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Wave-Length and Amplitude for a Stationary 
Gaussian Process after a High Maximum 

Georg Lindgren 

1. Introduction 

Let {~ (t), t eR} be a stationary, zero-mean, Gaussian process with covariance 
function r and assume r(0)= 1, - r " ( 0 ) = 2  2 . The object of this paper is to study 
the distribution of the two wave-characteristics wave-length and amplitude, i.e. 
the horizontal and vertical distances between "a  randomly chosen" local maximum 
and the following minimum, especially when the maximum is very high. The main 
tool is a random process 

~, (t) = u r (t) -- t/u (2 2 r (t) + r" (t)) + A (t) 

(where  t/, is a certain random variable, and A is a certain non-stationary Gaussian 
process), which can be interpreted as the original stationary process ~(t) con- 
ditioned by the presence of a local maximum with height u at t = 0. The condition 
is to he taken in the horizontal window sense of Kae and Slepian [5], i.e. 

- (u, u + h) for some s in ( -  h', O) 

It is shown by Lindgren [7] that this gives the "" ergodic ", (i.e. the long-run, in a 
single realization) distribution of ~ (') at a distance t from the local u-maxima of 4. 

Let the wave-length % > 0  be the time for the first local minimum of ~ ,  and 
let 6, = u -~ , (%)  be the corresponding amplitude. Then the distributions of % 
and 6, coincide with the ergodic distributions of the distances (horizontal and 
vertical) between local u-maxima of ~ (t) and the following minimum, cf. Lindgren 
[9], Theorem 1.2 and 2.3. 

The exact distribution of (%, 6,) is difficult to obtain in the general case, and 
one has to rely on approximations (see Lindgren [9] for fairly accurate moment 
bounds), or turn to asymptotic results as u ~ + oo. The case u ~ - c ~  has been 
treated previously by Lindgren [8], who shows that ([ul z,, ]ul 3 6,) has a non- 
trivial limit distribution as u ~ - o% provided the covariance function r possesses 
a finite sixth order spectral moment. 

Here we will concentrate upon the case u--, + oo. Then the dominant term in 
(,(t) is ur(t), and the behaviour of the process after a very high maximum is well 
determined by the behaviour of its covariance function; the process "follows its 
covariance function". Especially, ~,(t) can have a local minimum only at points 
where r'(t) is relatively small. Thus it is necessary to distinguish between the 
following three cases, where we say that r has a stationary point at t o if r' (to) = 0: 

i) r has a first local minimum at t o > 0 and has no stationary points in (0, to). 
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ii) r has a first local min imum at t o > 0 and has at least one stat ionary point  in 
(0, to). 

iii) r has no stat ionary points in (0, oo). 

In case i) we will prove that, after suitable normalizations,  z u - t  o and 
b , -  u ( 1 -  r(to) ) are asymptotical ly normal,  while in case ii) there will be a positive 
probabil i ty that  z, falls near some of the stat ionary points less than t 0. Then the 
asymptot ic  normal  distributions have to be modified. This is done in Section 3 and 
4 respectively. 

In case iii) then, for every fixed t >  0, the probabil i ty that ~u(') is strictly de- 
creasing in (0, t), will tend to 1 and hence %-~  oo in probabil i ty as u - *  oo. In 
Section 5, 6 we investigate the rate with which this happens, and in Section 7 
we give some results for the ampli tude 6,. 

2. Some Definitions and General Results 

Suppose the covariance function r is four times cont inuously differentiable 
with r (0) = 1, - r" (0) = 2 2 , r IV (0) = 24, and assume 

dv(t)=)`4+O(llog[tll -~ as t ~ 0  for some a > l ,  (2.1) 

r(t)-*O as t--~ oo. 

Then  the process ~ can be supposed to have, with probabil i ty 1, twice con- 
t inuously differentiable sample paths, and local maxima are easily defined in 
terms of the sample derivative 4'(t). (For  analytic properties of sample paths as 
well as many valuable references on crossing problems and local maxima, see 
the book  by Cram6r and Leadbet ter  [3.1.) 

Now define the functions 

C (s, t) -- r (s - t) - [2 2 (2 4 - 222)] - t {)'2 )'4 r (s) r (t) + )'2 r (s) r" (t) 

+ ()'4 -- )'2) r'(s) r'(t) + )'22 r" (s) r (t) + )'2 r"(s) r" (t)} 

~32 C(s, t) 
c(s, t )=  - r " ( s -  t ) -  [ ) ' / ( & - ) ` ~ ) 3  -1 {)`: )'4 r'(s) r'(t) 

~sOt 
+ )'~ r'(s) r'"(t) + ()'4 - 22) r"(s) r"(t) + )̀ 22 r'"(s) r'(t) + )'2 r'"(s) r'"(t)}, 

and let {A(t), t eR}  be a non-stat ionary,  zero-mean, Gaussian process with the 
covariance function C. (That C is non-negative definite follows from Lemma 2 
of [71.) The process A can be chosen to have, with probabil i ty 1, twice continuously 
differentiable sample paths, the derivatives of which, 6(t)=A'(t), constitute a 
non-stat ionary,  zero-mean, Gaussian process with the covariance function c. This 
can be proved in a similar way as Lemma  1.1 of [8] if one makes use of a weaker 
condit ion for the existence of sample derivatives given by e.g. Leadbet ter  and 
Weissner [6"1. 

Also let t/u be a random variable (r. v.), defined on the same probabil i ty space 
as A, independent  of the process A, and with the density 

o (y < - u /~)  

q*, (Y) = )'z fi (u/fi + y) exp (--)'2 fi Y2/2) (2.2) (y>__ - u//~), 
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where 
~=(4~-4~) /42 ,  (2.3) 

~(x)  = q~ (x) + x ~(x), 

and ~b and ~b are the standard normal density and distribution functions. 

Now define the process 4u and its derivative 4', by 

4, (t) = u r ( t ) -  t/, (4 2 r (t) + r"(t)) + A (t), (2.4) 

4'. (t) = u r ' ( t ) -  tl. (4 2 r'(t) + r'"(t)) + 6 (t), (2.5) 

and the wave-length and amplitude 

~, = first local minimum of 4,(0 

= first upcrossing zero of 4', (t) (2.6) 

a. = u -  4, (z,). 

As was mentioned in the introduction, 4, and r,,  3, can be used to describe the 
ergodic (and horizontal-window conditional) properties of 4 after a local maximum 
with height u: 

Proposition 2.1. a) ~', (t)< 0 for all sufficiently small positive t, and 4, has a 
local maximum with height u at 0 (a. s.). 

b) Given that 4 has a local maximum with height u at t o (in h. w. sense), 4 (to + t) 
and 4'(t o + t) have the same distributions as 4, (t) and ~'u (t). 

c) The wave-length and amplitude of 4 after a local maximum with height u 
(in h.w. sense) have the same distributions as % and (5,. 

Proof Rewriting 4, (t) as 

& r (t)+ 42 r"(t) 42 r (t) + r"(t) 
~.(t) = u.  & -  4~ ~ A ( t ) -  r & - ' Z  2 , 

where the r. v. ~ = 4 2 fl (u/fi + rl, ) has the density qu (z) = q* ((z-  4 2 u)/2 2 fl)/4 2 fl (z > 0), 
we recognize (2.4) and (2.5) as the processes given by (1.1) and (1.2) in [8]. Then 
part a) follows from the proof of Lemma 1.1 in [9]. Part b) and part c) are essen- 
tially the ergodic Theorems 1.1 and 1.2 in [9]. We only have to ascertain that 
{4 (t), t e R} is an ergodic process. But since r (t)--+ 0 as t ~ oo, the spectral distribu- 
tion of { can have no discrete part, and this implies that { is ergodic, see [3, Chap. 7]. 

Lemma 2.1. The r.v. q, 2]/22 fi has an asymptotic standard normal distribution as 
u---* o% and its density tends to ~9 with dominated convergence. 

Proof The function x/g~(x) increases to 1 as x--+ oo, and therefore the density 

( 2 = ) - } e x p ( - x 2 / 2 ) ( u ) ~ 2 / f l + x ) / 7 * ( u  )~2/f l )  of t /ul~zf i  tends to ~b(x) with 
dominated convergence. 

The lemma implies that the term tl,(42r'(t)+r'"(t)) in 4~,(t)is of moderate 
order as u--* oo, and so is the 6(t)-term in any bounded interval (since 6 has 
continuous sample paths). Hence we expect that, for large u, 4'~(t) can be zero 
only if r'(t) is close to zero. To express it more precisely, let I be any bounded, 
measurable set of non-negative times, and define 

I~=Ic~{t;  t>e} .  
21" 
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Lemma 2.2. I f  inf Ir'(t)[ >0  for all e>0 ,  then P(zueI)-->O as u ~  ~ .  
teI~ 

Proof. There is an e > 0  such that r'(t) <0  for 0 < t N e .  Since 

P(% ~ I) < P(z, N e) + P(zu s I~), 

it is sufficient to prove that a) P(%_-< e)--> 0, b) P(z u ~ I~)~ O. 

a) r' and r'" are continuously differentiable with r'(O)=r'"(O)=O, r ' (0 )=  
- 2 2 < 0  , so that 

inf s-llr'(s)l>O, sup s-l122r'(s)+r'"(s)[<c~. 
0-<s-<e 0__<s__<e 

Since, furthermore, 6 has continuously differentiable sample paths with 5 (0)= 0 
(a.s.),we have that sup s -11,~(s)l is a well-defined, finite r.v. Thus, for 0<t__<e, 

O < s < e  

~(t)<__-ut . inf  ~ +[~/~[t.sup 22r'(s)+r'"(s) + ' t �9 sup , 
s 

which is strictly negative if 
u . inflr'(s)/sl-sup I~(s)/sl 

I~,,I < sup ](~2 r'(s)+r'"(s))/s[ 

This occurs with high probability if u is large, and therefore P(z, < e) = 1 - P(r 0 
for 0 < t < e) is arbitrarily close to zero for large u. 

b) Take T so large that I t c [ e ,  T]. Then 

m=inf]r'(t)[>O, M=supJA2r'(t)+r'"(t)[<oo, 
I~ [t, T] 

and we can estimate [~'.(t)[ in terms of [q~[ and sup I~(t)l. Thus, for I'1.1 <u m/2M, 
we get [~, 77 

inf [ ~',(t)[ > u m -  [tl,[ M - s u p  [ 5 ( t)l > u m / 2 -  sup 15(t)[, 

and 
P(sup 16(0[ <u  m/2)<P(inIf[ ~,(t)[ > 0) + P(lt/,] >u  m/ZM), 

[e, TI 

P(ZueI~)< 1 - P ( i n f  I ~', (t)l > 0 ) <  1 - P ( ~ u p  16(01 <u  m/2)+P([q,] >u m/2M). 

The last probability on the right hand side tends to zero as u---~ oo. Since the 
sample paths of 6 are continuous, they are bounded over the compact interval 
[e, T], and thus the first probability tends to one. This proves that lim P(% s I~)= 0. 

u--. oo 

3. Asymptotic Normality in Case I 

We specify the conditions for case i), in addition to (2.1). 

C 1. There is a time t o > 0 and a positive integer k o such that the covariance 
function r is 2k o times continuously differentiable near t o and 

r ' ( t )<0 for 0 < t < t  o, 

r(J)(to)=O for j = l , 2  . . . . .  2 k o -  1, 

r(2 ko) ( t o )  > 0 .  
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Thus  r' has its first upcross ing zero at t o, and we will show that  z, tends to t o in 
probabi l i ty  as u ~ oo. The asympto t ic  distr ibution of (z,, 6,) can be expressed in 
terms of two independent  no rma l  r.v., ~o and Zo, defined as follows. Let  t/ be 

N(0, 1/21/~2 fl) and independent  of  (A (to), ~ (to)), and define 

Oo = .  (,h r (to) + r"(to)) - A (to), 

Zo = t / r '"( to)--  6 (to). 
(3.1) 

Then (0o, Zo) is bivar ia te  normal ,  with mean  zero and the covariances 

V(Oo) = (22 r (to)+ r"(to)) 2 v (~ )+  V(A (to)) 

= (22 r (to) + r"(to))2/22 fi + C (t o , to) = 1 - r 2 (to), 

Cov (r Zo) = r'"(to)(22 r(to) + r"(to)) V(~) + Cov(A (to), ,~(to)) 

OC(s, t) [ 
= r ' " ( to ) (2  2 r (to) + r " ( to) ) /2  2 fi + ~ - ~ - ~  =t  = to = O, 

V(Zo) = r'"(to) 2 V(t/) + V(6 (to)) 

=r,,,(to)2/22 fi+C(to ' _ , ,  2 t o ) -  22 - r (to)/;.2. 

Here  we have made  repeated use of  the fact that  r'(to)= O. 

Theorem 3.1. I f  condition C1 is fulfilled with t o and k o then, as u--~ oo 

{u(Z _to)2ko-l,  bu_u( l_r ( to ) )  } se { ( 2 k o - - 1 ) '  } 
r(2ko)(to) Zo, Oo �9 

( ~ means  convergence in law.) The theorem simply says that  u(%- to )  2k~ 
and 6 , -  u (1 - r (to)) are asymptot ica l ly  no rma l  and independent  with the variances 
{(2k o - 1)!/r ~2 go)(to)}2 (22 _ r"(to)2/22) and 1 - r 2 (to) respectively. 

Proof We first show that  v, e ~ to, i.e. that, for all small e > 0, 

P ( t o - e ~  % <=to + e)--~ 1. 

But if e is small enough, the closed interval  [0, t o -  e] fulfills the requirements  of 
L e m m a  2.2, so that  P(% < t o - e) ~ 0. F u r t h e r m o r e  

{',(to + e)=ur'(to + O- t l , (22  r'(to + e)+ r'"(to + e))+3(to + O, 

and since the covar ianee derivative r'(t o + ~) is strictly positive for all small posi- 
tive e, we conclude that  P(~ ' , ( t o+e)>O)~ l  as u---~oo. But ~', has cont inuous 
sample  paths  (a.s.), so that  ~'u(to+e)>O implies that  z , < t o + e  , except on a set of  
probabi l i ty  zero. Thus,  as asserted, 

P ( t o - e  <= Zu< to + e) >= P(~'~(to + e) > O)-  P(z~< to -e ) - - ,1 .  

Now,  as we k n o w  that  V = z u -  t o tends to zero in probabil i ty,  we can expand 
! t !  , t i t  the functions r, r ,  r , and t , as well as the r a n d o m  functions A and 6 in Taylor  

series near  t o. If we write k instead of k o and employ  the symbol  Op(1) for any 
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r.v. e , 0  as u---~ oo, then V=op(1) ,  and 

v 2 k - 1  

r'(r,) ( 2 k - 1 ) !  { r ( 2 k ) ( t ~  (3.2) 

r'"(%) = r'"(to) + %(1). 

Since 6 is cont inuously  differentiable (a. s.) we also get 

6 (z,) = D (to) + Op (1). (3.3) 

Insert ing (3.2) and (3.3) into the definition (2.5) of  ~,(r,), and using that  r/u. %(1) 
is %(1), yields 

u V a  k-1 
~u(%)' = ( 2 k -  1)! {r k)(to) + Ov (1)} -- {t/, r '" (to) -- 6 (to) } + % (1). 

Up  to now we have not  used that  ~' ,(z,)=0. Doing  so now we get, by L e m m a  2.1, 

u v 2 k _ I  = ( 2 k -  1)! 
r(2k)(to)+OP (1) {tl, r , , , ( to )_6( to )}+op(1  ) ~e , (2k--1)!r(2k)(to) Zo (3.4) 

as asserted. 

The  rest of  the theorem is now st ra ightforward:  

6 , -  u (1 - r (to)) = u - ~, (%) - u (1 - r (to)) (3.5) 

= u r (to) - u r (~ . )  + ~ .  ('~2 r (~u) + r"(~ . ) )  - A (~u). 

Here 
U [7 2k 

u r (%) = u r (to) + ~ {r (2 k~ (to) + Ov (1)} = U r (to) + Op (1) 

according to (3.4). Since A2r ( z , )+r ' ( zu )=A2r ( to )+r" ( t o )+O p(1 ) ,  and A(%)= 
A (to)+ or(l) ,  we see that  (3.5) equals 

t /~(A2r(t0)+r, ,( to))_A(to)+Op(1 ) 2 , 0o .  (3.6) 

Thus bo th  z, and 6, have the due limiting distributions. If we combine  (3.4) and 
(3.6), we easily obta in  the bivariate  s ta tement  of the theorem. 

4. Modified Asymptotic Normality in Case II 

In this case the covariance function r has a (series of) " t e r r a c e "  point(s) before 
its first local min imum,  and at these terrace points  the covariance derivative r'  
has a tangency of zero t. Even if the sample  derivative ~'u(t) given by (2.5) closely 
follows the function u r'(t), the quest ion whether  it will cross the zero level or not  
near  the terrace point  depends on the sign of - t / ,  r '"( t )+ 6 (t). 

We specify the condit ions for case ii). 

C 2. There is a finite n u m b e r  of times, 0 < t 1 < t 2 < . . .  < tn < to, and positive 
integers, k 1, k z . . . . .  kn, ko, such that  r has cont inuous derivatives up to order  

sin t 
1 The covariance function r(t) = . cos2 t has a terrace point at t = ~ and its first minimum at a 

t 2 point t > ~. 
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2k,+ 1 near h, i=  1, 2, ..., n and up to order 2k o near t o. Furthermore 

r ' ( t)<0 

r u) (to) = 0 

r (2ko)( to)>0 

rU)(ti) =0 

r(2 k, + 1) (t) < 0 

for 0 < t < t o ,  t=t=tl,...,t ~ 
for j = l ,  . . . , 2 k o -  1 

for j = l , . . . , 2 k i }  for i= l , . . . , n .  

With (3.1) we introduced two independent normal r.v. r and Zo equal to 

tl (22 r (to)+ r"(to) ) - A  (to) and q r'"(to)-6 (to), where flu s~ tl and tl is N(0, 1/1~2 fl) 
and independent of all the A (t j) and 6 (t j). Now let 

Oi = r/(,,t2 r(ti)+r'(ti))-A(ti), i = 0 ,  1 . . . . .  n 
(4.1) 

Zi=r/r'"(ti)-- 6(ti), i=0,  1, ..., n. 

Thus (0, l) = (r r  r  Z0, Zl . . . .  , Z,) is (2n + 2)-variate normal with mean 
zero and with the covariances 

Cov (r r = (&  r (t~) + r"(t~)) (~.~ r (t j) + r"(tj))/,t~/~ + C (t,, t j) 

= r ( t ~ -  t j ) -  r(t~) r ( t ) ,  

fi + ~C(s, t) 
COV (r = ()~2 r(ti)+r"(ti)) r'"(tj)/22 (~t s=t=  --r'(t i --tj), 

t=tj  

C o y  (z~, z j) = r'" (t~) r'" (t;)/~2/~ + c (ti, t i) 

= - r " ( t i -  t j ) -  r"(ti)  r"(t;)/,~2 �9 

It should be observed that r and Z~ are independent and have the variances 
1 - r (ti) 2 and 22 - r"(ti)2/22 as before. 

If we recall the proof of Theorem 3.1 and try to use r Zl in a limit theorem, 
we have to modify the procedure. Since ~;(t) is zero near one of the stationary 
points tj only if Gr'"(tj)-~(tj) is negative, we have actually not normal but 
conditional normal r.v. 

We devise the following method to pick up the right time and the right r.v. 
(r Zj). Cover the times to, t~, ..., t, with disjoint e-intervals 

I ;=[ t j - e ,  tj+~], j = 0 ,  1 , . . . ,n .  

Usually e is held fixed, and then we suppress it. Let the indicator variable ~* be 
defined by 

j if %EIj, ( j=0,  1,. . . ,  n) 
K *  ~ n 

0 if r , , r  I i. 
o 

A corresponding indicator variable K for the contemplated limit distribution is 
defined by 

j if Zj<0, Xi>0 for i=1  . . . .  , j - -1  

0 if Zi>0 for i = l , . . . , n .  
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Then the r.v. x has the distribution 

P(~ = j ) = p j = P ( z ) < 0 ,  Zi>0 for i=  1 . . . . .  j -  1), 
n 

P(~c =0)=Po = 1 - ~  pj, 
1 

where Pl, P2, and P3 can be expressed in terms of elementary functions. In general, 
pj is an integral of a j-variate normal density, see Gupta [4]. 

If we write 

0 if j=O 
~J=l  if j = l  . . . . .  n, 

then 2k~,+e~, and 2k~+e~ are the orders of the first non-vanishing derivatives 
of r at the randomly chosen times t~, and t~ respectively. It is then clear how to 
observe the r.v. 

U(%_t~,)2k~,+ . . . .  1 and 6 , - u ( 1 - r ( t ~ , ) ) = u r ( t ~ , ) - ~ ( r ~ ) ,  

since once we have the value of z~ we can pick up the t~,-value and rise the difference 
z~-t~, to the appropriate power. Similarly we can observe 

(2k~ + e ~ -  1)! 
r(2k~+~)(t~) X~ and ~ 

by taking the first negative Z~ in the sequence Z~, ..., Z,, (or if they are all positive, 
taking Zo) and the corresponding 0z. 

Theorem 4.1. I f  condition C 2  is fulf i l led with to, t t , . . .  , t n and ko, k l , . . . ,  k ,  
then, as u ~ oo , 

{U(%__t~,)2k~.+ . . . .  1, c~ _ u ( l _ r ( t ~ , ) ) } ~ {  (2k~ + e ~ -  1)' } 
, r(2k~+~)(t~) Z~, ~ . 

Remark.  The theorem implies that z, ~ t ~ ,  which gives the probabilities 
with which % falls near the different tj. The full theorem also says something 
about the distance between z~ and the tj it happens to be near. 

Proof. From Lemma 2.2 it follows that, for every e > 0, 

P z, I -*0 as u--* oe. 

To get a comprehensible and short notation write (c. f. (4.1)) 

O~ = r/u (3~2 r (ti) + r" (ti)) -- A (ti) 
i = 0 ,  1 . . . .  , n  

u t t !  

Zi = tl. r (tl) - 6 (ti) 

so that 

(r z"l = (0~ 0~,  " . . . .  z ; )  ~ . . . . .  9o ,  , (0 ,  ~).  (4.2) 
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Also, for j = 0, 1 ... .  , n, define the events 

Ao: {Z~>0, i = I  . . . . .  n} 

Aj: {Zj<0,)(~>=0, i=  1 . . . . .  j - l }  

~" ( 2 k j + e j -  1)! 0~<y  } 
( zj<x, 

Bj: {'c ~Ij} 

Bj(x,y): {U(%--tj)2k~+~J-l <X, 6 , - -u(1--r( t j ) )<y} .  

A little reflection then shows that the theorem is equivalent to 

lira P(Bj A Bj(x, y)) = P(Aj A Aj (x, y)), j = O, 1 . . . . .  n. (4.3) 

The point in the proof is that we can express the conditions for the events Bj and 
Bj(x, y) in terms of certain relations for the variables 0~', X~' (i = 1 . . . . .  j), which are 
very similar to the relations which define the events Aj and Aj(x, y). 

We concentrate upon the case 1 =<j< n. The case j - - 0  is quite analogous, and 
the details are left out. To start with, we derive some bounds (4.7a) and (4.7b) 
for the random functions 

ur(tj) - ~.(tj + h) = ur ( t j ) -  ur(t j + h) + ~.(2 2 r(tj + h) + r" (t j+ h)) -  A (t j+  h), 

- ('. (tj + h) = - u r' (tj + h) + t/. (2 2 r' (tj + h) + r'" (tj + h)) - 6 (tj + h). 
(4.4) 

Starting with the non-random terms, we notice that, for any 0>0,  there is 
an e > 0  such that, for [h[<=e,j= 1, . . . ,  n, 

where 

Mf(h)<=ur( t j ) -ur( t j+h)<-M+(h) ,  

rnf (h)<= -ur '( t j+h)<-_mf(h),  
(4.5) 

U h 2kj+l 
M 7 (h)= - ( 1  + 0 .  sign(h)) (2kj+ 1)! r(2kj+l)(tJ) 

uh2kj+ 1 
M f  (h) = - (1 - 0. sign (h)) (2 kj + 1)! rt2 kj + 1) (t j) 

Lt h2kj 
m + (h)= - ( 1  +0) .... r{2gJ+l)(tj) 

(2 k j) ! 
uh2g~ 

m r ( h ) - - - ( 1 -  - -  0) (2kj)! r(2kj+l)(t~)" 

In order to obtain bounds for the random terms in (4.4), fix a T__> t o +e  and let 
0'>0 be arbitrary. Then there is an M such that the event 

N: {[~,,I_-__M, sup ]fi(t)[<=M, sup [ 6' (t) [ _-< M} 
O<_t<_T O<t<__T 
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has a probability P (N) > 1 - 0'. Considering only outcomes in N, we get 

~/, (22 r (t i + h) + r" (t i + h)) - A (tj + h) = ~b~ + h.  G i (h), 

~/, (22 r' (t i + h) + r'" (t i + h)) - 6 (t i + h) = )~ + h.  H i (h), 

where 

(4.6) 

IGi(h)] = 1t/,(22 r ' ( t i+h ' )+r ' " ( t i+h ' ) ) -6 ( t i+h ' ) [  

< M  (sup 122 r'[ + sup Ir'"l + 1 ) < K ,  

[Hi(h)] =< M(sup 122 r"l + sup IrlV[ + 1)_<_K, 

with some K depending on 0'. 

Adding (4.5) and (4.6), we obtain the following estimates for (4.4), valid for 
all outcomes in N, Ih]__<a,j= 1, . . . ,  n: 

0~ + Mj - (h ) - [h  I K<=ur( t j ) -4 , ( t i+h)<=O~+M+(h)+lh  ] K ,  (4.7 a) 

X~ + m y  (h)-Ihl  g <= - 4',(ti+ h)<= x~+m + (h)+ Ihl g .  (4.7 b) 

As is easily shown by differentiation, the lower bound functions in (4.7) are uni- 
formly bounded from below (remember that r(Zk~+~)(ti)<O), in the sense that  
there is a constant K ' > 0  such that, for all h , j=  1, ... ,  n 

M[(h)-lhlK>-K'/u, 
m T ( h ) - [ h [ K > - K ' / u .  

(4.8) 

Now we can proceed to the announced equivalences. First suppose that  the event 
B i/x B i(x, y) occurs. If j > 0, the only interesting case is x > 0. For  all outcomes in 

j--1 

N, the event B i implies that  ~',(t)<0 for all t e  U I/, and that ~',(t)>0 for some 
/=t 

t e I i, which in turn, together with (4.7 b) and (4.8) gives X~ > - 4', (ti) > 0, i = 1,. . .  , j -  1 
and Z~ - K'/u < - 4', (t i + h) < O, i. e. 

)C~'>0 for i = 1  . . . .  , j - 1  and x~<K' /u .  (4.9) 

If x > 0  and the event Bi(x, y) also occurs, and especially u ( % - t  j) 2kj'~ •, then 
4',(ti+ h)is zero for some I h[ < hx = (x/u) 1/2kj. But since m + (h)+ [hl K decreases as 
h tends to zero, we have that  X~ + m+ (hx) + h~ K < 0 implies that  X~ + m+ (h)+ [hi K < 0 
for all ]h l<h  x. The upper bound in (4.7b) then gives that 4 ' , ( t i+h)>0  for such 
h-values. Thus the event B i(x, y) implies that  )~ + m + (h~) + hx K > 0 or equiv- 
alently 

r(Zkj+ 1)(ti) Z~ < (1 + 0) X-- K" .  (4.10) 

But the event B i A Bi(x , y) also implies that ur ( t i ) - 4u ( zu )<y  and this, together 
with (4.8) and the lower bound in (4.7a), gives 

~p~<=y+ K'/u.  (4.11) 
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We sum up the inequalities (4.9)-(4.11) and obtain 

P (Bj A Bj (x, y)) < P (Z~ > O, i = 1,..., j -  1/x Z~ < 
/ 

K'/u 
\ 

A r(Zkj+l)(tj) Xy<(1 + O) x -  Oy<y+K'/u +P(N*). 

Lett ing u ~ oo we get from (4.2) 

lira sup P (Bj/x Bj (x, y)) < P (Aj/x Aj ((1 + 0) x, y)) + 0'. (4.12) 

A reverse inequali ty can be derived in a similar way, again considering only 
outcomes in N. The relations (4.7 b) and (4.8) give that if )~' > K'/u for i =  1 . . . . .  j -  1 
and Xy < 0, then 4', (ti + h)< 0, I hl < e, i =  1 . . . .  , j - 1 ,  and 4', (t~)> 0, so that  

n 

z,~Ij o r  Zur I i. (4.13) 
0 

If, fur thermore,  the lower hound  in (4.7b) is positive for h = -  h x = -  (x/u) 1/2 ks, 
i.e. if 

(2 k j) ! z~ < (1 - 0) x -  / c " ,  
r(2 kj + 1) (tj)  

then the derivative 4', (tj + h) is negative at h < - hx and positive at h = 0, so its first 
zero must  fall in the interval ( -  h~, 0) i.e. 

u (z, - ts) 2 kj < X. (4.14) 

A bound  similar to (4.8) can be obta ined for M 7 to the effect that Mj + (h)+ [hi K 
< h x K 4 if [hl =< h~. Therefore  the upper  bound  in (4.7 a) gives that, if 

then 

3, - u (1 - r (t~)) = u r (t j ) -  ~, (%) < y. 

Summing the implications leading to (4.13)-(4.15), we obtain 

P (nj A Sj (x, y)) >= P (Z7 > K'/u, i = 1,..., j -  1/x ZY < 0 

/x r(2kj+X)(tj) Z~<(1 --0) X-- 

/ X \i/2kj 

0 

and, if u -+ oe 

(4.15) 

l iminfP(BjABj(x,y))>=P(AjAAj((1-O)x,y))-O' .  (4.16) 

N o w  a little reflection shows that  the left hand limits in (4.12) and (4.16) do 
not  depend on e. The right hand  bounds can be made arbitrarily close to each other  
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by first taking small 0 and 0', then a sufficiently large M and a small e for the argu- 
ments to go through. Thus (4.3) follows for j - -  1 . . . .  , n, and by similar arguments 
it can be shown for j = 0. 

5. Decreasing Covariance Function 

- r" ( t ) / r '  ( t )  --* 0 as t ~ oo 

We now turn to the case when r' (t) is strictly negative for t > 0, and r (0 and its 
first four derivatives tend to zero as t - *  oo. Then, for every fixed but  large t, the 
dominant  term in ~'u(t) (as defined by (2.5))is ur'(t),  while G(2  2 r ' ( t )+r ' " ( t ) ) i s  
negligible. For  large s and t the covariance function c (s, t) of  the non-s ta t ionary 
process 6 is approximately  - r " ( s - t ) ,  which we recognize as the covariance 
function of the original process derivative ~'. Therefore we might expect 6(t) to 
behave almost like ~'(t) for large t-values, and it seems plausible that  the dis- 
t r ibution of r ,  ( = t h e  time for the first upcrossing zero of ~'u(t)) can be expressed 
in terms of the times for the upcrossing zeros of u r' (t) + ~' (t). 

Define 

v, = t h e  number  of upcrossing zeros of ~'~ (s) in (0, t ] ,  
(5.1) 

#t = the number  of upcrossing zeros of u r' (s) + 4' (s) in (0, t ] ,  

and let T ( =  T(u)---~ oo as u--* oo) be any function of u such that  E(vr)  and E ( ~ r  ) 
has a finite limit, 0, say. Then it can be worth  while to examine P ( % - T  > x ) =  
P(VT +x=O ) a s  u ~ o o .  

Doing so we must  impose new conditions upon r and specify the asymptot ic  
behaviour  of - r "  (t)/r'(t) for large t. 

C3. a) r ' ( t )<0  for t > 0 ,  

b) r' (t) = O (t-  ~) as t ~ oo for some y > 1, 

c) there is a constant  C ~ 0 ,  =<oo such that, for k = 1 , 2 , 3 , 4 ,  the function 
( - 1 )  k r(k)(t) is convex, positive and decreasing for large t, t k r{k)( t )~  0 as t ~ o% 
_ r{k)(t)/r 1) (t) increases (decreases) to C as t ~ oo ; 

if  c = 0 then - r (k) (t)/r (k- 1) (t) = 0 ( t -  1) as t -* c~. 

It should be noted that condit ion C 3. c is fulfilled for k =< 4 if it is fulfilled for 
k = 4 .  

According to the value of C we can speak about  the algebraic case, ( C = 0 ,  
e.g. r (t)-- 1/(1 + t2)), the exponential  case (0 < C < 0% e.g. r (t) = exp ( -  I t I)" poly- 
nomial), and the over-exponential  case ( C = o o ,  e.g. r ( t ) = e x p ( - t 2 / 2 ) ) .  This 
section deals with the algebraic case. 

Theorem 5.1. I f  r fulfills condition C 3, - r" (t)/r' (t) --~ 0 as t --~ 0% and To O = 
To~ as u--*oo so that E(#roo)---~O, then 

E(vroo+x)---~O f o r a l l x  as u - ~ o o .  

Proof. We start with some definitions. Let  

m , ,  (t) = u r' (t) --  y ( &  r' (t) + r'" (t)), (5.2) 
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so that muy( t )+6( t )  is ~',(t) when t/, happens to take the value y. (Remember, t/, 
is random and has density q* given by (2.2).) Also let 

v t (y) = the number of upcrossing zeros of m,y (s) + 6 (s) in (0, t]. (5.3) 

For the expected values of vt, v,(y), and/~t we use the well-known formulas for 
crossings by non-stationary processes (see I-3, Ch. 13]). Recall the definition 
(2.3): T ( x ) = O ( x ) + x q ~ ( x ) ,  4) and r being the standard normal density and dis- 
tributions functions. Then 

where 

E(vt)-- ~ E ( v t ( y ) ) q * ( y ) d y  
y = - u l f l  

= ~ i co(s )O(mur(s) /a(s ) )g~( t luy(s ) )q*(y)dsdy ,  
y = - u / f l  s=O 

t 
E(~,)= S (;,/;~)1/20(u,"(s)li/-~d <S"(ur"(s)lil~D ds, 

s=O 

(5.4) 

~2 = ~2 (s) = V(a  (s)) = c (s, s) ,  

~2 = ~ ( s ) =  vff ' (s))= 02 c(s' t) s~, 
~? s & 

= ~ (s) = C o v  (a (s), a' (s))/G (s) ~ (s) - ~c (s, r) ~: /~(s)  
,3s ~ (s), 

= ~ (~) = ~ (~) ~ - - ~ ) / , ~ ( ~ ) ,  

'7,,,, = ~,,,, (s) = {m;, , (s)  - ~ (s) ~ (s) m,,,  (s)/,~ (s)} /~ (s) 11/i~- / (s) 

= {u r" - y (2 2 r" + r'V)}/y 1/1 -/~2 _/~ {u r' - y (2 z r' + r '")}/a ] / i - - -g  2 . 

By assumption C 3 we immediately have that, as s ~ oo, 

0"2 (S) --~ .~2, ~2 (S) --~ 24 ,  ~/(S)--+ O, 

(D (S) ~ (/~4//~2) 1/2 . (5.5) 

Also, m,y(s ) /a (s )~-ur ' ( s ) / ] /~2  and t l ,y(s) , - 'ur"(s) / t /~4,  still for large s, at least 
when y is bounded, so that the two integrands in (5.4) can be expected to be similar 
for such s- and y-values. This suggests the following procedure for the proof of 
Theorem 5.1: first, find T ,  y_ ~ oo as u ~ oo such that the integrands in (5.4) 
are similar for s > T  , [y[<y_;  then show that the integrals over s < T  and 
[y[ >y_  are negligible. 

We build the proof from several lemmas. 

Lemma 5.1 For any t o > 0 as u -~ oo 

a) E (~,o) -~ 0, 
b) E(V,o)~O. 
We already know, from Lemma 2.2, that P (Vto = O)~ 1, which, of course, does 

not imply that E ( V , o ) ~  O. 
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Proof of Lemma 5.1. We estimate the integrals in (5.4) at first for one particular 
t~, then for general t o . 

a) Take t* so that  r" (t) < 0 for 0 < t _< t~. Then, as u --+ o% 

Ei~,~,)= oJi</~)~ 4' ,,,r'i~)]V~7.~ ~ '<' ur"it)] d~--<Ki~4' 1/'L-~ ~ o t ~ I <~->~ 

b) Let 

a(0 = (& r'(tt + , h  r'"it))/&/7, 

b (t) = (& r' (t) + r'" i0)/'~/7, 

so that muy (t) = u a (t) - 22/7 (y + u//7) b (0, (remember/7 = (24 - 22)/22). Then 

{ ~'4 ~2t-r"(t) } 
-a'i t)=fl-~(24-rSVit)) 1 ;~2 24 - r 'V( t )  " 

Now, for any covariance function q, the limit lim,+ o t -  2 (q ( 0 ) -  q it)) exists < 0% 
see [3, w 9.3]. Thus, if we for short  write 

R (t)= 2 4 -  rlV (t), 

we can conclude that  - a' (t) ~ KR (t) > 0 as t ~ 0, whether lim t -  2 R (t) is finite 
or not. Since b ' ( t ) ~ l ,  this implies that -m',r(t  ) is non-negative in an interval 
(0, t*) for any y > -  u/fl. F r o m  ~ ( x ) <  1 + I xl and 7 ~ increasing, it follows that 

{ la m.y(t) } < l_~ ltxl lm.,(t), 
Itff(/~uY([7))~-~ Itff ] / ~ / 2  2 o-(t) ] / 1 - / x  2 o-(t) ' 

and 

coiO~ t o-iO I ~(~.~it))q*.iy)dtdy 
y = - u / ~  t=0 

< ~ S co da (m.jo-) q* (y) dy dt (5.6) 
t y 

+ S f  7[/xl Ira.y] ~(m.jo-)q*(y)dydt .  
t y O- O" 

We will now show that  the second integral in (5.6) tends to zero as u tends to 
infinity. The first integral is treated similarly. 

Since I•l = 1, the main problem is to estimate 7/o- and Imuy[/o-. We start by 
t 

showing that o-2(t) and 72(0 are of the order  i sR(s)ds and R(t) respectively: 
0 

t 

o-2(t)~K~ ~ sR(s)ds,  72(t)~K,R(t) ,  as t--~0. (5.7) 
s = O  

Simple calculations show that do 2 ( t ) / d t  = - 2fl e'(t) b(O ~ K~ tR(t), from which 
(5.7) follows as far as o -2 (t) is concerned. Differentiation also shows the relation 
for yz(t) if this function happens to be differentiable. Otherwise, introduce the 
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function V, 
V(t) = - r"(t) - 22 + 24 t2/2, 

and insert V, V', and V" into the differential expression for 2 2 (t). Then the leading 
terms in •2 (t) will be 2 V'(t)+ a term of order t 2. Since V'(t)=R(t) this shows the 
rest of (5.7). 

Now, a(t)<O and b(t)~t  implies that ]m, ,y( t ) [=-ua( t )+22fi(y+u/f i )b( t )> 
K(y + u/fl)t, and finally, with some specific constant K o , 

[m,,y(t)[ >_Ko(y+u/fl)t sR(s)ds 
~ ( t )  - (5.8) 

{/o, ; ~(t~)_<K R(t) s R ( s ) &  
( 7 ( t )  - 

For the density q* (y) we use the simple estimate 

q* (y) <= K ~I'(u 21/~2/fl )- l(y + u/fl). (5.9) 

We are now ready to estimate the second integral in (5.6). Change variable in the 
inner integral; let K o be the constant in (5~8) and put 

{j z=Ko(y+u /p  ) t sR(s) ds , 

and use that z q~(z) is bounded for z > 0  and decreasing for z>  1. Then (5.8) and 
(5.9) imply that 

t; 
j- 7lpl [mu,[ ~)(muja)q*(y)dydt 

t=O y > = - u / f l  (7 (7 

i s  R(s) ds 

I 
< = K V , ( u ~ )  3 o 

= ~sR(s)cls 
0 

i ! s R ( s )  cls 

<_ic ~,(u ~2/~)_l ~ o 
t=0 

By the Schwartz's inequality 

= , t - - 3  s 

t8 R(t)  t; 
N y dt.  [. t -3 j sR(s) dsdt  

t = O  t t = O  s=0 

~ R(t) dt 
t=O t 
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which gives the upper  bound  

t; R(t) dt. 
K'v(u  1 I t 

t = O  
t~ 

By the assumption (2.1) about  ?v(t),  the integral ~ t - l R ( t ) d t  converges, and it 
o 

follows that the bound  tends to zero as u tends to infinity. 

We now extend the results to general t o . 

a) Since inf [r '(t)[>0, sup Ir"(t)[<o% we get 
(t~, to) (t~, to) 

to t o 

c~ (u r'(t)/l/~2 ) 7"(u r"(t)/]/~,) d t < ~ dp (K 1 u)(1 + K 2 u) dt ~ O. 
t~ t~ 

b) Taking inf and sup over t >  t~ we have that  o -  = inf o-(t)> 0, a+ = sup a ( t )<  ~ ,  
7-  = inf 7 (t) > 0, 7 + = sup 7 (t) < 0% e = sup l# (t)[ (1 - ]2  2 ( t ) )  - �89 < (30. Since I m. y'(t)[ -< 
K;  u + g i lYl and lm.y(t)l < K~ u + K~ lYl for all u and y, this implies that ~(t/,y(t)) 
1 + [tluy(t)[ <= 11 u + K 2 [Y[. 

If we further notice that sup122r'(t)+r'"(t)[ / inf [r'(t)[ is finite, we get 
(t~), to) (t~, to) 

]m,y(t)] > u]r '( t )[-  ]y]. ]2 2 r'(t) + r'"(t)] > K~ u - K~ ]y[ > K 3 u for all y with ]y] < K 4 u, 
some K 4 > 0 .  Separating ] y ] > K 4 u  and ~ K 4 u  , we then get 

to  

~ c~ tP(tluy)q*(y)dtdy 
y = - u/fl t = t* 

to 

< K s  ~ ~ (o (K6u) (u+]Y l )q* (y )d tdy  
]yl <=K4u t=t~ 

to 

+ K 7  ~ ~ ( u + l y l ) q * ( y ) d t d y ~ O  as u ,oe,  
]y] > K 4  u t=t~ 

and the lemma is proved. 

Of course the conclusion of the l e m m a  is true even if the region (0, to) is per- 
mitted to increase slowly with u. Therefore we can base the rest of the proof  of 
Theorem 5.1 on a compar ison between m,y(t)/a(t) and t/,y(t) on one hand and 

u r ' ( t ) / ~ 2  and ur"(t)/]/~4 on the other  for large t. 

L e m m a  5.2. I f  T = To o (u) is as in Theorem 5.1, y_ = T, then 

m.,( t)  _ ur'(t) (1+o(1))  

u r " ( t )  (1 +o(1))  r / . , ( t )  = ] / ~ - 4  

where o(1)--~ 0 uniformly in lyl< y_ ,  as u -+o% t -*oo .  

Proof  
m,y (t) = u r'(t) { 1 - R.r(t)}, 

(5.10) 
I']uy(t) m u  r"(t) ,~2 ~ {1 - S.y(t)}, 
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where the residuals 

Ruy(t) =~Y (2 2 + r'"(t)/r'(t)), 
U 

f l  Y /~ r'V(t)\ S,y(t)= l 

a r"(t) u 

tend to zero uniformly in l y l < y .  Since i~(t)=O(r'(O ) this assertion is proved if 
we can show that  

a) r'(O2/r"(t), r'(t) r'"(t)/r"(t) -~ 0 as t --~ oc ; this is a consequence of the assumed 
convexity of ( -  1) k Ck)(t). 

b) y_/u ~ 0 as u ~ oo ; r'(t) = O(t- ~), 7 > 1 by condit ion C 3, implies - u r'(T) < 
M u T -~, and a little reflexion will show that  - u  r'(T)-+ o% so that 

y_ = T < M ' u  1/~ (5.11) 

and y_/u ~ O. Since a 2 (t) ~/~2, the lemma is proved. 

The following lemma is impor tan t  for the est imation of (5.4). 

Lemma 5.3. There exists a constant K, independent of u and y, such that, for 
all intervals I sufficiently remote from the origin 

c~(m.,,(t)/a(t)) T(quy(t)) dt<=K(]I] + 1), 
I 

where Ill is the length of the interval. 

Proof Since m'uy( t )=ur"(O{1-Y (22 +rlV(t)/r"(t))} and /V (t)/r"(t) is monoto - 

nous for large t, m',y(t) can change sign at most  once in I. Let I+ and I_ denote 
those parts of I in which m~,y>0 and < 0  respectively. With the same nota t ion 
o-+, o-_ etc. as in the p roof  of Lemma  5.1, we get 

< ~ c~(m,Ja+)7~(elm, yl/a)dt 
I -  I _  

< [. 4)(m,y/a+){l+elm,, , l /a_}dt<K_]I_l,  
I -  

since q~ (x) and x ~b (x) are bounded.  

I < ~ (o(m, Ja+)~(m' ,y /7_l /1-e2+elm, , I /a_)d t  
I+ I+ 

<= f (~(m~y/a +){m'.y/7_ ~ - - a  2 + 1 +elm.,[/a_} dt 
I+ 

_<K II+[ + K  X O(x/a+) dx<K+([I+l + 1). 

Since K and K+ are independent  of u, y, we are through. 
22 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 23 
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We are now ready to choose the splitting point T_ : Let 6 > 0 be a small number, 
its precise value being undetermined for a while, and take T so that 

- u r ' ( T ) = 1 / ( 2 + 6 )  22 log T .  (5.12)  

(Such a T exists, since - r ' ( t )  decreases for large t.) 

L e m m a  5.4.  If T_ fulfills (5.12) then, as u--+ oe 
a) E(pr_)~O, 
b) E(vr_) - .  0. 

Proof. By Lemma 5.1 we need only to examine the integrals (5.4) over (to, T_). 
a) 

T -  

4) (u r'(t)/]~2 ) T(u r" (t)/1/~ ) dt 
to 

T -  

<= ~ dp(ur'(t)/1/~2){1 +ur"(t)/1/~4 } dt 
to 

ur ' (T-)  

<_T  (ur'(r f 
u r' (to) 

T 
< ~ exp(-- (2+8)22 log T /222)+ 21/2~2/24 q~(u r ' (T_)/~2)--~0 

by the definition (5.12) of T .  
b) Separate ]y[ < y _ ,  >y_  (= T). For lyl <y_  and e > 0  arbitrary, Lemma 5.2 

says that ]muy(t)[/a(t)>(1 -~) [u r'(t)[/]~2~2, lO,y(t)[ <(1 +e) ur"(t)/l/~4 ifu and t are 
large. For ly l>y_  we use Lemma 5.3. In total 

T -  

~ dP(mur(t)/a(t)) T(tl,y(t))q*(y)dtdy 
y = - u / f l  t=to 

=< ~ i- q~ ( ( l - e )  ur'(t)_) T [ ( l + e )  ur"( t , )  q*(y) d tdy  

+ ~ K T q * ( y ) d y .  
lyl>y- 

The first integral can be estimated as in the proof of part a), if we take ~ so small 
that ( 1 -  z)(1 + �89 5)> 1. For the second integral, we use that 

r_ f q*(Y)aY~2r-(1-e(Y- Xl/T  fl))~KZ as u-~oo.  
[y l>y_  

By Lemma 5.4 the only relevant region is T <_t< T+x,  and there we can 
sharpen Lemma 5.2, which will finally give us what we need to prove the theorem, 

L e m m a  5.5. I f  T= To~ y_ = T, and T fulfills (5.12) then 

q5 (m,y (t)/a (t))/~b (u r' (t)/]/~22) --~ 1 

(t)) ~ r" (t)/(22,) = 1/V  

uniformly in T < t < T, [Yl <= Y- ,  as u ~ ~ .  
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Proof ~) We must show that m2y(t)/a2(t)--bl2r'(t)2/)~2--~O uniformly. The 
difference is 

- 2 (t) {u 2 r' (t) 2 (22 - a 2 (t))/22 + yZ (22 r' (t) + 1"" (0) 2 - 2 u y r' (t)(22 r' (t) + r "  (t))} 

= A + B -  C, say. 

Since 22-r r'(t)=O(t-Y), r'"(t)=O(r'(t)), and, by (5.11), T < y _  = 
T <_ M' u I/y, we have 

A < K l u  2 r ' (T  )4<Ka  T_ -2  log T ---, 0, 

B < K 3 y2 r' (T_)2 < K4 (y_/u)2 log T < K 5 u -  2 (1 - -  i / y )  log u --, 0, 

IC[ < K6uY_ r'(T )Z < KT(Y_/u) log T ---,0, 

which shows the assertion. 

0=<ur"(t)=ur"(T_)= -,/(T_)./'(T_)/(-,.'(T ))= O(T_ 

by condit ion C3. c and (5.12). L e m m a  5.2 then shows that Gy(t)--~0 uniformly, 
so that  7~(r/,,,(t))~ ~P(0) uniformly. 

We now have everything that  we need to show Theorem 5.1' By Lemma  5.4 
it is enough to show that, (if T =  To o (u)), 

where 

lim e~ 0 (m,y/a) tY(Gy ) dt q* (y) dy = lim I = 0 
u ~ o ~  y = - u / f l  {. t = T -  u ~ o e  

T 

I =  
t = T -  

Separate the double  integral into three parts: 

T T + x  T + x  

lyl=<y_ T -  [yl<=y_ T b'l>Y- T- 

By L e m m a  5.5 and (5.5) every factor in 11 is asymptotical ly equal to the cor- 
responding factor in I, thus 11 ---, I. In 12 the inner integral is over an interval of 
fixed length, in which the integrand is bounded by K 1 q~(K 2 ur'(t))q* (y). Since 
- u r ' ( t ) > - u r ' ( T + x ) ~ - u r ' ( T ) - - . o o ,  the bound is q*(y).o(1) uniformly in 
(T, T+x)  so that  I 2 -+0. Finally, by Lemma  5.3, 13 is bounded by 

K T  y q * ( y ) d y ~ 2 K T ( 1 - @ ( T  2]/~zfl))~K'TO(TI~2fl)/T--~O as u -~oo .  
lyI>T 

The proof  of Theorem 5.1 is then complete. 
We now turn to P(G- -T>x)=P(VT+x=O ) when T is as in TheoremS.1  

(remember the definition (5.1)). 

Theorem 52.  With the same conditions and notations as in Theorem 5.1 

22* 

P ( % - T o ~  -~ foral l  x, as u ~ o o .  



312 G. Lindgren: 

Remark. If - r " ( t ) / r ' ( t ) ~  0 then the function -ur ' ( t )  behaves almost like a 
large constant for large u and t. Therefore we might expect that the stream of 
zero-crossings of ur'(t)+ 3'(t) has the same asymptotic Poisson-character as has 
the stream of crossings of a very high level by a stationary process, derived by 
Cram& and others, cf. [3, Ch. 12], although we here have a high function, g,, 
say. Actually, Theorem 5.2 contains the first term in the asymptotic Poisson- 
distribution of the number of local minima. In general, if (g.),~R is a family of 
functions, and T(u) is such that the expected number of zero-crossings by ~ (t)-g,(t) 
in (0, T(u)) is 0, then the number of zero-crossings in (0, T(u)) is asymptotically 
Poisson (0), provided 

inf gu(t)-*oo, .sup [g'~(t)[--~O, 
O<-t<-T(u) O<=t<-T(u) (5.13) 

I g, (s)-  g, (t) l is bounded, sup 2 2 
O<=s,t<T(u) 

and r fulfills the usual regularity conditions. This can be shown by means of the 
standard proof, modified as in the proof of Theorem 5.2. That (5.13) cannot be 
substantially relaxed, follows from the results by Qualls [10] on multiple level 
crossings. 

Proof Let y be fixed, and define the event E I, I ~ R, by 

EI: {m,y(t)+6(t)<O for all t e I } ,  

where m,y(t)=ur ' ( t ) -y(2 2 r'(t)+ r'"(t)). Suppose we can prove that 

P(E(o, r l ) ~  e -~ as u-~ oe, (5.14) 

(T= To o (u)). Since the expected number of crossings in (T, T+  x] tends to zero, we 
would then have 

l im P ( r . -  T > x) = !irn ~ P (E~o ' r + ~1) q. (Y) dy 

= lim ~ P (E~o ' rl) q* (Y) dy = ~ e -~ lim q* (y) dy = e -~ 
u ~  t ~  u ~  oo 

by dominated convergence, which is just the content of the theorem. 

We thus only have to show (5.14) for any fixed y. Start along well-known lines 
and divide the interval [T_, T] into n subintervals of length A >0:  

T_ =to <t l=to  + A <...  <tk=to +kA < . . . < t , =  T. 

Let c~ be a small number, and split the subintervals into two parts: 

Ik=[tk,tk+(1--cOA], Jk=(tk+(1--~)A, tk+a). 

Also let tk, j = t k + j (1 - ~) A / n k ,  j = O, 1 .. . .  , n k be a subdivision of the/k-intervals, 
and write for short 

E k = EI~ 

Fk: {m,r (tk, j) + 6 (tk, j) < 0 for j = 0, 1, ..., nk}. 
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Then (5.14) is the direct combination of the following four relations, valid if 
nk= [log tk] and ~---, 0, A ~  0 sufficiently slowly as u-* oe. 

lira P(E(o r 0 =  lim P E k , (5.15) 
u ~ o o  ' - u ~ o o  _ 

lim P E k - P  =0,  (5.16) 
u ~ o o  

lim P - P(Fk)=O, (5.17) 
u ~ o o  _ = 

lim ( I  P(Fk) = e - ~  (5.18) 
u ~ o o  k = l  

To prove these relations we need to know a few more details about m,y(t), or 
equivalently - u  r'(t), and the process 6 (t). 

Lemma 5.6. For any constant 6 > O, y f ixed,  and T <_ t < T, we have 

] / ( 2 -  6) log t-< ] / ( 2 -  6) log Z < ]mu,, (t)I/a (t) < ]/(2 + 6) log T < ]/(2 + 6) log t 

i f  u is large enough. 

Proof. By Lemma 5.2, Im, y(t)]/a(t)..~ - u  r ' ( t ) /]~2 for T _< t<  T. Since 

-ur'( t)<= - u  r'(T ) = ] / ( 2 + 6 ) 2  2 log T_ < ] / ( 2 + 6 ) 2  2 log t, 

we have the right hand inequality. Since - t  r'(t)/r'(t) is bounded, the following 
inequality holds in the interval ( T -  T/log T, T): - u r'(t) < - u r'(T) + sup (u r"(t)). 
T/log T <  - u r'(T) + K/1]/~g T. Therefore 

T T 

r + K/ )2t 
J 

> K'  ~ exp 1 

from which it follows that - u  r ' (T )>  ] / ( 2 - 6 )  2 2 log T (since the left hand integral 
has a finite limit). Thus - u r'(t) > - u r'(T) > ] / ( 2 -  6) 2 2 log r > l ~ -  6) 2 2 log t 
as asserted. 

Lemma 5.7. The covariance function ~ of  the normalized process 6 (t) = 6(t)fl; (t), 

E(s, t )=c(s ,  t)/a(s) r (5.19) 
fulfills 

a) ~(t, t + h ) =  1 - (1  -t-gh-~-gh(t)) ~4 h2 "~2 2 (h > 0), 

where ga---,O as h~.O, and sup ]ga(t)l-*0 as t--~oo. 
h <= ho 
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b) There are ? > 1 and M such that 

[~( t , t+h)[<Mh -~ for t>O, h > 0 .  

Proof a) By definition, 

- c ( t ,  t)+ 2c(t, t + h ) - c ( t  +h, 3 + h ) =  -2 (22  +r"(h))+h 2 r'(t) 2 Fh(t), 

where Fh(3 ) is bounded  as h$0, t -+  oe. Divide by 

~(t) ~(t + h)= l/c(3, t) c(t + h, t + h), 

and observe that  
J~4 h2 

(;~2+r"(h))/1/c(3, t)c(t+h, t+h)=(l+L+L(t)) "~2 2 ' 

where f h ~ 0  as h~0, and sup [fh(3)[ ~ 0  as t---, oe. Including r'(t) 2 Fh(t ) in fh(t), 
h <= ho 

and writing a = l /c( t  + h, t + h)/c (3, 3 ) -  1, we get 

! 2~ h 2 
~(t, t + h ) = ~  { ( l + a ) + ( l + a ) - l } - ( l + s  22 2 

Now a ~ 0, so that  

a= ]/c(t + h, 3 + h)/c(t, t ) -  1 + 1 - 1 ~�89 + h, 3 + h) -c( t ,  t))/c(t, t)=h / (3) 2 Gh(3 ), 

where G h (t) is bounded  as h + 0, t ~ oo. The observat ion that  �89 {(1 + a) + (1 + a)-  1} = 
1 + a2/2 (1 + a) finishes the proof. 

b) Any ~ less than the number  7 that exists according to condit ion C 3.b will do. 

Proof of (5.15). Write v s for the number  of upcrossing zeros of the process 
muy(t)+t~(t ) for t~J=Q)Jk '  and let Vr_(y ) as before denote the number  of up- 
crossing zeros in (0, T_]. Then 

n 

O<P (k~lEk) --P(E(~ (Y)> 1)+ P(vs> 1), 

where P(v T (y)> 1)__< E(VT_ (y))--* 0 as u ~ ~ .  Fur thermore ,  as e ~ O, 

{ur'  
P(vs> l ) < E ( v s ) = f  ~o 4(m,f~r) 9g(tl,y)dt<K~ (~ d t ~ O .  

\1/~2 ! J J 

Proof of  (5.16). With 

v k = the number  of upcrossing zeros of m,y (t) + 6 (t) in Ik, 
V~, = the number  of upcrossing zeros of the sequence 

we have 
m,y(tk, j)+3(tk, j) for j=O,  1 . . . . .  n k, 

O<__P F k - P  E k <=P Ek*F k P(Ek*Fk) 
k -  k -  k -  

< P(Vk>I, vk=0)< E(Vk--Vk). 
k = l  k = l  
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To make this difference small, we take a small e >0  and choose u large enough to 
apply Lemma 5.5 and (5.5). Then 

2]~ 2 (ur' (t)] ~(0)dt, E(Vk)= ,k~c~ 7J(tl,r) dr__< (1 + e) ~b \ ~ - 2 !  

nk 

E(v~)= Z e(m,,(~k,j_l)+a(tk, i_l)<O<mo,(tk, j)+6(tk,)) 
j = l  

= E Qkj" (P(rnuy(tk, j)/ff(tk, j)) ~(O)'(tk,1--tk, j - 1 )  
j = l  

_->(1-~t~ Qkj .~  r ~(ot. (t~,i-~,i_11. (5.)_oi 
j = l  

Below we will show that 

Qkj-- P(rn,, (t k l_l)-]-t~(tk, j_l)<O<muy(tk, j)-I-t~(tk, j)) 

~ ~ (m., % i)1~ (t~, j)) ~(0) . (t~, i -  t~, i-  ~) 

is uniformly greater than 1 - e in all the intervals I k if u is large. If we then use the 
remainder of (5.20) as an approximating Riemann-sum, (remember that u r' (t) is 
monotonous), we get 

tP(O) dt, 

and 
n ~)~} f I/Z] ~ (ur'(t) t 

~E(Vk--V'k)<={(l+e)--(1-- ~=lIk l / 22 \ 1 ~ 2  ] ~P(O)dt<geo, 
k = l  = 

from which (5.16) follows. 

It remains to show that Qki is uniformly not less than 1 - e .  Suppress the 
index k and write 

x i = -- rn,, (tk, i)/~ (tk, i)' 3i = (~ (tk, i )~or (tk, i)' 

Ak=tk, i -- tkj_l  =(1 -~)A/n k, (j=(6j--61_l)/Ak, 

and let f j( ' , ' )  be the density function of the r.v. (3i_a, (i)" Then A~ -1 times the 
probability in Qkj is 

A~IP(xi-Ak (~J--(~J-I <~j_I <Xj_I) 
Ak 

> A~ 1 o~ xj_, 
fj(x, z) dx d z = (y = % -  x)/ Ak Z) 

z=O x=xj--AkZ 

oO 1 

= ~ z ~ f j (xi-AkZy,  z)dydz 
~=o y=(~j-~j_~)/~,~ (5.21) 

>= ~ ~ fj%-A~y,z)dydz. 
z = O  y = O  

Here we used that x j -  xj_ 1 < 0 for large u. 
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Now 6j_~ and ~i have a joint normal distribution with mean zero and the 
covariance matrix 

so that 

where 

D~ = (dlt2 dee I 2 A k 2 ( 1 - - ' C ( l ~ k , j _ e , ' k , j ) ) ]  ' 

fj(xj--AkZY, Z)-- exp ( -  A/2 det Dj), 

A=d22(xj-  Akz y)2- 2d12(xj- AkZ y)z + z 2. 

Here max A=Ay=o=dzzx2-2d l zx j z+z  2, (d22---2A~-ld12!), and we get the 
o=<y__<l 

following lower bound for the integral (5.21): 

oo 

S z _ _ 1  exp(_(d22x2_2dx2xjz+z2)/2detDj)d z 
z=o 2rq /de t  Dj (5.22) 

1 oo 
- 2 r c ~  exp( - �89  D~)dz. 

If~=g(tk, j_l, tk, j) then, by Lemma 5.7a, we have detDj=A~Z(1-~2)-.24/22 as 
A k ~ O, tk, i_ 1--" oe. Since furthermore, by Lemma 5.6 and 5.7 a, 

[d12xjl=A;1(l_~) [m",(tg, i)[ <KAk ll/~ <KAn;~ l ~ t k ~ O  ~(t~,j) t~,j 

if n k = [log tk], the integral in the right-most side in (5.22) tends to 24/22. Thus 
the lower bound in (5.21) is at least (1-e) 2]~4/2z4)(xj) ~(0), i.e. Qk~> 1--e. The 
proof of (5.16) is complete. 

Proof of (5.17). We will estimate the difference P ( n  Fk)--1-IP(Fk) by a method 
originally used by Berman [-1] and improved by Cram6r and Leadbetter [3], et al. 
The present version uses the following inequality, due to Qualls and Watanabe [,-11]" 

- P(Fk) < ? . E  Y. Y'. I~j] 
\ k = t  , '  l < = k < l < = n i = O j = O  

(5.23) 

�9 S4~(xk~, xu; . ~ 0 d , L  
0 

where, for i=0,  1, ..., nk,j=O, 1 .... , n~, (g beeing defined by (5.19)) 

~ij = ~(tk, i, t~, j), x k i =  - m . .  (tk, 3 /a  (t~, 3,  

and q~(.,.; p) 
coefficient p: 

is the standarized, bivariate normal density with correlation 

1 
dp(x,y; 2 ~ ) = 2  ~ 2 V  l - z ' c  exp(- �89 

B (2) = (x 2 - 2 2 ~ x y + y2)/(1 - 2 z ~2). 
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Since, by Lemma 5.6, Xk, i, Xz, j > l ~ - -  6) log T, we have B (2) > ( 2 -  3) log r .  
(2-22~)/ (1-22~2)>2(2-6)(1+1~[)-11ogT,  and so the integral in (5.23)is 
bounded by (2 re)- 1 (1 - ~2)-~ exp { - (2 - 6) (1 +[~[)- 1 log r}. Now the time has 
come to choose the value of 3, used as an unspecified positive constant in (5.12), 
Lemma 5.6, and elsewhere. Since there is an e>0, such that min(1-~2)>e,  we 
can find a 3 > 0  so small that ( 2 -6 ) (1+1~[ ) - ~ > 1 + 6 ' > 1  for all ~. The integral 
in (5.23) is then bounded by 

(2 rc)-l~ - ~ exp(-(1  + fi')log T). (5.24) 

To estimate ~i~ in (5.23), we use Lemma 5.7b: there is an M such that [~(t, t+h) [<  
M h - <  Since [tk, i--h, j l>ltk--t l[--(1--~)A > A [ k - l [ - ( 1 - c O A ,  we therefore have 

[~i~l < Mltk,~-tt, j l-  ' < M~A- r l k - l [ - ' .  (5.25) 

Using n k = [log tk] < log T, and inserting (5.24) and (5.25) into (5.23), we get the 
following upper bound for (5.23): 

~ E  nknzM'~A-rlk--ll - ~ - ~  exp(--(1 +3') log T) 
l < k < l < n  

<M'~'A -7 ~ (log T )2 lk - l l - '~Z  - l - x  
l N k < l < = n  

co 

< M'~'A - '  ~ (log T) e T -1 -x  2 v - '  
k = l  v = l  

< M " A  -~ TA -1 (log T) 2 T-I -X=M'~"A -1-7 (log T) 2 T -x. 

Thus the double sum in (5.23) is bounded by a function of T that tends to zero as 
T ~  oo. The bound may become large when A and e are small, but it can be kept 
small by regulating the rate with which they tend to zero. This completes the 
proof of (5.17). 

Proof of (5.18). We have to prove that if 

(t) = m . ,  (0/~ (0, 3(t)  = 6 (t)/~ (t), 

and the event F k is {N(tk, i)+~(tk,~)<O for i=O, 1 . . . .  , nk} then 

- ~ log P(Fk) -+ O. 
k = l  

The idea in the proof is to approximate the covariance function ~ of the non- 
stationary process 6 in each of the intervals I k by two simple covariance functions: 

By Lemma 5.7, for any e > 0, there is (1 - e)A such that for all large t 

c + (h)<=?(t, t + h ) < c -  (h), 0_h_<(1 -c0A. (5.26) 

Now let {6+(h),heR} and {6-(h) ,h~R} be separable, stationary, Gaussian 
processes with mean zero and the covariance functions c § and c- respectively. 
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Hence they are simple cosine-processes! By a well-known theorem by Slepian 
[12, Lemma 1 and Theorem 1], the suprema of normalized Gaussian processes 
are stochastically ordered, in the sense that a process with a uniformly greater 
covariance function has a greater probability of staying below a certain boundary, 
see the relations (5.29) below. 

To formulate Slepian's result in this context, define 

ur'(tk+l) ur'(tk) 
A m k - - -  m ~  - A m k ,  m ~  - -  t- A m k .  

ulr'(tk)l' ~ 1~2 

By Lemma 5.5, N 2 ( t ) -u  2 r' (02/22 ~ 0 so that, for t e Ik, 

m + < - ~ (t) < m[. (5.27) 

Since P(Fk) = P(3(tk, i) < -- m (tk, i), i = O, 1,..., nk), (5.27) implies that 

>P(3(tk,)<rn ; ,  i=0, 1~ ..., nk) = Pll + 
P(Fk) say. (5.28) 

<--_P(3(tk,)<m; , i=0, 1 .... , nk)=P ~- 

Let A k = (1 -~)A/n k. Then Slepian's result, combined with (5.26), implies 

t]1+ >P(6+(iAk)<=m~, i=0, 1, ..., nk) 

>P(6 + (h)<m~, 0 < h < ( 1 -  g)A) = P2 +, say. 

P1- <P(8-(iAk)<=m ; ,  i=0, 1, ..., nk) 

< P(6- (h) < rn~-, 0 < h < (1 - ~)A) (5.29) 

(5 -has  at least two m~--crossings in one of ) =Pz- +Q, say. 

+ P  the intervals [iAk, (i+ 1)Ak], i=0, 1, ..., n k -  1 

The probabilities P2 + and P2- can be computed, see Slepian [12]: 

pz+=(b(m~_ ) (1-~)A (l+e) 2 V ~  2 ~  exp(-�89 

>1 (1 - -~)A( l+e)Z l /~_exp(_~mk 2), since m~-  ---+ o o  ~ 
- 2n Vz: 

P2-=~(m[) (1-a)A2n (1-e)l/~-~42exp(-�89 

_-<1 (1-~)Azn (1-e)~)~geXp(-�89 

From the definition of m~ and m~- it is easily seen that the exponentials in these 
expressions are asymptotically equal to exp( -u  2 r' (tk)2/2 •2), SO that 

3 1 ~ /~4  ' 2 p2+> 1 -  (1-a)A2n (l+e) V ~ e x p ( - u  r'(tk)2/22z) 
(5.30) 

p2_<l (1-  ~)A ~ 2 ~  2n (1-e)2 exp(_u 2r,(tk)2/222). 
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Since 6-  is a simple cosine-process, the probability Q can be estimated by inte- 
gration: 

{there is a subinterval of length ( 1 - e ) A / n  k in I k in 
Q = P  ] which 6- has at least two crossings of the level m{ 

__< const �9 n k �9 P(at least two crossings in (0, A/nk) ) 

< const �9 n k (A/nk) am;  exp(-- �89 m/- 2) = o (1) exp (-- u 2 r' (tk)2/2 22). 

In total, we get 

PS+Q_-_I 3- 2/&4 2 (1-~)A ( l - e )  - -  exp(--u 2 ~  V ' ~ 2  r'(tk)2/222)" (5.31) 

Summing the estimates (5.28)-(5.31), we obtain 

>" 3 1 ~/~-4 " 2 P(Fk)~=l (1 -e )A ( l+e )  ~ - e x p ( - u  27r - V ;~ r'(tk)2/222)" 

Standard inequalities for log (1 - x )  finally yields 

- i l ~  i A ~ ] / ~ 4 e x p ( - u 2 r ' ( t k ) 2 / 2 ) ' 2 ) + R ,  
k = l  - -  k= l  27~ [/ )~2 

= ( 1 - ~ ) ( 1 + 0  3 ~ A  2]/~c~(ur'(tk)/]f~2) T(0)+R.__<(1-~)(1 + 0  3 0 + R , ,  
k=l  V /~2 

where R,__< const �9 ~, A 2 exp ( -  u 2 r'(tk)2/2a) --~ 0 as A --+ 0 and u -* oe. Similarly 

- logP(Fk)>(1--~)(1--O 3 exp(--uar'(tk)2/222) 
k = l  k = l  ZT~ I/ A 2 

~_~(1--~)(1  __g)3 0 - } - 0 ( 1 ) .  

Since e is arbitrary, and ~ is permitted to tend slowly to zero, we have proved (5.18). 

This completes the proof of Theorem 5.2. 

6. Decreasing Covariance Function 

-r"( t ) / r ' ( t ) - -~C,  0 < C < o %  as t ~ c o  

This section deals with the case when the constant C = lim - r (k) (t)/r tk- 1) (t) is strictly 
positive or infinite. As in Section 5 we will define a function T (=  TC(u), T~(u)) 
such that E (VT) has a finite limit as u ~ ec; vt being the number of upcrossing zeros 
of ~'.(s) is (0, t ]  

Theorem 6.1. I f  r fulfills condition C 3, if - r" ( t)/r' ( t) --~ C as t --~ c% with 0 < C <= ~ ,  
and if T c = TC(u), T ~ = T~(u) --+ ~ as u -+ ~ so that 

- u r ' ( T C ) =  1 (0< C <  ~) ,  

- u r ' ( T ~  (C=  o9) 
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then, as u---~ oo, 

E(vrc+x) ~ ~ -~4 ( o ( e - c t / l / ~ z ) T ( C e - C t / l f ~ 4 ) d t  ( 0 < C < o o ) ,  (6.1) 
- - O O  

~ / 0  for x < 0  

E(VT=+x) 1 x 1/f44 (C=  oo). (6.2) 
[ 2 - + ~ - ~  V ~  for x>_-0 

Remark. The right hand limits in (6.1) and (6.2) are actually lim E(pr+x), where 
/4 is the number of upcrossing zeros of u r'(s) + ~'(s) in (0, t], so that Theorem 6.1 
is a more explicit one than Theorem 5.1. 

Proof  The main ideas from the proof of Theorem 5.1 works, but since more 
can be said about - u r' (see Lemma 6.2 below), the proof will be simpler. This is 
also reflected in the more explicit statement of Theorem 6.1. 

Of course Lemma 5.1 and 5.3 hold unchanged, since their proofs do not 
depend of the value of C. Lemma 5.2 must be replaced by 

Lemma6.1. I f  y _  = T =  T c, Too then 

m.y( t )  _ ur'( t )  (1+o(1)), 

ur"(t )  (1 +o(1)), ,7.,(t)= 

where o(1) -~ 0 uniformly in [y[< y_ as u ~ 0% t -* oo (for 0 < C < oo), and uniformly 
in ]y[<= y_,  to <t<-<_Too as u---~oo, to---~ oo, to<Too, (for C =  oo). 

Proof of  Lemma 6.1. It is only for C = oo that we need to modify the proof of 
Lemma 5.2. Since p( t )=o(?V( t ) )  if C=  oo, the residuals R,y and S,y in (5.10) are 
uniformly small if 

a) r'"(t)rlV(t)/r"(t)-*O; this again follows from the convexity of (-1)kCk)(t). 

b) y_/u, y_ r"'(T)/ur'(T),  y_ r lV(T)/ur"(T)-- ,O as u ~ o o ;  by C3.c and the 
definition of T oo we have M u T - Z > - u r " ( T ) - - ~ o o  so that y _ / u = T / u ~ O .  Also 

[Tr '"(T)/u r'(T)] z=  - T 2 r'"(T) . [r"(T) r'"(T)/r'(T)] ~-~ O, 

and 
[Tr~V(T)/u r"(T)] 2 = T 2 rIV (T) �9 [ -  r '(T) r~V(T)/r"(T)] --* O. 

The choice of the splitting point T_, which had to be made carefully in Section 5 
(definition (5.12)), is here simpleminded. All we need to do is to let T - ~  oo so that 
E(vr_ ) ~ 0; actually it suffices that - u r'(T_) -* oo. Lemma 5.4 is therefore super- 
fluous. 

The following lemma motivates both the name "exponential case" for 
0 < C < o% and the choice of Too for C = oo. 

Lemma 6.2. As u ~ oo then, for any t o > t' o > O, 

- u r ' ( T C + t ) / e x p ( - C t ) - - ~ l  uniformly in I t ]<t  o (0< C <  oo) 
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- u  r'(T ~ + t) -*~o9 [ 
( 0 

ur"(T~ + t)--~{ 090 

uniformly in - t o < t < - t o 

uniformly in t >- 0 

uniformly in - t o < t < O 

uniformly in t > t o . 

(c=og) 

Proof of  Lemma 6.2. If  - r"(t)/r'(t) --> C < o9, > 0 then for every E > 0 there is 
a t* such that  - ( C - e )  r '(t)<r"(t)< - ( C + e )  r'(t) for t>=t*. By continui ty argu- 
ments,  this can be shown to imply  that  - r'(s) exp ( -  (C + ~) ( t -  s)) < - r'(t) < 
-r'(s) e x p ( - ( C - e ) ( t - s ) )  for t > s >_ t*, which gives the l emma  in this case. 

If  - r"(t)/r'(t)--+ o9 the result follows if one considers the definition of T %  

Of course the uniform convergence in L e m m a  6.2 takes place even if t o---> o9, 
t o ~ 0  sufficiently slowly. Therefore  we can find T = t o ~  o9, such that  T _ -  
T---> - o9, - u r'(T_) ~ o9, E(VT_ ) --, O, and such that  the conclusions in L e m m a  6.2 
hold. 

N o w  separate  C < o9 and C = o9, and let y_ = T =  T c, T %  0 < C < o9 : If 

then we shall prove  that  E(vr+x)  has the limit 

T + x  T + x  

l im~ ~ o)O(m~y/a)TJ(q.y)q*(y)dtdy=lim ~ I 
y t=O ]yl<y_ t = T -  

=l i ra  { A(s )ds= S A(s)ds.  
s = T - - T  -oo 

But this is easy; we only need to note  tha t  

o) (T + s) 0 (m.y (T + s)/a (T + s)) 7J(tl.,, (T + s))/A (s) -+ 1 

uniformly in T - T < s < _ x ,  l y l<y_  as u--*og. C = o g :  First  take x < 0  and let 

e > 0  be arbi t rary.  Since t / .y ( t )~u  r"(t)/]/~4--, o9 we have 

Im.y(t)/a(t)l > - ( 1  - e )  u r'(t)/1/~22 and T(q.y(t))<(1 +~) u r"(t)/l/~4 

uniformly in T < t-< T +  x, {Yl < Y_ for large u. Thus 

T+x ~ T+x U r'(t) ] U r"(t) dt 

) ( 2 ( 1 - e )  

This in turn gives that  l im E ( v r + ~ ) = 0  if x < 0 ,  and that  lim s u p E ( v r ) <  �89 A 
reverse inequali ty is ob ta ined  f rom 

E (v r (y)) > P (v r (y) >= 1)__> P(m,y (T) + 6 (T) > O) = q5 (m,y (T)), 

(cf. the definition (5.3)). Then m,y( T)-*  0 implies lira inf E(vr(y)) >= �89 lira inf E (vw) >= �89 
and subsequent ly  the theorem if x = 0. 
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It remains to show that if x > 0 then 

(T+x dt} q*(y)dy--, x ~ ] / ~  (6.3) 
[Yl ~Y_ l T~ (.0 q~(muy/O ) ~t/(r/uy ) 2~zg ~2" 

But for any t in (T, T+x) both m,y(t) and t/~y(t) tend to zero, so that the inner 
integrand in (6.3) tends to 21/f~4/22 ~b(0)~P(0)= A1/~j2/27r. Simple calculations 
show that the convergence is dominated, and thus (6.3) follows. 

This completes the proof of Theorem 6.1. 
In Theorem 6.1 we used that m~y (T+ t) is approximately known for moderate 

t-values. We will now more explicitly use that 6 (T+ t) is asymptotically equivalent 
to ~'(t) for large u, and compare the zeros of muy(T+t)+8(T+t ) with certain 
function crossings of ~'(t), and so get the asymptotic 'distribution of the wave- 
length z~ defined by (2.6). 

Theorem 6.2. With the same notations and conditions as in Theorem 6.1 

P(z u-  TC < x)--* 1 -P(sup ~'(t)-e-C' <O) (0< C<  oo), 

0 for x < 0  
P ( % - T ~ ~  l - P (  su<p ~'(t)<0) for x>O (C=oo).  

0=t=x 

Proof The crucial point in the proof is the observation that the translated 
process 

r6(t) = 6 (T+ t) 

converges weakly to ~'(t). More precisely, let ~T and N be probability measures for 
the processes {Tcs(t), I tl < to} and {~'(t), I tl < to} respectively on the space {C, cg} 
of continuous functions with the topology for uniform convergence. 

Lemma 6.3. ~ T ~  as T ~oo, i.e. NT converges weakly to ~. 

Proof of Lemma 6.3. The process r6 has the covariance function c(T + s, T+ t) 
which tends to - r ' ( s - t )  as T ~  c~, so that all finite-dimensional distributions 
of ~ r  tend to those of N. To establish that ~ T ~ N ,  we have to prove that {T6} 
is tight, see e.g. Billingsley [2, Ch. 2]. A sufficient condition for this is 

a) s~p v(T(~ (0)) < 0(2), 

b) there are To, ho, K such that, for T >  To, Ih] _-<ho 

v(T (~ (t + h) - w6 (t)) < K h 2. 

Here a) is  obviously fulfilled, since V(r6(0))= V(c3(T))=c(T, T), which tends to 
A 2 < oo as T ~  ~ .  For b), we recall from the proof of Lemma 5.7 that 

V(r6(t+h)-r6(t))=c(T+t +h, T+t +h)+c(T+t, T+t ) -2c (T+t+h ,  T+t) 

< 2 (2 2 + r"(h)) + K 1 h 2 < K h 2 

for small h and all T. 
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N o w  let e > 0 be small and define 

[(1 +a)  e x p ( -  C t) (0<  C < o v )  

m~+ (t) =~  oo for t < O  
(c:oo),  ! 

re. for t = O  

[ ( 1 - e ) e x p ( - C t )  (0<  C < o o )  

m 2 ( t ) = l O t / e  for t < 0  ( C = o o ) .  
for t > 0  

Also write, for fixed y, Tmu(t ) = muy(T+ t). Then, L e m m a  6.2 implies that, for any to, 

m[( t )<- -Tmu( t )<m+(t )  for ] t [ < t  o (6.4) 

holds for all sufficiently large u. It is also possible to find a t o such that  

1 -- P(~'(t) < m + (t) for t < -- to) =< ~, 

and such that, for all large T, 

1 - P ( r b ( t ) <  --Tm,(t) for -- T < t <  --to)<__e. 

Then, by (6.4), 

P(muy(t)+6(t)<O for 0 < t <  r +  x) 

= p(Tm u (t) + T6 (t) < 0 for - T <  t < x) 

< P(T6 (t) < m + (t) for -- t o < t < x), 

and the weak convergence in L e m m a  6.3 implies that this expression tends to 

P(~'(t) < m + (t) for - t o < t < x) 

<n(~'(t)<m~+(t) for t < x ) + e .  

Therefore 
lira sup P(zu> T+x)<e(~ ' ( t )<m+( t )  for t < x ) + e .  

u ~ o o  

A lower bound  for P(muy(t)+6(t)<O for O < t <  T + x ) i s  

P(r6  (t) < - rmu (t) for - t o < t < x) 

--(1--p(TcS(t)< -- rmu(t ) for -- T < t < --to) ) 

> p(T(~ (t) < m[ (t) for -- t o < t < x)-- e, 

which has the limit 

P(~'(t) < m j  (t) for - t o < t < x ) -  e 

> P(~'(t) < m 2 (t) for t < x ) -  e, 
and so 

(6.5) 

lim inf P(ru > T +  x) >= P(~'(t) < m[ (t) for t < x ) -  z. (6.6) 
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Since the right hand sides in (6.5) and (6.6) can be made arbitrarily close to the 
required probability by taking e small, we have proved the asserted convergence in 
Theorem 6.2. 

7. Distribution of Amplitude, Decreasing Covarianee Function 

The amplitude, or crest-to-trough wave-height, 6, = u - 4 ,  (%), defined by (2.6) 
tends to be of the order u after a high maximum. In the exponential and over- 
exponential case (0 < C < ~ in condition C 3.c) even more can be said about its 
distribution. Theorems 7.1 and 7.2 give details. 

Theorem 7.1. If r fulfills condition C 3 then the amplitude 6~ is of the order u as 
u - - ~ ,  i.e. 

6ju ~ ~1 as u~oo. 

Proof By definition (2.4) 

- 1  rt - 1  6ju=(u-~,(z,))/u= 1-r(v,)+u r/,(2 2 r (%)+r  (%))-u A(%). 

Since, by Lemma 5.1, z, tends to infinity in probability both r(%) and 
u -1 flu(2 2 r(zu)+ r"(Zu) ) tend to zero, and we have only to estimate u-1A (z,). Since 
A (0) = 0 (a. s.), we have 

lu-lA(Tu)l=u-1 f 6(t)dt<u-lT"o<t<~sup 16(01. 

Thus, for all t,, x u > 0, 

P(lu-XA(~)l~u-Xt.x~)~P(m.~t., sup IO(t)l~x.) 
O < t < t u  

> 1 -P(z,  > t,)-P(osUpJ6(t)[ >x,) .  
(7.1) 

By condition C3.b, there is a 7> 1 and a constant K such that ]r'(t)[ < K  t -v for 
large t. Take 6 > 0 and 1 < 7' < 7, and define 

t, = u 1/r', x, = ]//(2 + 6) 2 2 log u 

Then it is an easy consequence of Theorems 5.1 and 6.1 that 

P ( % > t . ) ~ 0  as u ~ o v .  (7.2) 

Also, if t o ~ oo slowly enough, then 

l imP(  sup ]6(t)[>x,)= l imP(  sup [6(t)[>xu) 
u ~  O < t < t u  u ~ o o  t o< t< tu  

<_limpI6(t) crossesoneofthelevels i x . }  
- , ~  Lat least once in (to, tu) 

< l im E (the number of crossings of + x, by 6 (t) in (to, tu) ). 
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This expecta t ion can be calculated" by a similar formula  as (5.3), and is less than 
or equal  to 

K ~ ) ( G / a  ) ~t' ~ x,  d t < K ,  Gx ,  exp(_x2/ (2+6)22  ) 
to y / l  2 r 

Thus  
= K" u 1/~' . 1J/log u. exp(  - log u) --~ O. 

P(  sup 13(t)l>xu)--~O. (7.3) 
O<t<tu 

Since, fu r thermore  u -  1 t, x~ - .  0, we  can insert (7.2) and (7.3) into (7.1) and conclude 
that  u -1A ( G ) ~  0 in probabil i ty.  This proves  the theorem.  

Theorem 7.2. I f  the conditions of Theorem 6.1 are fulfilled, and if the r.v. z is 
defined by 

inf{t; ~'(t)>e -ct} (0<  C < o e )  

i n f { t > 0 ;  ~ ' ( t )>0} ( C =  oe), 

then, as u ~ o% 

(ru-TC,  3 - u )  s o , ( z , - C - l e - C r  (0<  C <  oo) 

(%-T~ - u) so ,(% - ~ ( z ) )  ( C =  oo). 

Remark. It  is easily shown that  the r.v. r is finite (a. s.). 

Proof We already know that  ~ = z  u -  T s~ , z, ( T =  T c, T~176 Also 

(z , , -  T, ~ -  u) =(~, - u  r ( T + ~ ) + G ( 2  2 r ( T + ~ ) + r " ( T + 7 ) ) - A ( T + ~ ) )  

=(G - u  r ( T + ~ ) + o v ( 1 ) -  TA(~)), 

where %(1) 
C = oe, and 

, O, u r(T+~) ~ C -1 e x p ( -  C~) or 0 according to if 0 < C < oo or 

t 

r A ( t ) = A ( r + t ) = r A ( O ) +  ~ r6(s)ds,  r 3 ( t ) = f ( r + o .  
0 

If we use the tightness cri terion in the p roof  of L e m m a  6.3, now on the condit ional  
process (rS(.)l rA (0)= x), we can conclude that  rA (7) behaves like 

~(o)+ ~ ~'(s) ds=~(~), 
0 

and get the theorem.  
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