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Convergence of Semi-Groups 
Associated with Continuous Additive Functionals 

of a Markov Process 

Richard D. Duncan 

Introduction 

Let Xt be a standard Markov process on a compact metric space K in duality 
with another process and having a sufficiently regular potential operator of the 
form Uf(x)=Sg(x,y)f(y)dm(y). Here f is a Borel function and m is a non- 
negative Radon measure on K. Let uA (x) be the potential of a continuous additive 
functional (CAF) A(t) of Xt. Then if uA(x) is finite, it can be written in the form 
u A (x) = E x [A (oo)] = ~ g (x, y) d v (y) for some Radon measure v > 0 on K. Moreover, 
to each such CAF A(t) one can associate a new Markov process 2 t  whose transi- 
tion function is defined by ~ f(x) = E x [f(X~(o)]. where -c (t) is the inverse time of A. 
The potential operator of Xt is then given by Uf(x)= ~ g(x, y)f(y)dv(y). Suppose 
now that {A,} is a sequence of CAF's with continuous potentials such that 
uA, (x)--, ua (x) uniformly where uA (x)= E x [-A (oo)] for some CAF A. The question 
then arises as to whether the associated semi-groups Pfl converge in some sense 
to ~,  the semi-group associated with A. In this paper we show that under certain 
conditions on U the following convergence holds: Let F =  supp A be the fine 
support of A and PF the hitting operator associated with F. Then if F is closed, 
we have ~ " P F f ~ f  uniformly for each continuous function f on K and t>0 .  
It follows that if F. = supp A. satisfies F. ~ F for all n, then P,"f-~ P~ f uniformly. 

If E is a topological space, C(E) and B(E) will denote the Banach spaces of 
bounded continuous functions and Borel functions respectively under the norm 
[l ill  = sup {If(x)] : x~E}. 

1. Convergence of Semi-Groups 

Let B be a Banach space with norm II II. By a sub-markov semi-group of 
operators on B we mean a family {Pt}t>o of endomorphisms of B bounded by 
one in norm and satisfying the semi-group property Pt+s=P~P~ for s, t>0 .  If E 
is a topological space, a sub-markov transition function on E is a family of Borel 
kernals {Pt}t>o which forms a sub-markov semi-group of operators on B(E). In 
addition we assume that for f~C(E) and x~E the function t--*Pt f(x) is right 
continuous for t > 0  and lim Ptf(x)  exists. One can then define the resolvent 

t ~ 0  oo 

operators U~ f(x)= S e-~Pt f (x)dt  for c~> 0 and feB(E). We assume throughout 
0 

that U~: B(E)--> C(E) so that U~ is a bounded linear operator on C(E) of norm 
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11 gall ~-~ 0~-1" It follows from Fubini's theorem and the semi-group property that 
for s > 0 and f e  C (E), 

09 CO 

e-~P~ U~f(x)= ~ e-~(s+t)P~+tf(x)dt= ~ e-~tP~f(x)dteC(E) 
0 s 

and that the family {U~},>o satisfies the resolvent equation: U , -  U~ = ( f l - e )  U0 U, 
for c~, f l>0 (cf. [3, p. 260]). 

The following theorem is similar to a result proven by Trotter [5] under 
slightly different conditions. Note here that no assumption is made on the limit 
resolvent (e.g. that its image be dense). The proof given below can be easily 
adapted to give a new proof of Trotter's theorem. Convergence of operators 
is to be interpreted as strong operator convergence in the Banach space C(E). 
We use the notation Im U s = Up(C(E)). 

(1.1) Theorem. Let {Pt"} be a sequence of sub-markov transition functions on E 
with resolvents {U2} and suppose that for some fl>0, lim U~=Up exists. Set 

n 

Bl=Cl(Im Us). Then there is a sub-markov semi-group of operators {Pt} on B1 
such that Pt" f ~ Pt f for all f ~ B1, t>0.  

cO 

Proof. Using the formula U2= ~ (fl_e)k (U~)k valid for [fl-a[ <fi where the 
k = l  

convergence is uniform in n in the uniform operator topology, it follows as in 
n [5, p. 270] that lim U~-  U~ exists for all 0~>0 and that the operators {U~}~>o 

n 

on C(E) satisfy the resolvent equation with II u~ll <co  ~ for all c~>0. Moreover, 
{U~} is strongly continuous on B~--Cl(Im Us) and therefore by the Hille-Yosida 
theorem there is a strongly continuous sub-Markov semi-group {Pt}t>o on Bi 

cO 

such that U~f= ~ e -~  Ptfdt for all ~>0, feB1 (cf. [3, p. 261]). We show now 

that for each u~ C(R +) and feB1 the sequence u(t) e -pt P~" f dt converges 
n oo 

to ~ u(t) e -pt Ptfdt in B(E). Indeed, ifu is a finite sum of the form u(t)= ~ fil e-~a 
0 i 

for constants flz and a~>0, then the convergence follows from the hypothesis. 
If u, v~C(R +) are arbitrary, then for n>0  and f eB i  we have 

~o u(t)e-p*P~fdt-  ofu(t)e-P~P~fdt u(t)-v(t  e-~P~"fdt 

cO oO 

Ptfdt ~( f d t  + ~v(t) e-P'Pt"fdt - ~v(t)e -p* + v(t)-u(t))e-PtP~ 
o 0 0 

o~ e-~t dt + 0o ~o Pt f dt . <2 5 lu(t)-v(t)[ Ilf[l ~ v(t) e -et Pt'f d t -  ~ v(t) e -~ 
0 0 0 

By a form of the Stone-Weierstrass theorem the exponential functions {e-~t: 
e>O} are total in Co(R+), the continuous functions vanishing at oo. Since 

oo 

5 e-8, d t = fl- ~ < oo we can find functions v, linear combinations of exponentials, 
o 

such that the first term of the last line in the above inequality is arbitrarily small. 
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The second term becomes small on letting n---, oo by hypothesis, and therefore 
the stated convergence holds. Consider now the function u (t)= Its , ~)(t), the indica- 

co 

tor function of [s, oo). We can find functions v~ C(R +) such that ~ [u(t) - v(t)[ e-~tdt 
o 

is arbitrarily small, and exactly the same argument as above shows that the 

sequence Pflfdt converges to ~ e -P 'P~fd t  in B(E). But 
s 

o9 

~ e -~t P~"fdt=e -~s P~" U~f for all n, 
s 

oo 

and since {Pt} is strongly continuous on B 1 it follows that ~ e -P tg  f d t  = e- ~sp~ U~ f 
and therefore Pfl U~ f-- ,  P~ U~ f for each feBL and s > O. s 

Now 

IIP~" ge f - P, g~ f ll < liP," ge f - P~" g~ f N + liP," g2 f - P, gp f l[ 

<IIP~"[I Hepf-e~fll+llPs"e~f-P~eafll-~O as n ~ o e .  

In other words, Ps Up f = l im Ps" Upf Moreover, since rlPfl[j < i for all n, P~ extends 
n 

to an endomorphism of B~ with norm __< 1 and such that Pflf~P~f for all feB~. 
The proof of Theorem (1.1) is complete. 

(1,3) Remarks. (i) The resolvent equation implies that the image space Im U~ 
is independent of ~ > 0, so that B 1 = CI (Ira U,) for all c~ > 0. 

c~ 

(ii) The convergence stated in the theorem implies that U2f~ ~ e-~t Pt fd t  = U~ f 
0 

for all f~B1. Therefore if B 1 = C(E) we have that P~: C(E)~ C(E) where {Pt}t>o 
has resolvent U~=lim U~" and P~"f~Ptf for all f~C(E). On the other hand, 

if B~=C(E) then the resolvent {U~}~> o is strongly continuous, i.e. ~ U ~ I  as 
c~ ~ o% or lim Pt = 1 (cf. [3, p. 260]). 

t ~ 0  
co 

(iii) Suppose now the potential operators U"f= ~ Pflfdt exist as bounded 
0 

linear operators on C(E). Then if U = l i m  U" exists the same proof as above 
shows that Pf l f~Pt f  for all fECl ( Im U)=B 1 where Pt: BlaB1, t>0 ,  is a 
sub-markov semi-group of operators on B~. Moreover, if it is known that 

cO 

f Uf(x)= ~ P~f(x)dt for some sub-markov transition function tP,},>o on E, tlaen 
0 

P,"f~Ptf  for all fECI( Im U). 

As an application of the preceeding theorem we consider the following: 
Let K be a compact space and {Pfl} a sequence of sub-markov transition functions 
on K of the form P~"f(x)=E~[f(Xt) ] where X~' is a Markov process on K. 
Suppose the resolvent operators U2: B (K) ---, C (K) for all c~ > 0 and that lim U2 = U~ 

n 

exists in C(K) for some a>0 ,  hence all ~>0.  Let B~=CI(Im U~) separate the 
points of K. Then by a theorem of Ray (cf. [3, p. 266] or [4]) there is a semi- 
group {Pt}t > o of sub-markov transition functions on E whose resolvent is { U~}~ > o, 
and from (1.3, iii) Pf l f~Pt f  for all f e b  1. In the next section we will study a 
situation where an explicit characterisation of B~ can be given. 
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2. Convergence of Continuous Additive Functionals 

In this section we assume that X, is a standard Markov process on a compact 
metric space K in duality with another process X~ (cf. [1, Chap. VI]). Thus the 
potential operators U and U are of the form Uf(x)= ~ g(x, y)f(y)  dmr(y) and 
Uf(y)=  j f(x)g(x,  y)din(x). Here m>__0 is a Radon measure on K and the kernal 
function g(x, y) satisfies the usual hypotheses of duality. We suppose that both 
U and 0 map continuous functions into continuous functions. In addition the 
following properties are assumed to be satisfied by g: 

(A) g: K x K--. [0, oo] is bounded and continuous outside each neighborhood 
of the diagonal A ={(x,x): xeK}  and for each x e K  the function y---,g(x,y) 
is unbounded. 

These conditions are satisfied by many of the familiar processes, in particular 
the kernal function defining Brownian motion in R" for n > 3. 

In what follows all measures will be nonnegative Radon measures on K. 
If v is such a measure, define the operator U~ on B (K) by Uf(x) = ~ g (x, y) f(y) dv (y). 
Note that if U, l(x) is bounded, then v does not charge points, i.e. v {x} =0  for 
all xEK. 

(2.1) Proposition. Let v be a measure and suppose that the function 

x-+ g(x, y) d (y) = Vv l(x) 

is continuous on K. Then U~ is strong Fetter, i.e. Uv: B(K)--+ C(K). Moreover, 
given e>O there exists 6 > 0  such that ~ g(x,y)dv(y)<~ for all xeK.  Here 

Sa(x) 
S~(x) is the closed ball of radius 6 and center x. 

Proof. If x , ~ x o ,  then g ( x , , ' ) ~ g ( x o , ' )  a.e. from property (A) of g and 
the fact that v does not charge points. Since ~ g(x~,y) dv(y)~  ~ g(xo, y) dr(y) 
it follows from Scheff6's lemma that g (x,,-)--, g (Xo,') in L 1 (v). Thus for f e b  (K) 
we have 

[~g(x,, y) f (y) dv(y)-  ~ g(xo, y) f (y) dv(y)l < IIfN ~ [g(x,, y ) -g (xo ,  Y)I dv(y)~ 0 

as n-~oo so that U~f is continuous and therefore U~ is strong Feller. Suppose 
the last statement in the proposition were not true. Then from the compactness 
of K we could find sequences 6,$0 and x,--*xo such that ~ g(x,, y) dy(y)=>e>0 

s~n(x,) 
for all n and some e > 0. Since v does not charge Xo, we can find c5 > 0 such that 

g(xo, y) dr(y) < e/2 and from the continuity of the function x ~ ~ g(x, y) dr(y) 
S,~ (xo) S6 (xo) 
the inequality holds in a neighborhood V of Xo. But for n large, Sa, (x,)~ V and 
therefore 5 g(x., y) dr(y)< e/2 giving the desired contradiction. 

Sa,~(x.) 

By an abuse of terminology we will say that a measure v is regular if the 
function x --+ U~ 1 (x) is continuous on K. The following result is crucial for further 
developments. 

(2.2) Theorem. Let {v,} be a sequence of regular measures such that U~ 1 ~ U~ 1 
uniformly for some (regular) measure v. Then U~ f ~ U~ f uniformly for all f e C (K). 
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We will break up the proof into several parts. 

(2.3) Lemma. Let f(x, y) be a continuous function on K • K and {v,} a uniformly 
bounded sequence of measures such that I f (x ,  y) dr,(y) --+ ~ f(x, y) dv(y) pointwise 
for some measure v. Then I f (x ,  y)dr,(y)~ I f (x ,  y)dv(y) uniformly on K. 

Proof It follows from the uniform continuity o f f  that the map x ~ fx (Y) = f(x, y) 
is continuous from K to C(K). Since K is compact, given ~>0 we can find a 
finite open covering {Gx, } of K with Gx,~xi, i= 1, 2 .... , n, such that Ilf~-f~,[] <e  
whenever x e G~,. Then for any i, 

l I f (x ,  y)dv(y)-  I f (x ,  y) dv,(y)l < f If(x, y ) - f ( x , ,  Y)I dr(y) 

+ll  f (x,. y) dr(y)- If(x,.  y) dv.(y)l + ~ If(x,. y)-  f (x. Y)I dv.(y) 

< I I L - L ,  II v(K)+lSf(x,,  y)dv(y)-  Sf(x,, y) dr,(y)[ + ILL,- LII v,(K). 

By hypothesis we can choose N such that I I f (x i ,  y) dv(y)- 5f(xi, y) dv,(y)l <~ 
for all i whenever n > N. If x e K then x e Gx,o for some io and therefore II fx-fx,oll < e. 
Hence I 5f(x, y) dr(y)-  I f (x ,  y) dv,(y)l <~ v(K)+g +~ v,(K)<e(1 + 2 M )  for all 
n>N where M is a bound for v,(K), v(K). 

(2.4) Lemma. Let {v,} be a sequence of regular measures such that U~. 1 ~ U~ 1 
uniformly for some measure v. Then given e>0,  there is a 3 > 0  such that 

g(x,y)dvn(y)<g for all n and xeK.  
S~ (x) 

Proof Given e>0,  choose ~1>0 such that I g(x,y)dv(y)<e for all x6K 
S~(x) 

(Proposition (2.1)). Let c~e C + (R) be such that 0 < e <  1, support (c~)___ [ -6~ ,  6~] 
and e = 1 in a neighborhood of 0. Define e (x, y)= a (p (x, y))< 1 where p is the metric 
on K. Then for xEK supp r a(x, y)~_Sa~(x) and therefore I g(x, y) c~(x, y) dv(y)<e 
for all xsK.  Set fi(x, y)= 1-c~(x, y) so that a+fl= 1. Then 

U,. 1 (x)= j" g(x, y) c~(x, y) dv,(y) + ~ g(x, y) fi (x; y) dr,(y) ~ U, 1 (x) 

by hypothesis. Now the function f(x, y)=g(x, y) fl(x, y) is a continuous function 
on K x K since fi = 0 in a neighborhood of the diagonal A. On the other hand 
it follows from the hypothesis and the duality assumption stated at the beginning 
of this section that v , ~  v vaguely (see [1, p. 268]). Thus for each x~K 

~ f(x, y) dr,(y)~ ~ f(x, y) dr(y) 

and from Lemma (3.3) the convergence is uniform on K. It now follows that 

5 g(x, y) a(x, y) dv.(y) -~ ~ g(x, y) o~(x, y) dv(y) < e 

uniformly on K. Choose 3 > 0 such that S~ (x)__c {y: o~(x, y)= 1} for all x eK. Then 

I g(x,y)dv,(y)<= Ig(x,y)~(x,y)dv,(y)<e 
S6 (x) 

for all x~K and sufficiently large n, and using (2.1) we can find a 61 >0  such 
that ~ g(x,y)dv,(y)<e for all n, x~K. 

$61 (x) 

15 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 24 
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Proof of Theorem. Let f s  C(K) and e>0  be given. From Lemma (2.4) and its 
proof we can find a continuous function ae  C + (K x K) such that 

[ ~ g(x, y) ~(x, y) f(y) dv,(y)[ <~ 

for all n and xeK and such that the function fl(x, y)= 1 - e ( x ,  y) has the property 
that g(x, y) fl(x, y) is continuous on K x K. The vague convergence ofv, to v implies 
that off (y)dv, (y)  to f(y)dr(y) and therefore 

5 g(x, y) B(x, y)f(y) dv,(y)~ 5 g(x, y) fl(x, y) dr(y) 

pointwise, hence uniformly by Lemma (2.3). But then for all xeK 

15 g(x, y) f(y) dv,(y)- 5g(x, y) f(y) dv(y)[ 

<15 g (x, y) ~ (x, y)f(y) dr, (Y)I +15 g (x, y) ~ (x, y)f(y)dv (Y)I 

+1~ g (x, y) fi (x, y)f(y) dr, (y)- 5 g (x, y) fl (x, y)f(y) dv (y)]. 

By altering the function ~ if need be, we can guarantee that the first and second 
terms on the right side of the inequality are less than e, uniformly in n and x. 
The third term approaches zero uniformly in xeK as n--.oo. The proof of 
Theorem (2.2) is complete. 

Let now A(t) be a CAF of Xt and ~(t)=inf{s: A(s)>t} the inverse time as- 
sociated with A(t). Then the process X~(~) is also a Markov process with transition 
function defined by Of(x)=E x [f(X~(t))-] and resolvent operator 

oo 

(J~f(x) =Ex 5 e-~'f(X~(t))dr, c~>O. 
o 

See (2.11), p. 212 of [1]. It follows from the right continuity of the functions 
t~f(X,(t) ) for feC(K) that ~ (J~f(x)~E~[f(X~(o))] as a ~ o o .  Also z(0)=TF, 
the hitting time of the set F--  supp A = fine support of A. See [1, Chap. V, Sec. 3]. 
On the other hand, it follows from a result of Lion [-2, p. 425] that if U~: C(K) ~ C(K) 
for all c~ > 0, then the function Pr f(x) is continuous if and only if F is closed and 
in this case a (J,f(x)~Pvf(x) uniformly on K as c ~ o o .  

(2.5) Lemma. Suppose ( :=(:o:  C(K)-,C(K) and that F = s u p p A  is closed. 
Then C1 (Im ~;) = Pv (C (K)). 

Proof If f =  Ug for g6 C(K), then it follows from the strong Markov property 
and the fact that TF+z(t)oOTF=~(t)a.s. that PFf=f  and hence Pvh=h for all 
h~Cl(Im U). On the other hand, if f6C(K), then from the previous discussion 
we have that ~ U~ f(x)~PF f(x) uniformly on K as a ~oo.  Using the fact that 
Im U~ is independent of a, it follows that PF f6Cl ( Im U~) for all a>0 ,  and therefore 
PFf~Cl(Im U) since lim U~= U. 

~ 0  

We come now to the main result of this development. Call a CAF A(t) regular 
if the function x~E~[A(oo)]=uA(x) is continuous. Then if A is regular, A is a 
regular potential and since K is compact, UA(X)= U, l(x) for some measure v. 
See [1, p. 271]. In fact, under our hypotheses every continuous excessive function 
u(x) can be written in the form u(x)=E~[A(o~)]= U~ l(x) for some CAF A(t) 
and measure v. 
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(2.6) Theorem. Let {A,} be a sequence of regular CAF's such that UAn(,?~)"~U(X ) 
uniformly. Then u (x) = E x [A (oo)] for some regular CAF A (t). Let F = supp A and 
suppose that F is closed. Then ~ n P F f ~ f  uniformly for all f eC(K)  and t > 0  
where Pt"(Pt) is the sub-markov transition function associated with A,, (resp. A). 

Proof Since the uniform limit of continuous excessive functions is excessive, 
u(x)=E~[A(oe)] for some regular CAF A(t). On the other hand, we can write 
UA, (X) = U~, 1 (x) and u (x) = U~ 1 (x) for some (uniquely determined) measures v,, v 
and therefore U~ l ( x ) ~  U~l(x) uniformly on K. It now follows from (1:3, iii), 
(2.2), (2.5) and the fact that U~, is the potential operator associated with Ptn that 
~nPvf---,~Pvf uniformly as n o o e  for all t>0 .  Finally, note that 

P, Pv f(x) = E:' [f(X~(~)+ rF o0,~,>)] = E~ [f(X~(,))] = ~ f(x) 

since Tv o 0~(,} = 0 a.s. as X~(,)e F a.s. and F = U (here U is the set of points regular 
for F. Cf. [1, p. 61]). 

(2.7) Corollary. Same assumptions as in (2.6). Suppose F, = supp An satisfies F, c F 
for all n. Then ~nf ~ ~ f uniformly for all f c  C (K) and t > O. 

Proof This follows immediately from Theorem (2.6) and the fact that 
~"Prf(x)=E~'[f(X~ ~t)+r~oo ,~)]: Since F, cF ,  X~ ( t ) E F  a . s .  and since F = U ,  
Tr o 0r,(,)= 0 a.s. and"s P," Pe f(x) = ~"f(x) for all n and t > 0. 

We conclude with the following remarks. Recall that we have assumed the 
potential operator of X~ to be of the form Uf(x)= ~g(x, y)f(y)din(y). Therefore, 
if f (x) is any bounded excessive function for X t, the function 

fn (x) = n ( f  (x)-  P1/, f (x)) > 0 
satisfies 

c~ oo 1/n 

Ufn (x)= ~ Pt fn (x) d t= n ~ (Pt f ( x ) -  P, + 1In f(x)) d t= n ~ P~ f(x) d t T f(x) 
o o o 

from Proposition (3.4), p. 161 of [1]. Suppose now that A(t) is a regular CAF 
with closed fine support. Then UA(X)=E~[A(oe)]=~g(x,y)dv(y) for some 
measure v. Moreover, if we define the continuous functions 

f,(y)=n(U~ l(y)-P~/, U~ l(y))>0 

then ~ g(x, y)f,(y)dm(y)T S g(x, y)dr(y) pointwise and hence uniformly by Dini's 
theorem. If now A n is the CAF associated with the measure fn(Y)din(y), then 
UA,(X)~UA(X ) uniformly and therefore we have convergence of the associated 
transition functions in the sense described in Theorem (2.6). In other words, any 
CAF A satisfying the aforementioned hypotheses can be approximated in the 
sense of Theorem (2.6) by CAF's having potentials of the form ~ g(x, y)f(y) din(y) 
with f ~  C (K). 

The author  would like to thank the referee for pointing out an omission in the original version 
of Proposition (2.1) as well as improving the proof. 

i5" 
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