of the processes {ZX; pr} is a process with stationary in- 
dependent increments. Thus, (cf. Ito [5], Section 4), there is a Poisson measure 
M x on (~+  x F, ~ +  x ~) ,  with mean m x, defined over (f2, Le, Py) such that 

n 

(5.35) Z~' = lim S Y Mx ((0, t] x dy) Y m~ ((0, t] x dy). 
,too 1/, l + l y l  2 

Furthermore, since the Z ~, x~D, are independent the random measure M on 
(G, f#) = (IR+ x E x F, ~ +  x 8 x o ~ )  defined by 

M(A 1 • A 2 x a 3 ) =  ~ MX(A1 • A3) 
x~Dc~A2 

is also a Poisson measure over (~, ~ ,  W). Further, it is clear from the definition 
of Z x that we have 

(5.36) M(A)= ~ Ia(L~ ~j), X~j, Y v -  Y,J-) 
J 

almost surely for each A~f~, where {z~} are the times of jumps for the process Y. 
The expression (5.36) generalizes over to the case where the support D of B is 
uncountable subject, of course, to our ability to define the local times U for each 
x~D and to express B as an integral of these local times. Here is the main result. 

(5.37) Theorem. Assume the following: 

(i) X has a reference measure; 
(ii) each x~D is regular for {x} ; 

(iii) the mapping (t, x, 09) --, L~t(og) of [0, s] • D • f2 into IR + is in ~1~o ' ~] • ~ x 
for each s>O where ~ is the trace of ~* on D; 

(iv) there exists a measure # on ~ so that 

Bt(o9) = ~ #(dx) L~(a~) 
o 

almost surely for each t. 

Let {zi} be the jump times of Y and define 

(5.38) M ( A ) = ~  Ia (LX~ ~,  X,,, Y ~ -  Y,j_) 
J 

for each A e ~ *  x ~ • ~ Then the following hold: 

a) Given a(L~; x~D), M is conditionally independent of :Of with respect to W 
for any yeE;  

b) M is a Poisson random measure on (G, fg)=(IR+xD• ~ * x f g x ~ )  
defined over (0, L,e, P j .  

c) for each A ~ ~, t >= 0 we have 

~] (Y~- Y~_) Ia (X~) I(~, .)(Y~- Y~_) 

(5.39) ~___t 
= J y I(~,.) (y) Ia~D(x) I[O,L.?](S) M(ds, dx, dy) 
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almost surely; in particular, 

Y ~  m(ds, dx, dy)] (5.40) Yt=lim,~| ~ I@,)(y)Ito, L~l(S) [yM(ds, dx, dy) l+[ylZ 

almost surely for all t > O. 
Proof By assumption (ii), the local time U for X at x exists for each xeD; so 

that (iii) makes sense and this in turn implies that the integral in (iv) makes sense. 

The function LX~ v) is the composition of the mappings co ~ (zj(co), co), (t, co)-~ 
(Xt(co), t, co) and (x, t, co) ~L~(co) which are in ~ / ~ *  x ~ ,  ~ *  X ~ / 5  ~ x ~ *  x ~ c  
~ *  x 5e /~  x N*  x 5e, and N x N* x 5e /~*  respectively (we used (iii) here). Thus, 
co~LX~ ~j) is in of. Further, "f f jeS(~t)  SO that X ~ j ~ j C 2 ' ,  and obviously Y~j- 
Y~j ~Se. Thus, each term of the sum in (5.38) is in 5e and hence M ( A ) ~  for 
each A~(r that is, M is a random measure. 

a) For any f~(~+, we have by (5.38) 

~f dM=Ef(LX~ "~), X~j, Y~j- Y~j_) 
j 

(5.41.) = ~ f o g ( r j ,  Y~j- Y~j_) 
J 

=ffogdU 
where 

(5.42) N ( A ) - - ~  IA(Zj, Y~- Y~_), A ~ *  • ~-; 
J 

and 

(5.43) g (t, y ) -  (L x(~ Xt, y). 

It is clear that N is a random measure on (Ill+ x F, ~ *  x ~ )  and defined over 
(g2, 2' ,  P~); further, since Y has independent increments, N is a Poisson random 
measure with mean measure 

(5.44) n(dt, dy)---=--lY. 12 2- B(dt, dy, co) 
l + l y  

(where we are writing B (dr, A, co) for the measure induced by t ~ Bt (A, co)). Hence, 
by (5.41) and Lemma (5.34) 

(5.45) E [exp ( - ~fdM)] = exp [ - j" (1 - e - Sog) dnJ = exp [ - I (1 - e - I )  din] 
G 

where 

(5.46) m = n g - 1. 

By Lemma (5.34), then, M is a Poisson measure on (G, ~) over (g2, 5e, P~) with 
mean measure m. 

b) By our assumption (i) Lemma (5.53) below holds and we have 

t 

B, (A; co) = I H(X~, A) dBs 
0 

9* 
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for all A ~ f f  (where x ~ H(x, A) is in 8 and A --. H(x, A) is a measure on i f )  almost 
surely for all t > 0. Further, by assumption (iv), we have 

(5.47) Bt(A; e))= ~ I~(dx) H(x, A) L~(m) 
D 

where we used Fubini's theorem along with the fact that support of U is {x}. 

Using (5.43), (5.44), (5.46), (5.47) together we get, for A I ~ + ,  A 2 ~ ,  A 3 ~ , ,  

re(A, x A2 x A s)=n({(t, y): LX(t)6A1, Xt+A 2, y+As} ) 

= ~ IA,(LXt {0) Ia2(Xt) n(dt, As) 

e n ( x , d  ) [Y12 
A 2  A3 

L~ 

The last integral is equal to ~ IAI(S) ds; thus, writing G(x, As) for the middle term 
we have o 

(5.48) m(A 1 • A 2 x A3)= J Ix(dx) G(x, A3) 2(A 1 c3 [0, L%]) 
A2 

where 2 is the Lebesgue measure on ~+ .  This along with (5.45) and Lemma (5.34) 
proves the statements (a) and (b) of Theorem (5.37). Statement (c) follows easily 
from (5.38). 

(5.49) Remark. If D is countable, then the conclusions of Theorem (5.37) hold 
without the assumptions (i)-(iv). 

(5.50) Corollary. Suppose the conditions (i)-(iv) of (5.37) hold and further assume 
that U~o = + oo for all x ~ D almost surely. Define M as in (5.38). Then, M is a Poisson 

measure with mean m(ds, dx, dy)=ds  #(dx) G(x, dy) 

defined over (f2, S ,  W) for any y. Further, M is independent of ~:  with respect to 
any W. 

The proof is obvious and we omit it. 

(5.51) Remark. Let X be the Brownian motion on (E, g)=(IR, ~). Then X has a 
reference measure so that (i) holds. Each xelR is regular for {x} so that (ii) holds 
and L x exists. Further, then the assumptions of BG V.3.30 are satisfied and we can 
select Lt so that (x, t)~L~(o)) is continuous from which (iii) follows. That (iv) also 
holds is known (cf. BGVI.4.21). Furthermore, in this case L ~ =  + oo for all x 
almost surely. Hence, the conclusions of Theorem (5.37) and Corollary (5.50) hold 
in this case. 

(5.52) Remark. Somewhat more generally, suppose (E, 8 ) =  (IR, ~)  and assume (i) 
and (ii) of (5.37) hold. Then, (iii) and (iv) also follow if the conditions of Theorem 
BG V.3.30 hold (cf. BG V.3.30 and BG VI.4.21). Thus, for such a process the con- 
clusions of (5.37) hold. Brownian motion is one such process. 

Following is the lemma which was appealed to in the proof of (5.37). 

(5.53) Lemma. Suppose X has a reference measure. Then we can write 
t 

(5.54) Bt(A)= I H(X~, A) dB, 
o 
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almost surely for any t > 0 and A e ~ ; here 

a) x ~ H(x, A) is in ~ for fixed A ~ ~,, 

b) A ~ H(x, A) is a measure on J for fixed xsE,  

c) O<_H(x, A)< 1 for all x~E and A ~  

Proof. For any As~,, Bt=Bt(A)+B~(A c) for all t > 0  and each of {Bt; t>0} ,  
{Bt(A); t>0} ,  {B~(AC); t_>__0} is a continuous additive functional of X. Under the 
hypothesis that X has a reference measure this implies that for each A ~ S  there 
exists a Borel measurable function x~H(x ,A) ,  0 < H ( x ,  A ) < I  such that (5.54) 
holds for all t almost surely (cf. BG V.2.6). 

Choosing H(x, A) first for "rectangles" A with rational end points in a proper 
manner, and then extending it to all A E ~ we obtain a unique measure A ~ H(x, A) 
for each x. The function x -->H(x, A) is in E by selection when A is a rectangle with 
rational end points; therefore it is in 8 for all A ~ Y  by the monotone class theorem. 

Let {zi} be the times of jumps of Y and let {c9} be the corresponding jumps. It 
follows from the preceding Lemma that, given X~: c 9 is conditionally independent 
of all the z j, c~i (i + j), and ~ .  
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