
Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 251 - 267 (1972) 
�9 by Springer-Verlag 1972 

Stochastic Abelian and Tauberian Theorems 

Ward Whitt * 

1. Introduction and Summary 

Let {Xn, n>0} be a sequence of random variables and consider the dis- 
counted sum 

o t ~  

D(z)= ~ zkXk, 0 < Z < I .  (1.1) 
k = O  

If we let {X,} represent a sequence of random payments evenly spaced in time, 
then D(z) represents the present value of all future payments when the discount 
factor is z. More generally, we can let a stochastic process {S(t), t>0} represent 
a cumulative income process. Then the integral 

of) 

D(s)= ~e-s~dS(v), s > 0 ,  (1.2) 
0 

represents the present value of all future income with a rate of interest s. Recently 
Gerber [8] proved a central limit theorem for D(z) when {X,} is a sequence of 
i.i.d. (independent and identically distributed) random variables with mean #, 
variance a 2, and finite third moment. As a byproduct of a discounted version 
of the Berry-Ess6en theorem, Gerber showed that the normalized random variable 

Y(z) = a -  1 (1 - z2) ~ [D (z) - # (1 - z)- 1] (1.3) 

is asymptotically N(0, 1) as z ~ 1, where N(a, b) denotes the normal distribution 
with mean a and variance b. Gerber also obtained a similar result for D(s) when 
S(t) is a compound Poisson process. 

It seems quite natural in this setting to look for some direct connection 
between ordinary stochastic limit theorems and associated discounted stochastic 
limit theorems. In the spirit of the classical Abelian and Tauberian theorems, 
cf. Widder [34], we would like to say one holds if the other does, thus eliminating 
the need to prove discounted stochastic limit theorems in each of the multitude 
of situations in which ordinary stochastic limit theorems are known. In order to 
obtain stochastic analogues of the classical Abelian and Tauberian theorems, 
we turn to the function spaces associated with weak convergence of probability 
measures, cf. Billingsley [1]. A cursory inspection of the random variable D(s) 
in (1.2) shows that it depends on the entire process {S(t), t>0} rather than any 
one random variable obtained by looking at the process {S(t), t>0} at a single 
time point. However, if we form the discounted stochastic process 

D(s, t)= i e-S~ dS(v), t_~O, (1.4) 
0 
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then a connection can be made between the stochastic process {D(s, t), t_>0} 
and the stochastic process {S(t), t>0}. The connection is a homeomorphism 
on D [-0, r] for any r > 0, which implies for any r > 0 that there is convergence in 
the function space D [0, r] for a sequence of random functions induced by dis- 
counted stochastic processes if and only if there is convergence for the correspond- 
ing sequence of random functions induced by the undiscounted stochastic pro- 
cesses. We only need to apply celebrated continuous mapping theorems, e.g. 
Theorem 5.1 of [1]. We do this not only for weak convergence, but also for 
convergence almost everywhere and in probability, so that we obtain discounted 
functional laws of large numbers and discounted functional laws of the iterated 
logarithm as well as discounted functional central limit theorems. For these other 
modes of convergence, our work relates to that of Gapogkin [7], Hanson and 
Wright [9], and references there. 

It is possible to obtain discounted limit theorems for all these modes of 
convergence because there are continuous mapping theorems for each mode. 
In fact, it is only necessary to apply the obvious continuous mapping theorem 
associated with almost sure convergence (f  (X,)--, f (X) a.s. if X, ~ X  a.s. and f 
is continuous) because each mode of convergence can be expressed in terms of 
almost sure convergence. For convergence in probability of a sequence of random 
elements in a separable metric space, it is well known that X , ~ X  in prob. if 
and only if every subsequence of {X,} has a further subsequence converging 
almost surely to X. For weak convergence in a complete separable metric space, 
the reduction to almost sure convergence is due to Skorohod [25], with extensions 
and applications by Dudley [5], Pyke [24], and Wichura [33]. If X,=~X, where 
X, and X are random elements with values in a separable metric space and =~ 
denotes weak convergence, then there exists a probability space (O*, ~*, P*) on 
which are defined random elements Y, and Y such that Y,~Y a.s., Y,~X,, and 
Y~X, where ~ denotes equality in distribution. Continuous mapping theorems 
follow immediately from such representations. These almost sure representations 
are extremely important because they show that the arguments can be carried 
out without reference to the probability measures. 

It turns out that the functional limit theorems above are not sufficient to 
obtain discounted limit theorems for the present value of the entire stochastic 
process {S(t), t>0}. For this purpose, we introduce a new topology on the func- 
tion space D [0, oo) which is stronger than Stone's [28] topology on O[0, on). 
Our new topology is a natural generalization of a topology put on C [0, oo) 
by Miiller [18]. This topology also brings us closer to the classical Abelian- 
Tauberian situation because in this topology we can go from functional limit 
theorems for the undiscounted processes to functional limit theorems for the 
discounted processes, but not the other way. Under Gerber's hypotheses [8-1, 
Corollary 4.1 here or Theorem 1 of [18] and Theorem 3.1 here imply Gerber's 
central limit theorem for Y(z) in (1.3). 

One principal conclusion is that we can get discounted stochastic limit 
theorems, of both the functional and the ordinary kind, if we can prove func- 
tional limit theorems for the basic stochastic process {S(t), t >0}. Thus, we might 
ask how hard is this condition to verify. It turns out not to be as stringent as it 
might appear. For example, consider functional central limit theorems. Roughly 
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speaking, functional central limit theorems hold whenever ordinary central limit 
theorems hold. In addition to functional central limit theorems for a sequence 
of partial sums of i.i.d, random variables with finite variance (Theorems 10.1 
and 16.1 of [1]), similar theorems exist for dependent sequences, Chapter 4 of [1] ; 
partial sums from triangular arrays, Theorem 3.1 of [21], p. 220 of [20]; con- 
ditional sums, [15, 16]; random sums, Section 17 of [1], Lemma 1 and Corollary 1 
of [12]; processes with stationary and independent increments as well as partial 
sums of i.i.d, random variables in the domain of attraction of a stable law, 
Theorem 2.7 of [26]; renewal processes, other counting processes, and first 
passage time processes, Theorem 17.3 of [1], Theorem 1 of [13]; functionals of 
Markov chains, [6] and [27]; and random walks, birth-and-death processes, 
and diffusion processes, [29]. Undoubtedly, this list is incomplete, but it is at 
least representative. A warning is appropriate here, however. All of these func- 
tional central limit theorems have been proved in D [0, 1]. Since they usually 
hold in D[0, r] for any r>0,  they usually hold in D[0, ~ )  with Stone's topology 
[28], but they have yet to be demonstrated in/)  [0, oe) with the stronger topology 
introduced in Section 3. However, Miiller's success [18] in the case of partial 
sums of independent random variables satisfying the Lindeberg condition suggests 
that corresponding theorems hold in the other cases as well. 

In addition to the simple financial setting described at the outset, there are 
significant applications of discounted stochastic limit theorems to dynamic pro- 
gramming over stochastic processes. New stochastic criteria and stochastic 
sensitivity analyses in dynamic programming can be developed by focusing on 
the total reward stochastic process instead of the total expected reward (deter- 
ministic) process. Stochastic criteria can be defined in terms of limit theorems 
for the total reward stochastic processes. Central limit theorems for the total 
reward processes associated with dynamic programming over Markov chains 
were apparently first proved by Hatori [10, 11], but existing limit theorems for 
functionals on Markov chains and Markov renewal processes also serve this 
purpose; see [1], [6], and [22]. The theorems in this paper are significant in this 
regard because they relate stochastic averaging criteria with stochastic discounting 
criteria when the interest rate is small. In this way, we can obtain stochastic com- 
plements to recent optimization work by Denardo [3] and Veinott [31]. These 
ideas were introduced in an earlier version of this paper and will be discussed 
in more detail in a subsequent paper. 

We now chart the way ahead. In Section 2 we establish equivalence of con- 
vergence in D [0, r]. We introduce the new topology on D[0, oo) in Section 3 
and provide sufficient conditions for convergence of the present value of the 
entire discounted stochastic process. Section 4 is devoted the special case in 
which {S(t), t>0} is generated from partial sums of i.i.d, random variables. We 
treat this case in order to obtain the distribution of the limiting process in Sec- 
tions 2 and 3, but the proof there is also of independent interest. In Section 5 
we give an inequality for the probability that the discounted process remains 
between two bounds, which we obtain by applying results of Skorohod [27] 
and Miiller [18] for partial sums of uniformly bounded i.i.d, random variables. 
We conclude in Section 6 with a brief discussion of stochastic analogues of other 
summation methods. 
18" 
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2. Convergence Equivalence in D [0, r] 

Let D [0, r] be the function space consisting of all right-continuous real- 
valued functions on [0, r] with the limits from the left everywhere, endowed 
with Skorohod's J1 topology [25], which is the topology induced by the metrics 
d and do in Chapter 3 of [11. Let D [0, oo) be the corresponding space of functions 
on [0, oo) with Stone's extension [28] of Skorohod's J1 topology from D [0, 1] 
to D [-0, ~). 

Let {S(t), t>0} be a stochastic process in D[0, oo) with S(0)=0. If the set 
of paths of bounded variation in every finite interval has probability one, then 
the Stieltjes integral 

b 

S e-S~' dS(v) (2.1) 
a 

is defined for all finite a and b with probability one, cf. p. 7 of Widder [341, and 
we discount in this way. If the stochastic process {S(t), t>=0} is like Brownian 
motion and many other stochastic processes in that it is not of bounded variation 
in every-finite interval with probability one, then we understand (2.1) to be 
defined by the formula for integration by parts, that is, we assume 

t t 

D(s,t)= Se -S~dS(v )=e- tS ( t )+s~e-~S(v )dv ,  t>O. (2.2) 
0 0 

We remark that this is consistent with various definitions of stochastic integrals, 
for example see Doob [41 and Paley et al. [191, but we shall take (2.2) as our 
starting point. It is easy to verify that we can retrieve {S(t), t>0} from {D(s, t), 
t>=0} by 

t t 

S (t) = ~ e su d,, D (s, u) = e st D (s, t ) -  s ~ e ~ D (s, u) du. (2.3) 
0 0 

The key to our Abelian and Tauberian theorems is 

Lemma 2.1. I f  f :  D [0, r] ~ D  [0, r] is defined for each x e D  [0, r] by 

t 

f ( x ) ( t ) = e - ' x ( t ) +  ~ e-~'x(v)dv, O<<-t<-r, 
0 

then f is a homeomorphism on D [0, r] with the J1 topology (or the uniform topology) 
�9 and f  -1 is given by 

t 

f - l ( x ) ( t ) = e t x ( t ) -  Se~'x(v)dv, 0<t_<r. 
0 

1 1 Proof. It is easy to see that f ( f -  ( x ) )= f -  ( f ( x ) )=x  for all xeD[0,  r]. We 
only discuss the continuity of f because f - 1  is treated in essentially the same 
way. We also only discuss the J~ topology because the argument is similar (easier) 
with the uniform topology. We shall use the metric d in Chapter 3 of [1]. For 
this purpose, let A be the usual set of time deformations, that is, let A consist 
of all strictly-increasing continuous functions 2 of 1-0, r] onto [0, r]. Then d(x, y) 
is defined for any x, ysD[O,r] as the infimum of those positive e>0  for which 
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there is a 2EA such that 
sup 1 2 ( t ) - t ] < e  

O<_t<_r 
and 

(2.4) 

Let x e D [0, r] 
O<t<=r 

d [ f (x) ,  f (y ) ]  is the infimum over A of those e > 0  for which both  

and 

sup Ix(t)-y(,~(t))l ~e. (2.5) 
0 _ < t < r  

be given and let M =  sup [x(t)l. Suppose d(x,y)<6.  N o w  

e - t x ( t )+  t :qo dv sup 5 e-~ x (v) dv - e -~ (') y (2 (t)) + ~ e-~ y (v) (2.7) 
O<--t<--r 0 0 

are less than or equal to e. Since d ( x , y ) < 6 ,  we can find a 2~A such that (2.4) 
and (2.5) hold with e =6.  Use this 2 in (2.6) and (2.7). Then (2.6) is less than or 
equal to ~ and it suffices to consider (2.7). 

N o w  observe that  (2.7) is less than or equal to 

t :~(t) y ( v )  d v  ; sup ~ e-~ x(v) dv - ~ e -~" (2.8) o=~t=<~sup le-tx(t)-e-~(t)y(2(t))l  +o<_t<_~ o o 

where 
sup le- '  x(t)-e -~(t' y(;4t))[ 

O<=t<=r 

_< sup ]e-tx(t)-e-X(t)x(t)l+o<t<_r]esup - '~(t)x(t)-e-X(t)y(2(t))] 
O<_t<_r 

sup __< M o_<t_<rsup ]e -t  _ e - z(t)] + o _<t<_ ,1 x (t) - y (2 (t))l (2.9) 

< M  sup 12( t ) - t l+d(x ,y )  
O<_t<_r 

< ( M + l )  8; 
and 

sup i ~(t) dv e-~x(v)dv - ~ e-~y(v) 
O<t<_r 0 0 

i ;,(t) I I x(t) :~(t) y(v) dv 
__< sup e-~'x(v) d r -  I e-~x(v) dv + sup I e-~x(v) d r -  ~ e-~ 

0 _ < t _ < r  0 O < t < r  0 0 

t dv 
=<Mo_<t_<,sup I 2 ( t ) - t l +  o_~t_~rsup ! e-~[x(v)-y(v)]  (2.10) 

<-_M6+ sup i l x ( v ) - y ( v ) l d v  
O<=t<=r 0 

<=M6+~([), 

where c~(6)--,0 as 8 ~ 0  because the Ja topology is finer than that given by the 
r 

metric ~ I x (t) - y (t) l dt. This is easy to see because d (x,, x) --, 0 implies x,  (0 --' x (t) 
o 

for all continui ty points t of x, cf. p. 112 of [1], which means convergence almost  

sup ] 2 ( 0 -  t] (2.6) 
O<_t<_r 
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everywhere with respect to Lebesgue measure. Then apply the Lebesgue dominated 

convergence theorem to get i Ix,(t)-x(t)] dt ~ O, cf. [1], Problem 2, p. 123. Hence, 
0 

d [,f(x), f (y)]  < (2 m + 2) 6 + a (6) ~ 0 as 6 ~ 0, so that continuity is demonstrated. 

To include more general limit theorems, we consider a sequence of stochastic 
processes {{Si(t), t>0},  i>1}. Let {U,} be the associated sequence of undis- 
counted random functions induced in D[0, ~ )  or D 1,0, r] by this sequence of 
stochastic processes, that is, let 

U,(t)=S"(n t)/(a(n), t~O, (2.11) 

where ~b: (0, ~ ) ~  (0, ~ )  is the appropriate normalization function. For the usual 
central limit theorems, q~ (n) = n ~, but q~ (n) = n ~, ~ > 0, and q~ (n) = (2 n log log n) -~ 
are possible. We explicitly assume that ~b (n)~  ~ as n ~ ~ .  Now let {D,} be the 
corresponding sequence of discounted random functions induced in D [0, ~ )  or 
D [0, r]: ,, 

D,(t) = (~(n)-' ~ e -v/" dS"(v), t >=O. (2.12) 
0 

We have set the discount rate in the n-th system at 1/n. Our main result follows 
immediately from Lemma 2.1 because in D[0, r], after an integration by parts, 

we get D~=f(U~) 

and (2.13) 
U,= f -I(D,). 

For the statement of the theorem, let ~ denote weak convergence and let d be 
the metric inducing Skorohod's J1 topology [-25] on D [0, r]. Let the non-random 
functions X, Y, and C be defined by 

X ( t ) = l - e  -2t, t>O, 

Y(t) = 1 - e  -t, t>O, 

C( t )=ct ,  t>O. 

(2.14) 

Let D O be the subset of D [-0, r] consisting of all non-decreasing functions ~(t) 
with 0 < ~ (t) < r. Let o be the composition map, defined for any (x, y) e D [,0, r] x Do 
by 

(xoy) (t)=x(y(t)), t>=O, (2.15) 
cf. p. 144 of [1]. 

Theorem 2.1. For n>_ 1, let U, and D, be the undiscounted and discounted 
random functions in D[0, r] defined in (2.11) and (2.12). Let X, Y, and C be as in 
(2.14). Let o be the composition map in (2.15). Let f be as in Lemma 2.1. And let W 
be the Wiener process in D [0, r]. Then 

(a) U , ~ U  if and only if O ,~O,  where D = f ( U )  and U = f - I ( D ) ;  
(b) U = W+ C if and only if O = (2-~) (Wo X + c Y); 

(c) if {U,} and U are defined on a common probability space, then d(U,, U)~O 
with probability one (in probability) if and only if d(D,, f(U))--* 0 with probability 
one (in probability); 
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(d) the sequence { U,} is relatively compact in D [0, r] and its set of limit points 
is the compact set K(c) if and only if the sequence {D,} is relatively compact in 
D [0, r] with the sequence of limit points f(K(c)), cf Strassen [30]. 

Proof (a) Integration by parts in (2.12) yields 

nt  

D, (t) = e-iS" (n t)/r (n) + (1In r (n)) ~ e- ~'/" S" (v) dr, (2.16) 
0 

and after the change of variables v = u/n, we obtain 

t 

D,(t) =e-~ S"(n t)/~(n)+ ~ e -v [S"(n v)ffp(n)] dr. (2.17) 
0 

It only remains to apply Lemma 2.1 with the continuous mapping theorem, 
cf. Theorem 5.1 of [1]. It is easy to see that this result remains unchanged if 
S"(0) #: 0 as long as S"(O)/(a (n)~O as n ~ oo; we only need to apply Theorem 4.1 
of [1]. 

(b) The invariance principle associated with weak convergence specifies a 
unique limit when U or D is determined. This limit is determined in Section 4 

by considering a special case. Note that ~ - ~ / ~  ~ 1 - ~  '~ so that we can work 
with either D(z) or D(s), cf. (1.1) and (1.2). \ n !  

(c) The proof of part (a) applies here too but with the continuous mapping 
theorems associated with convergence a.s. and convergence in probability. As 
we remarked in the introduction, all these continuous mapping theorems can 
be obtained by using almost surely convergent representations. The functional 
strong laws should not be taken too seriously because it is easy to show that 
functional strong laws are equivalent to ordinary strong laws. This is not true 
for weak laws, however. 

(d) Use the continuous mapping theorem associated with the functional law 
of the iterated logarithm, cf. Corollary to Theorem 3 of Strassen [30]. The setting 
in [30] is C[0, 1], but it is easily extended to D[0, r]. Again, this continuous 
mapping theorem is an immediate consequence of the almost sure convergence 
of subsequences. 

3. A Stronger Topology on D [0, ~ )  

It is easy to see that convergence in D[0, ~ )  with Stone's topology [28] is 
equivalent to convergence in D [0, r,] for all n, where {rn, n_-> 1} is some sequence 
of positive numbers such that r, ~ as n-~ ~ .  Hence, Theorem 2.1 here applies 
to D [0, ~ )  as well as D [0, r]. We would now like to go from Dn~D in D [0, ~ )  
to lim D~(t)~lim D(t) in order to get limits for random variables such as Y(z) 

t ~ o o  t ~ c o  

in (1.3). First note, however, that lira f(x)(t) is not even defined for all xeD [0, ~ )  

if f is the discounting map defined in Lemma 2.1: if x(t)=e 2t, t>0 ,  then 

f(x)(t)=e-~x(t)+ ie-~ 'x(v)dv=2et-1,  t>=O. (3.1) 
0 
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Therefore, let us consider the subset of D[0, oo) containing only functions x 
for which 

. x ( t )  
lm T = tJ, (3.2) 

t ~  0(3 t 

where ~ is a fixed positive constant (usually c~= 1). We refer to this space as 
L=L[O, oo) and endow it with the relative topology. We have chosen this par- 
ticular subset of D [0, oo) because in the presence of the strong law of large num- 
bers all the random elements U, in (2.11) can be regarded as elements of L with 
0~=l. 

Now we would like to show that the map g: L ~ R defined by g (x) = lira f (x) (t) 
t~CO 

o r  co 

g(x)= ~ e-~'x(v)dv (3.3) 
0 

is continuous, but this is not true. For  example, let x( t )=0,  t>0 ,  and 

x,(t)={e", n < t < n + l  (3.4) 
O, t<n and t > n + l .  

Then for each r>0 ,  o_SUp<r[x"(t)-x(t)[=0_ for n>r, so that d(x,,x)--,O in L, 

but lg(x,)-g(x)[ = 1 - e  -1 for all n >  1. 

The difficulty just encountered suggests that we should introduce a stronger 
topology on L. There are many precedents for using both stronger and weaker 
topologies on O[0, r] and D[0, oo), cf. Chernoff [2], Lamperti [14], Pyke and 
Shorack [23], Skorohod [25], Whitt [32], and Woodroofe [35]. We shall use a 
new topology on L corresponding to Mfiller's topology [18] on L[0, oo) ~ C[0, oo), 
which can be defined by the metric e: 

Ix(t)-y(t)l 
e (x, y) = sup , (3.5) 

t_>_o l + t  ~ 

where e is a fixed positive constant, also see (5.6) of [2] and (2.3) of [23]. Of course, 
we want to allow small time deformations. Let A' be the set of all strictly-increasing 
continuous maps of [0, oo) onto itself. Let ~ > 0  be fixed and let re(x, y) be defined 
for any x, TeL as the infimum of those e > 0  for which there is a 2eA'  such that 

a n d  

sup Ix(t)-Y('Z(t))[ _<e (3.6) 
t__>o l + t  ~ - 

sup 12(t)- tl ~ .  (3.7) 
t > O  

Let mo(X, y) be defined in the same way with (3.8) instead of (3.7): 

log (3.8) 

Lemma 3.1. The spaces (L, m) and (L, too) are separable metric spaces with the 
same topology, but mo makes L complete, while m does not. 
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Proof. The arguments on pp. 111-116 of [1] are easily extended to cover 
this case. Use the modulus of continuity 

v'~ (cS) = inf max v~ [ti-1, h), (3.9) 
{ti} O<i<=r 

where v~ is defined in Lemma 3.2 below and the infimum extends over the finite 
sets {ti} of points satisfying 

0 = t  o < t  1 <-. .  <tr  = oo, (3.10) 

and t i- t i_l>cS, l<=iNr, cf.p. 110 of [1]. 
Before considering discounted limit theorems in (L, m), we shall examine the 

structure of (L, m) in more detail. From (3.2) and Lemma 1 on p. 110 of [1-1, we 
immediately get 

Lemma 3.2. For each x ~ L  and each ~>0, there exist finitely many points 
t o ,  t t ,  . . . ,  t r s u c h  that O=to <tl < . . .< t r=oo  (3.11) 
and 

Vx[ti_l, ti)<e , 1 <_i<_r, (3.12) 
where 

v~[ t i - l ' t i )=sup{  -Ix( t)-x(s) l  " +t ~ _ t<t i} .  (3.13) 

Let cr: L[0, oe)--+D [0, r] be the restriction of x in L to [0, r], that is, let 

cr(x)(t)=x(t), O<t<_r. (3.14) 

Lemma 3.3. A set B has compact closure in (L, m) if and only if cr(B) has compact 
closure in D [0, r] for each r > 0 and 

Ix(t)l 
lim sup =0 .  (3.15) 
t ~ o o  x e B  t ~ 

Proof. This is a minor modification of Theorem 14.3 of [1]. 

Lemma 3.4. A sequence of probability measures {P,, n > l }  on (L, m)is tight 
if and only if 

(i) {P,c,: -t, n >  1} is tight for each r>0 ,  and 

(ii) for each positive e and ~, there exists a to such that for all n > 1 

Proof. Lemma 3.4 follows from Lemma 3.3 in the same way that Theorem 15.2 
follows from Theorem 14.3 and Theorem 8.2 follows from the Arzel/>Ascoli 
theorem in [1]. Also see p. 176 of [18]. 

Let ~z t: L-- .R k be the coordinate projection defined by 7r t (x)= x(t). 

Lemma 3.5. The Boret a-field associated with (L, m) coincides with the a-field 
on L generated by the coordinate projections. 

Proof. Apply the argument on pp. 121-122 of [1]. 

For a probability measure P on (L, m), let Tp consist of those t in [0, oo) for 
which the projection rt, is continuous almost everywhere with respect to P. 
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Lemma 3.6. P,~P  on (L,m) if and only if {P,, n > l }  is tight and 

Pn 7~,7,1..., tk=~ P rct-[,1..., tk 

in R k whenever h,  ..,, tk all lie in T v. 

Proof Again the argument for D[0, 1] applies, cf. pp. 35, 123, and 241 of [1]. 

For  an example of a weak convergence theorem on (L, m), see Theorem 1 
of [18]. The way to check the additional condition (3.16) needed to get weak 
convergence in (L, m) from weak convergence in D [0, 1] is indicated on p. 177 
of [18]. We now return to our discounted limit theorems. Instead of Lemma 2.1, 
we have 

Lemma 3.7. Let f :  (L, m) ~ (L, m) be defined as in Lemma 2.1 and let g: (L, m) ~ R  
be as in (3.3). Then f and g are continuous, but f -1 is not. The same is true if the 
metric e in (3.5) is used instead of m throughout. 

Proof The argument is similar to the proof of Lemma 2.1 so we omit most 
of it. The continuity of g can be obtained as a by-product of the proof for f .  
Directly, we have 

CO co  

Ig(x,)--g(x)] = ! e- t[x , ( t ) - -x( t )]  dt < ! e - t l x , ( t ) - x ( t ) l  dt ~ 0  (3 17), 

as n--, oo by virtue of the Lebesgue dominated convergence theorem. It is easy 
to see that m(x, ,x)-- ,O implies that x , ( t ) ~ x ( t )  at all continuity points of x, 
cf. p. 112 of [1], which means convergence almost everywhere with respect to 
Lebesgue measure. For  sufficiently large n, an integrable dominating function is 

Ix(t)l 
h(t )=e-t (1  + t  ~) 3 sup t>O.  (3.18) 

t_->o l + t  ~ ' 

To see that f -  t is not continuous, let x (t)= 0, t > 0, and 

Then 

but 

x , ( t )={1  n<=t<n+l  
0 t<n ,  t > n + l .  

Ix,(t)-x(t)l Ix,(t)l 1 
sup - sup - - -  - -  
t ~ o  l + t  ~ t>_o l + t  ~ l + n "  

(3.19) 

[f-a(x,)(t)[ <= f - l ( x , ) (n )  e" 
m E f  -l(xn), f - l(x)] =sup - , o o .  (3 .21 )  

t__>o l + t  ~ l + n  ~ l + n  ~ 

In fact, if x ( t )= t  e -t, t >O, then f - l (x)r  m). 

Let U, and D, be the undiscounted and discounted random functions defined 
in (2.11) and (2.12); let X, Y, and C be as in (2.14); let o be the composition map 
in (2.15); let f be as in Lemma 2.1 and g be as in (3.3); let W be the Wiener process 
in (L, m); and let D,(oo) be defined by 

cO 

D, (oo) = lim D, (t) = q5 (n)- 1 S e -  ~/" dS" (v) 
t~ co o (3.22) 

oO 

= ~ e -v U,(v) dr. 
0 

. 0 ,  (3.20) 
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Theorem 3.1. In the setting above, 

(a) if U .~U in (L, m), then D . ~  f (U)  in (L, m) and D.(oo)~g(U) in R; 
(b) /f U . ~ W + C  in (L, m), then D.~(2-~)(WoX +c Y) in (L,m) and D . ( ~ ) ~  

N(c/2, �89 R; 
(c) if m(U. ,U)~O in probability (with probability one) in (L,m), then 

m(D.,f(U))--+O in (L, m) and [D.(~)-g(U)[ ~ 0  in R in probability (with prob- 
ability one); 

(d) /f m ( U . , C ) ~ 0  in probability (with probability one) in (L,m), then 
m(D., c Y)~O in (L, m) and [ D . ( ~ ) - c [  ~ 0  in R in probability (with probability 
one); 

(e) if {U~} is relatively compact in (L, m) and its set of limit points is the compact 
set K(c), then {D,} is relatively compact in (L, m) with the set of limit points f(K(c)) 
and {D,(oo)} is relatively compact in R with the set of limit points g(K(c)); 

(f) /f [U,(1)-~U(1)J-~0 in R with probability one with ~b(n)=n ~, then 
] D , ( ~ ) - F ( ~ + I )  U(1)[--*0 in R with probability one. 

Proof Parts (a)-(e) are a consequence of Lemma 3.7 and the continuous 
mapping theorems. The distribution in (b) is obtained in Section 4. Part (f) is 
the standard Abelian theorem, which can be found on p. 181 of Widder [34]. 
The standard counterexamples show that the converse in (f) is not true, cf. p. 186 
of [34]. For (e) a slightly different space is actually more appropriate, cf. Section 2 
of [183. 

4. Discounted Sums of  i. i. d. Random Variables 

In order to determine the form of the limiting process in Theorems2.1(b) 
and 3.1(b), we consider the special case in which the stochastic processes {Si(t), 
t____ 0} are constructed from partial sums of i. i. d. random variables. The invariance 
principle associated with weak convergence implies that this process is the 
limiting process in the more general setting of Theorems 2.1(b) and 3.1(b). At 
the same time, we are providing a direct proof of Gerber's discounted central 
limit theorem [8] for Y(z) in (1.3) and its weak convergence generalization. We 
use Prohorov's function space generalization of the Lindeberg-Feller central limit 
theorem ([21], Theorem 3.1) and a time transformation in the manner of [1], 
Section 17. The direct application of Prohorov's theorem involves an artificial 
transformation of the time scale. The original time scale is then restored by an 
inverse time transformation. 

Assume that {X,i, i>1} is a sequence of i.i.d, random variables for each n; 
EX, i=~t ,~p;  a2(X,i)=az,~a2; 0 < a  2, a~z<m; and ElX, il 2+~ is uniformly 
bounded in n for some a>0.  (The bound on EIX, i[ 2+a is unnecessary with a 
single sequence; for double sequences the uniform bound is an easily verifiable 
substitute for the more general Lindeberg condition.) For each n >  1 and z, 
0 < z < l ,  there is a discounted sum of i.i.d, random variables D,(z) defined by 

D,(z)= ~, z i X n i  . (4.1) 
i = 0  

We first verify that D, (z) is well defined. 
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Lemma4.1. For each n >  l and z, 0 < z < l ,  the discounted sum in (4.1) is an 
a. e. convergent series. 

Proof  Let i o- (U,0=a  . z and Uni -~'Z (Xni--[s Then 2 2 2i 

co 
Y~ ~2 (U.3 = a,~ (1 _ ? ) _ 1  < oo. 

i = 0  

Hence, ~ U,i is a convergent series a.e., cf. p. 236 of [17]. Since 
i = 0  

~ , z / = # , ( 1 - z )  - 1 < ~ ,  
i = 0  

(4.1) is convergent a.e. as well. We could also apply a martingale convergence 
theorem here, cf. p. 393 of [17]. 

Now we apply Prohorov's theorem, cf. p. 220 of [20]. For this purpose, we 
let z = ( 1 - 1 / n )  and define two new double sequences of normalized random 
variables {Y,i} and {Z,i} by setting 

Y,i =(n a,) - ~ 2  ' (2-1/n)  ~' (1 - 1/n) i (X, i - IJ , )  
and (4.2) 

Z,i = (n a,2 ) -~1 (2 - 1/n) ~ (1 - 1/n)i X ,  i. 

It is easy to check that the conditions of Prohorov's theorem are satisfied 

for {Y,i}. For each n > l ,  {Y,i} is i.i.d., EY,/=0, and ~ a2(Y, i )=l .  Furthermore, 
i = 0  

the Lindeberg condition is satisfied. Note, however, that we are adding an infinite 
number of random variables in each row instead of a finite number. The theorem 

applies in this case too as long as the series ~ a2(X,i)  converges. This is easily 
i = 0  

verified by truncating in each row at a point increasing very rapidly with n (for 
example, set k , = n  2) and then applying Theorem 4.1 of [1]. 

We now define the two sequences of random functions {A,} and {B,} induced 
in D[0, 1] by the row sums from {Y,i} and {Z,i}. For t~[0, 1], let 

co 

, : 1  

k k + l  

/ , oZ < , oZ 
tO, O<=t <a2(y ,o) ,  

co 

k k + l  

B.(t)=/E z.,. y' ,~(Y.,)<t< E o~(~,) 
[~ 0 i = 0  i = 0  

O<t<~r2(y~o). 

(4.3) 
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Prohorov's theorem was originally proved for linearly-interpolated versions 
of {A,} in C [0, 1], but it is now well known that it applies equally well in D [0, 1] 
to {A,} in (4.3). Hence, we have 

Theorem 4.1. Let A, and B, be defined by (4.3) with Y,i and Z,i in (4.2). Let 
W be the Wiener process in D [0, 1]. Then 

and 

then 

where 

(a) A , ~ W i n  D[0,1] ;  

(b) if(2n)~It, a21--*c, - o o < c <  +oo ,  

B , ~ W + E  in D[0, 1], 

E(t)=c[1 - (1  - t)~-], 0_< t_< 1. 

Proof We have remarked that (a) is an immediate consequence of Prohorov's 
theorem, cf. [20], p. 220. Part (b) is obtained by adding the (non-random) trans- 
lation functions to both sides of the result in (a), using Theorems 4.4 and 5.1 of Ell. 
Although addition is not continuous in D[0, 1], it is measurable in D[0, 1] 
and continuous in C[0, 1]. Note that the n-th translation term has the value 

k 

(n a~) -~ (2 - 1/n) ~ p, ~, (1 - 1/n) i at time t, where 
i=1 

i = k  i = k + l  

n - 1 ( 2 -  l/n) ~ (1 - 1/n)2i<__t<n-l(2 - l/n) ~ (1 - l/n) 2i. 
i = 0  i=O 

Letting k=[n t], we see that asymptotically the translation term has value 
c ( 1 - e  -t) at 1--e -2t, where convergence is uniform on [0, ~).  The desired result 
is then obtained by taking logarithms. 

We can immediately apply the continuous mapping theorem to obtain the 
corresponding ordinary discounted central limit theorems. Part (a) contains 
Gerber's discounted limit theorem [8] for Y(z) in (1.3). 

Corollary 4.1. Let {Y~i} and { Zni} still be defined by (4.2). Then 

and 

then 

(a) i Y~i~N( 0, 1) in R1; 
i = 0  

(b) if(2n)-~y, a21--*c, - o o  < c <  oo, 

i Z.i~N(c,  1) in R 1. 
i = 0  

Proof Since W and W+E are contained in C[-0, 1], all projections are con- 
tinuous functions almost everywhere on D[0, 1]. Hence, (a) and (b) here are 
obtained from (a) and (b) in Theorem4.1 by applying the projection at t--1 
with Theorem 5.1 of [1]. 
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We now obtain the promised functional central limit theorem by restoring 
the original timing. Define random functions T~ and V~ in D[0, oo) by setting 

In t] 

T.(t)= y~ Y.i,  t>O, 
i=o (4.4) 
In t] 

Vn(t)= Z Zni, t = > O ,  
i = o  

where Y,i and Z,i are defined in (4.2). Of course, since T,(t) and V,(t) have finite 
limits as t ~oo  with probability one (Lemma4.1), T, and 1,7, can be regarded as 
elements of L[0, oo) with e > 1. 

Theorem 4.2. Let T, and V, be defined by (4.4); let W be the Wiener process 
on D[0, 1]; and let X, Y, and C be defined in (2.14). Then 

(a) T.~WoX in D[O, oo); 
and 

(b) /f (2n)~ #, a~-I ~ c, - o o  < c <  oo, 
then 

V , ~ W o X + c Y  in D[0, ~ ) .  

Proof Note that T~ =A.o  X. and 17. =B.oX.,  where X. is a nondecreasing 
deterministic transformation of [0, oo) onto [0, 1). Since l imX. ( t )= l ,  we can 
use [0, 1] instead of [0, 1). Furthermore, t-+oo 

l i m X . ( t ) = l - e  -2', t>O, 

uniformly in t. Hence, the argument of [1], p. 145, together with Theorem 4.1 
implies that A, oX,=>WoX and B, oXn~(W+E)oX in D[0, n] for each n, and 
thus in D[0, oo). Finally, (W+E)oX= WoX+c Y. 

The discrepancy between Theorems4.2 and 2.1(b) is due to the ( 2 - l / n )  ~ 
term in Y,i and Z,i in (4.2). The connection with Theorems 2.1(b) and 3.1(b) is 
easily made. The usual random function induced by the undiscounted partial 
sums of the X,i is U, and V, =f(U,) ,  where f is defined in Lemma 2.1 as before. 
For Theorem2.1(b), we apply Prohorov's theorem (p. 220 of [20]) to get 
U,=~ W+ C in D [0, r]. For Theorem 3.1(b), we apply the double sequence version 
of Theorem 1 of [18] which states that U,~W+ C in (L, m). The strong law of 
large numbers holds in each row of the double sequences. Hence, the negligible 
set for the double sequence is just the union of the negligible sets associated with 
the rows. Theorem3.1(a) then implies that V,=>f(U) in (L,m). Theorem4.2 
identifies the distribution of f (U) .  Section 3 implies that the limits in Theorem 4.2 
also hold in the space (L, m), but it is not necessary to verify this directly in 
Theorem 4.2 in order to identify the limiting distribution, cf. [1], p. 35. 

5. The Discounted Process between Two Bounds 

In the setting of Section 4, assume that P{lX, i[ >M }  = 0  for all n. Skorohod 
([27], p. 169) has evaluated the rate of convergence in this situation of the prob- 
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ability Pr{ gl(t)<S~"q-#"[nt](n o-z) ~ < g2 (t), 0 <  t=_< 1} (5.1) 

to the probability 
Pr{gl( t)< W(t)<g2(t), O<t< 1} (5.2) 

for a large class of continuous functions gl and gz. These results have been 
extended by Mtiller ([181, Section4) to the semi-infinite time interval [0, oo). 
We briefly note that these results can be directly applied to get one-sided rate 
of convergence results of the same kind for the associated discounted processes. 

We say that u__<v in D [a, b] if u(t)<v(t) for all t in [a, b]. Now note that 
f: D[a, b] ~D[a, b] is monotonic: if u<__v, then f (u)< f (v). Hence, 

{xlgt (t) _< x (t) < g2 (t), a < t < b} (5.3) 

c_ {x[f (gO (t) < f (x) (t) <__ f (g2) (t), a N t = b}, 

so that, with T~ in (4.4) and appropriate functions gl and g2, there exists a constant 
A such that 

P r{ f (g  0 (t)__< T~(t)<f(g2)(t), aNt<b} 

> Pr { gl(t)<-- S~'~-#~t~ } 
= (n o.2) 4 ~g2 (t), a<t<b (5.4) 

>Pr{ga(t)<W(t)<gz(t ), a<t<=b}-An-~logn. 

The inequality the other way does not follow by this argument because f - 1  : D ~ D 
is not monotonic. 

6. Other Summation Methods 

The previous sections can be generalized to yield stochastic analogues of 
other kinds of summation. Let U, be defined in (2.11), but instead of (2.12), let 
D, be defined by ,t 

D, (t) = q~ (n) -I  ~ h(v/n) dS"(v), O<_t<_r, (6.1) 
o 

where h: [0, r] --*R has a continuous derivative h' on [0, r]. Integration by parts 
yields t 

D,(t)=h(t)U,(t)- ~h'(v)U,(v)dv, O<_t<_r. (6.2) 
o 

Continuity for f in Lemma 2.1 extends to this case i f f  is now defined by 
t 

f(x)(t)=h(t)x(t)- ~h'(v)x(v)dv, O<_t<_r. (6.3) 
0 

To get a continuous f - l ,  we also require that h(t)+O on [0, r]. Then f - 1  is also 
given by (6.3), but with h(t) replaced by 1/h(t) everywhere, which means h'(v) 
is replaced by - h' (v)/h (0 2. 

For example, h ( t ) = l - t ,  0<t____l, corresponds to a stochastic analogue of 
Ces/tro (C, 1) convergence: 

D,(t)=(1-t)U,(t)- i U,(v)dv, 0_<t_<l, (6.4) 
0 
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and 1 
Dn(1)= ~ Un(v)dv 

o (6.5) 
n 

= n  , iv .  
o 

If Un:Z'W in D[0, 1], then Dn(1)~N(0,�89 where the distribution of the limit is 
easily obtained from the case of a single sequence of i.i.d, variables {Xn, n> 1} 
with mean 0 and variance 1; then 

n n 

Dn(1) =n-~ Z Sk =n-r  ~ (n-k)Xk" (6.6) 
k = l  k = l  

Since h(1)=0, we cannot construct the inverse map f - ~  on D [0, 1]. For example, 
if x(t)=t, 0__<t=<l, then f - l ( x ) ( t ) = l - l o g l l - t [ ,  0=<t=<l, which blows up at 
t = 1. The inverse exists of course on D [0, s] for s < 1. The situation is just as 
before. For s <  l, there is equivalence on D [0, s] for functional limit theorems 
of the ordinary (C, 0) kind and the Cesfiro (C, l) kind, but on the space D[0, 1], 
which is necessary in order to apply the projection, we can only go one way, 
just as in the deterministic case. 

Another possible stochastic analogue of Ces/Lro (C, 1) convergence is obtained 
by setting Dn=g(U,), where 

t 

g (x) (t) = ~ s = ~ x (s) ds, t > O. (6.7) 
o 

The function g in (6.7) is continuous from (D, d) to (D, d) but not from (L, m) to 
(L, m). With a single sequence of random variables, instead of (6.6), we have 

i i " Dn(1)=n -1 k-+Sk=n -1 Xk ~ k -~, (6.8) 
k = l  k = l  k = l  

so that Dn(1)~N(O, 2) if U,=~W in (D,d). As before, the general theme is the 
possibility of obtaining stochastic analogues of deterministic summation methods 
by exploiting continuous mapping theorems in the function space setting. 

Acknowledgments. The author is grateful to J. Sethuraman, J.G.Wendel, W.Vervaat, and the 
referees for pointing out references and errors and otherwise helping to make this a better paper. 

References 

1. Billingsley, P.: Convergence of Probability Measures. New York: John Wiley and Sons 1968. 
2. Chernoff, H.: Estimation of the mode. Ann. Inst. Statist. Math. 16, 31-41 (1964). 
3. Denardo, E.V.: Markov renewal programs with small interest rate. Ann. Math. Statistics 42, 

477-496 (1971). 
4. Doob, J.: Stochastic Processes. New York: Wiley 1953. 
5. Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Statistics 39, 

477-496 (1968). 
6. Freedman, D.: Some invariance principles for functionals ofa Markov chain. Ann. Math. Statistics 

38, 1-7 (1967). 
7. Gapo~kin, V.F.: The law of the iterated logarithm for Ces/~ro's and Abel's method of summation. 

Theor. Probab. Appl. 10, 411-420 (1965). 
8. Gerber, H.U.: The discounted central limit theorem and its Berry-Ess6en analogue. Ann. Math. 

Statistics 42, 389-392 (1971). 



Stochastic Abelian and Tauberian Theorems 267 

9. Hanson, D.L. and F.T. Wright: Some convergence results for weighted sums of independent 
random variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 19, 81-89 (1971). 

10. Hatori, H.: On Markov chains with rewards. K0dai Math. Sere. Reports 18, 184-192 (1966). 
11. Hatori, H.: On continuous time Markov processes with rewards. K6dai Math. Sem. Reports 18, 

212-218 (1966). 
12. Iglehart, D.L. and D.P. Kennedy: Weak convergence of the average of flag processes. J. Appl. 

Probab. 7, 747-753 (1970). 
13. Iglehart, D. and W. Whitt: The equivalence of functional central limit theorems for counting 

processes and associated partial sums. Ann. Math. Statistics 42, 1372-1378 (1971). 
14. Lamperti, J.: On the convergence of stochastic processes. Trans. Amer. Math. Soc. 104, 430-435 

(1962). 
15. Liggett, T.: An invariance principle for conditional sums of independent random variables. 

J. Math. Mech. 18, 559-570 (1968). 
16. Liggett, T.: Weak convergence of conditioned sums of independent random vectors. Trans. Amer. 

Math. Soc. 152, 195-213 (1970). 
17. Lo+ve, M.: Probability Theory. 3rd. ed. Princeton, New Jersey: Van Nostrand 1963. 
18. Mtiller, D.W.: Verteilungs-Invarianzprinzipien fiir das starke Gesetz der groBen Zahl. Z. Wahr- 

scheinlichkeitstheorie und verw. Geb. 10, 173-192 (1968). 
19. Paley, R.E.A.C., N. Wiener, and A. Zygmund: Note on random functions. Math. Z. 37, 647-668 

(1933). 
20. Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York: Academic Press 1967. 
21. Prohorov, Yu.: Convergence of random processes and limit theorems in probability theory. Theor. 

Prob. Appl. 1, 157-214 (1956). 
22. Pyke, R. and R. Schaufele: Limit theorems for Markov renewal processes. Ann. Math. Statistics 

35, 1746-1764 (1964). 
23. Pyke, R. and G.R. Shorack: Weak convergence of a two-sample empirical process and a new 

approach to Chernoff-Savage Theorems. Ann. Math. Statistics 39, 755-771 (1968). 
24. Pyke, R.: Applications of almost surely convergent constructions of weakly convergent processes. 

Proc. Int. Symp. Prob. and Inf. Theory, pp. 187-200. Berlin-Heidelberg-New York: Springer 1969. 
25. Skorohod, A.V.: Limit theorems for stochastic processes. Theor. Probab. Appl. 1, 261-290 (1956). 
26. Skorohod, A.V.: Limit theorems for stochastic processes with independent increments. Theor. 

Prob. Appl. 2, 138-171 (1957). 
27. Skorohod, A.V.: Studies in the Theory of Random Processes. Reading, Mass.: Addison Wesley 

1965. 
28. Stone, C. : Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. 

Amer. Math. Soc. 14, 694-696 (1963). 
29. Stone, C.: Limit theorems for random walks, birth and death processes, and diffusion processes. 

Illinois J. Math. 7, 638-660 (1963). 
30. Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeits- 

theorie und verw. Geb. 3, 211-226 (1964). 
31. Veinott, A.F.,Jr.: Discrete dynamic programming with sensitive discount optimality criteria. 

Ann. Math. Statistics 40, 1635-1660 (1969). 
32. Whitt, W.: Weak convergence of first passage time processes. J. Appl. Probab. 8, 417-422 (1971). 
33. Wichura, M.J.: On the construction of almost uniformly convergent random variables with 

given weakly convergent image laws. Ann. Math. Statistics 41, 284-291 (1970). 
34. Widder, D.F.: The Laplace Transform. Princeton, New Jersey: Princeton University Press, 1946. 
35. Woodroofe, M.: On the weak convergence of stochastic processes without discontinuities of the 

second kind. Z. Wahrscheinlichkeitstheorie und verw. Geb. 11, 18-25 (1968). 

Ward Whitt 
Department of Administrative Sciences 
Yale University 
2 Hillhouse Avenue 
New Haven, Connecticut 06520 
USA 

(Received June 17, 1971) 

19 z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 22 


