
Z. Wahrscheinlichkeitstheorie 1,288--294 (1963) 

A Ratio Operator Limit Theorem 
By 

J. L. DOOB 

1. Introduction 

Let (X0,/to) and (Xi , / t i )  be measure spaces. We omit reference to the classes 
of measurable sets, and all sets used below are assumed measurable even when 
the assumption is not made explicitly. Let  T be a linear transformation from 
Li(X0,/ t0)  into L i ( X i ,  #i) which is positive (that is, takes positive functions 
into positive functions) and has norm ~ 1. There is then an adjoint transforma- 
tion T* from Loo(Xi,/ti) into L~(Xo, #0), also positive, with L~ norm ~ 1 .  
If/t~ is not a-finite, Loo (Xi,/t~) has the usual lupremum norm but by  definition each 
of its functions vanishes off a set, depending on the function, which is the union 
of countably many  sets of finite measure. The adjoint T* is determined by  

(1.1) f ( T/0) gi d/ti = ~/0 T* gi d/t0. 
X1 X2 

I t  follows tha t  T* 1 ~ 1 a.e. on X0. In  particular, suppose tha t  the measures are 
finite and tha t  T 1 ~ 1 a.e. The latter condition is equivalent to the condition 
that  T* does not increase Li  norms. I t  follows tha t  T* has a unique linear ex- 
tension taking L i (X1 , / t l )  into Ll(X0,  #0) with Li  norm ~ 1. The extended 
transformation will also be called T*, and the relation between T and T* is now 
symmetric. Finally, if  T1 ---- 1 a.e. and if T * I  ~ 1 a.e. T will be called 'bisto- 
chastic' following ROTi [4] (who however assumed that  the two measure spaces 
were the same). The transformation T is bistochastic if and only if T* is. 

Throughout this paper, (Xo,/to), (X1,/t i)  . . . .  are measure spaces, Tn is a 
positive linear transformation from Li  (Xn-i, / tn-i)  into Li  (Xn, ten), of Li  norm 

1, and Tin -= Tn . . .  T1, so tha t  Tl* ~- T ~ . . .  T*. The following theorem is 
due to ROTA, aside from certain specializations he made tha t  were not needed 
in either his discussion or proof. 

Theorem 1.1. I/each Tn is bistochastic and i] /o is a/unction on Xo satis]ying 

Y I/01 log+ I/ol dte0 < 
Xo 

then lim Yi* Tin/o exists a.e. (teo) and in the Li (Xo,/to) topology. 
~ - - Y c o  

BVgX~OLDEg [2] has given an example showing tha t  the theorem is false if 
/ is only supposed in L1 (X0,/t0)- 

The purpose of this paper is to give a simplified approach to ~OTA'S method 
which makes its relation to standard probabili ty reasoning clearer, and to extend 
the theorem to non bistochastic operators. In  this extension the theorem becomes 
a ratio theorem. 



A l%atio Operator Limit Theorem 289 

2. The conditional expectation technique 

ROTA'S method and tha t  used in this paper rest on the following simple 
remark,  and the only question is how to exploit the remark most  advantageously. 
Let  x0, xl . . . .  be a Markov process on some probabil i ty measure space. Then if / 
is integrable on the x0 space and if the usual probabili ty notation is used, 

(2.1) E{/(xo) [ xn, Xn§ . . . .  } = E{/(xo) l xn} , 

because the reversed xn sequence is also a Markov process. Moreover the condi- 
tional expectation is with respect to less and less as n increases, so the sequence 
of conditional expectations ordered as n decreases is a martingale. I t  follows tha t  
the sequence of conditional expectations converges a.e. and in L1, 

(2.2) lim E(/(xo) lxn} = E(/(xo) l ~ } ,  
~ - - o .  o o  

where ~ is the tail field of the Xn sequence. Now it is known [3] tha t  one can 
take limits under the conditional expectation symbol to get 

(2.3) lim E{E(/(xo)  lXn}]Xo} ---- E ( E ( / ( x o ) ] ~  [x0} 

a.e. and in the L1 topology if the Lebesgue dominated convergence criterion 

(2.4) E{sup IE{/(xo)[Xn}[} < 
n 

is satisfied. (Actually the condition is now known to be necessary in general, 
according to a theorem of BLACKW]~LL and DuBINS [1].) Moreover it is known [3] 
from martingale theory tha t  (2.4) is true if E{I/(x0)[log+[/(x0)[} < oo. Thus 
(2.3) is true under this restriction on /. I f  the conditional expectation in (2.3) 
can be identified with T~nTln/,  Theorem 1.1 follows. ROTA'S theorem will be 
proved applying the foregoing remark, and then the generalized ratio limit theorem 
for non bistochastic operators will be proved by  reducing it to ROTA'S theorem. 

3. A representation theorem 

The following remarks are not original, but there seems to be no single place 
in the literature where they are readily available. 

Let  .~ be a totally disconnected I-Iausdorff space, that  is, it is supposed tha t  
the class of clopen (simultaneously closed and open) sets is a base for the topology 
of the space. Let  ~ be the Borel field of sets generated by  the clopen sets. We 
suppose from now on tha t  ~ is compact.  The indicator function of a clopen set 
is continuous. The class of uniform limits of finite linear combinations of indicator 
functions of clopen sets is a closed (supremum norm) algebra of continuous func- 
tions including the constant functions and separating the points of ~ .  The class 
is therefore C(J~), the class of continuous functions on ~ ,  according to the Stone- 
Weierstrass theorem. The sets in ~ will be called the Baire sets. 

Let  X be a space on a Borel field of whose subsets a finite-valued measure / t  
is defined. The Boolean algebra of measurable subsets of X, modulo sets of 
measure 0, is isomorphic to the algebra of clopen sets of a totally disconnected 
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compact Hausdorff space X, according to the Stone representation theorem. The 
measure # is transformed into a positive finitely additive function ~ of clopen sets. 
I f  the algebra of X subsets modulo sets of measure 0 and the algebra of clopen 
subsets of X are metrized as usual (the distance between two sets is the measure 
of their symmetric difference), the first metric space is complete, so the second 
one is also. 

Since a clopen set can be expressed as a countable union of disjunct elopen 
sets only if all but  a finite number of the summands arc empty,  ~ is countably 
additive. Hence/~ can be extended to a measure (also denoted by  ~) of Baire sets. 
A non-empty open Baire set has strictly positive measure. Because of the com- 
pleteness remark at the end of the preceding paragraph, if  d is a Baire set there 
is a unique clopen set at zero distance from 4 .  More generally, to any bounded 
function measurable with respect to the Baire sets corresponds a continuous 
function equal to it almost everywhere. 

We have thus obtained a 1 -  1 measure preserving correspondence between 
subsets of X and Baire subsets of ~ ,  modulo sets of measure 0, preserving the 
Boolean operations, in which we can take a clopen set as representative of any 
Baire set. I f  / is a function on X, taking only finitely many  values, / = ~ "  a I IAy 
where IA is the indicator function of the set A, define ~'as the corresponding sum 
in which A1 is replaced by  its image clopen set. Then T is continuous. I f  / is a 
bounded function on X it is the uniform limit of a sequence of functions of this 
type, and proceeding in this way we obtain a 1 -  1 correspondence between 
L~o (X, #) and C(X) or, and this amounts to the same thing in the present case, 
between Lo~(X, #) and L ~ ( ~ ,  ~). Moreover the respective norms are preserved. 
I / ] j  is bounded and has image ~j, 1 ~ j ~ n, and i/ q5 is a bounded continuous 
/unction ]rom Euclidean n-space to the reals, then qD (/1 . . . . .  In) has image q5(~1, 
. . . .  fin), and the composite/unction has the same integral as its image. These facts 
are true fo r / j  taking only finitely many  values and therefore as stated. We con- 
elude t h a t / 1  . . . . .  /~ and its image n-tuple have the same joint distribution. 

In  the map from Leo(X, #) onto L~()~, ~,) L1 norms are preserved. Hence the 
map can be extended to one from L1 (X,/~) onto L1 (X, ~). As such it preserves 
L1 norms and the above italicized statement remains true f o r / j  E L1 (X, #). 

4. Proof of t tota 's  theorem 

Under the hypotheses of Theorem 1.1, #(Xj)  does not change with j and is 
finite, so we can normalize the measures to make them all 1. In  proving the theorem 
suppose first tha t  T* is determined by  a stochastic transition function. That  is, 
suppose that  there is a function Qn of ~ in Xn-1 and A c Xn,  with the following 
properties: Qn (., A) is measurable for fixed A; Qn ($, .) is a probabili ty measure 
for each ~; 

(4.1) (T* /) (~) = .f /(~) Q~(~, d~) a.c. (~ -1 ) .  
Xn  

Let f2 = X0 X X1 • --" and let xn be the nth coordinate function on the product 
space. Define measure on the product space to make the xn sequence a Marker  
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process with initial measure/z0 and transition measures Q1, Q2 . . . .  , so that  

(4.2) E{05 (x0 . . . . .  xn)} = f/~o (d~o) f Q1 (~o, d~l).., f Qn-1 (~,,-2, dSn-1) 
Xo X1 Xn-  1 

�9 .i ~ (&,... ,  ~) (2,, (~n-1, d~n). 
Xn 

(See [3].) Then applying (4.1) it is trivial that  i fg  is a bounded function on Xn 

(4.3) (T;~g) (xo) = E{g(xn)[Xo} a.e. 

By definition, the distribution of x0 is #0. I t  follows from (4.3) that  the distribution 
of xn is #n, because if g = IA is the indicator function of a set A c Xn, and if we 
use P for measure on the product space, 

(4.4) P{Xn(~o)~A} =.fE{IA(Xn) lxo}gP = f T~nlAd/zo : 
Xo Xo 

= f l A  T~n ldi~n = ~un(A). 
Xn 

Then more generally, we conclude that if g ~ LI(Xn, jun), W{g(xn)} = f g d~un is 
finite and (4.3) is true. Finally if / ~ L1 (X0, #0) and if A c Xn, "~ 

(4.5) E{/(xo) IA(Xn)} = E{E{/(xo) IA(xn) Jxo} } = f/T~,,. J[A d/Ao = f T i n / d / ~ ,  
X.  A 

= E{(Tln]) (Xn)IA(Xn)} 

so that, by definition of conditional expectation, 

(4.6) (T~/)  (Xn) = E{/(xo) lXn} a.e.  

Thus Theorem 1.1 can be deduced as in Section 2: the desired limit relation has 
been reduced to (2.3). 

We must still show that  the hypothesis that  T* is given by a stochastic 
transition function can be eliminated. Map functions on Xn into functions on 
a Hansdorff space as described in Section 3. We define 5~ and ~* for the new 
spaces, defining the latter transformation first, as follows. I f  the clopen subset 
of 2~n is the image of the subset A of Xn, and if IA is the indicator function of A, 
define (~n ( , A) as the unique continuous image of * �9 TnlA. Then ~n(~,.) is an 
additive function of clopen sets and can be extended to be a measure of Baire 
sets. I f  ~n(~) = 0, s A) = 0 a.e. on J2n-1 because for every e > 0 ~ can 
be covered by a union ~ j  2k of elopen sets with ~ ~n (~k) < e, and if Az~ c Xn-~ 
is the image of ~ ,  ~ k 

f ~n (~, -d) [~n-1 (d~ e) ~ ~ f ~n (~, -dlc) ken-1 (d~) = ~ f T~ IAk ~un-1 (d~) 

k 1r 

Define T * f  for f in 51 (J~n, Pn) by 

(4.7) ~* f =  .[ f(v) 0n (~, d~). 
2,  
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In  justification of this definition first note tha t  if  the integral is well-defined for 
almost all ~, for two integrands which are equal a.e. then the integrals are them- 
selves equal a.e., according to the property of Qn just proved. Hence the proper 
measure 0 ambiguities are preserved. Furthermore if 7 is the image of ] and 
(T*/) ̂  tha t  of T*/  then ~ ' 7  = (T*/)  ̂  when ~ is the indicator function of a 
elopen set and therefore successively when f is continuous, bounded, in the class 
Li(2~n, ~n). The transformation ~'* is bistoehastic. Let  ~n be its adjoint and 
T in  = ~ 'n .  �9 �9 T i .  Then T n T =  (Tn]) ̂ , and the sequences {T~nTin], n ~  1}, 
{T~.~I.~, n ~ 1} correspond to each other in the mapping, Hence these se- 
quences have the same joint, distributions. Thus instead of proving convergence 
of the first sequence it is sufficient to prove convergence of the second, and this 
is the case already treated, in which the x-operators are given by  transition func- 
tions. 

5. The case T n l = l ,  T * I = < I  

In  this section we suppose, as a first step towards our final generalization of 
ROTA'S theorem, tha t  #n (Xn) < r for all n, tha t  Tn is a positive linear trans- 
formation from L l ( X n - i ,  ~tn-i) into LI(Xn, #n) and tha t  T n l  = 1, T* 1 < 1 
a.e. (See the discussion in Section 1.) Under these hypotheses, and making the 
extensions described in Section 1, T* as a transtbrmation of Li  spaces is integral 
preserving and so has norm 1. 

We shall use the inequalities 

(5.1) T * I  * * * 1 = * 1 . = T i n _ l T n l ~ T i n _  i a.e., I~n(Xn) fTn_l d~n-i <=~n-i(X~) 
X n - - 1  

Adjoin a new element @n to Xn for n ~ 0. The measurable subsets of the enlarged 
space X~ are to be the measurable subsets of Xn with or without @n and we 
define #n(@n) = #0(X0) - - # n  (Xn). Define Sn, S* by 

Sn/=T~[ on X~ 

l (1 -- T~ 1)fdlxn-i +f(e~-x) [~0(X0) -- ~ - ~  (X~-x)] 
X~-i at  @n 

(5.2) = ~0(Xo) -- ~n(Xn) 

where ] e L1 (X~_i,  #n-i) ,  

S,* g=g(@n)(1-- I ' * 1 ) +  T*ng on Xn-x 
L " . (5.3) = g (e~ )  at  e~ -~  

Here Tn/and T*g mean the application of the indicated transformations to the 
restrictions of ] and g to the unenlarged spaces. I f  the denominator in the second 
line of (5.2) winishes, the line may  be omitted, because @n then has measure 0. 
The transformations Sn and S* are bistoehastic and adjoint to each other. We 
write Sin for S n . . .  Si and find tha t  

(1 -- Tl~ l)fd#o 

Sl~ i n / - -  ~ 0 ( X o ) - ~ ( X ~ )  (5.4) * S x, ( 1 - -  T ~ I ) +  T~,Tin] on Xo,  

where the first te rm on the right is omitted ff the denominator vanishes. By  
ROTA'S theorem the left side of (5.4) converges almost everywhere and in the Li  
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topology when n -+ c~. In  view of (5.1), the first term on the right in (5.4) con- 
verges in the same way. Hence we have obtained the following useful but  rather  
trivial extension of ROTA'S theorem, which we shall use in the next section. 

Theorem 5.1. Theorem 1.1 remains true i / T n  is not necessarily bistochastie, but 
i / T n  is positive-linear/rom L1 (Xn-1, fn-a) into L1 (Xn , fn), o/ norm <= 1 and with 
Tn 1 = 1 a.e. 

6. The general theorem: the ease T* 1 __< 1 

In  this section we no longer suppose tha t  f n  is a finite measure. We assume 
tha t  Tn is a positive linear operator from LI(Xn-1, fn-1) into il(Xn, fn) Of 
norm ~ 1, that  is with T* 1 ~ 1 a.e. Let  h ~ 0 be a function in L1 (X0, f0) and 
define hn = Tin h, dr" n ~-- hn dfn. The relation 

(6.1) f (T* / )hn -~d fn - i  ~- f / h n d f n ,  / e L ~ ( X n , f n )  
Xn--1 Xn 

shows that,  in terms of the primed measures, T* preserves integrals. I t  follows 
tha t  T* /~ -  0 a.e. (f~-l)  if / vanishes on the set where hn is strictly positive. That  
is, T* defines a positive linear transformation T*' from L~ (Xn, #'n) into L~ 
(Xn-~, tz:_~) by the rule T * ' / =  T*/;  the measure zero ambiguities match as 
they should. Define 

(6.2) T , n / _  Tn(fhn-~) h~ ' / ~ L ~ ( X n - l ' f n - 1 ) '  ho = h, 

where the quotient is defined arbitrarily on the set where the denominator vanishes. 
Note tha t  Tn (/hn-1) vanishes a.e. (fn) where hn = 0. This fact is obviously true 
if / = 1, and is therefore true if / is bounded, and hence i f /hn-1 ~ L1 (Xn-1, fn-1),  
tha t  is ff / ~ L1 (Xn-1, fn-1). The transformation Tn is linear, positive, of L1 
norm ~ 1, and T'n 1 = 1 a.e. Moreover the adjoint transformation is T~* = T*'. 
The transformation T~n = T'n ... T1 is well-defined, and T;n / is determined by 
the restriction o f / t o  the set of strict positivity of h. Moreover T~ n / =  [Tln(/h)]/hn 
so tha t  

, ,  , ,, { Tln(fh) t 
(6.3) Tin Tin / -~_ Tin \ ~ ]  . 

An application of Theorem 5.1 now yields the main theorem of this paper. 

Theorem 6.1. Let (Xo, fo), (X1, f l )  . . . .  be measure spaces and let h ~ L1 (Xo, f0), 
h ~ O. Let Tn be a positive linear transformation/tom L1 (Xn-1, fn-1) into L1 (Xn, 
fn) o/norm <= 1, that is with T 21 <= 1 a.e. Then i /df 'n = Tlnh dfn,  and i/ / is a 
/unction on Xo satis/ying 

fl/I log+ Ill hdfo < ~ ,  
it/ollows that x. 

(6.4) lim T;* \ ~ ; ~ ]  
n--+r 

exists a.e. (fo) where h ~ 0 and also in the L1 (Xo, h dbeo) topology. Here TI* is the 
linear extension o/ L1 norm <= 1 o/ T~n to L1 (Xn, fin). 

Z. Wahrscheinl ichkei ts theor ie ,  Bd. 1 2 0  
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We note  t ha t  the numera to r  in  (6.4) vanishes a.e. where the denomina tor  
t $  

does, and  the values on this set do not  affect T in. I n  part icular ,  if h ~ 1 and  
Tn 1 --~ 1 a.e. the theorem reduces to Theorem 5.1. 
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