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1. Introduction 

1.1. Aims 

Many results about the flows of stochastic dynamical systems on compact 
manifolds M may be proved easily by considering the infinite dimensional 
manifold NS(M) of H s diffeomorphisms of M. The technique was introduced 
for ordinary differential equations by Ebin and Marsden [10], and utilized for 
stochastic differential equations by Elworthy [11]. Recently a similar approach 
has been used by Ustunel [34]. There is a detailed description in [13]. 

The procedure is to induce from the dynamical system on M a dynamical 
system on ~S(M), which we shall call the "lift", and whose solution is the flow 
of the original system. Results proved for compact manifolds can often be 
extended to non-compact (but o--compact) manifolds, in particular to ]R". In 
this way many of the long technical details of the proofs of the basic theorems 
about flows of stochastic dynamical systems (in particular the inductive steps) 
are subsumed once and for all in the known results about Sobolev spaces. 

Our aim here is to present the lift and some of its applications in a unified 
form and in a simplified way: rather than deal with manifolds directly we first 
take our stochastic dynamical system to be defined on N" and have support in 
some bounded domain B. We lift it to the space of H ~ diffeomorphisms of N" 
which restrict to the identity on the complement of B. This is an open set in an 
affine subspace of a Hilbert space, and so infinite dimensional manifold theory 
is not required. Results for systems on finite dimensional manifolds M will 
follow from these results by embedding M in ]R e, for some P; see w 

The Sobolev spaces H ~ are used as a tool: here we are really interested in 
the C ~ case and not primarily in the precise H ~ regularity etc obtainable. A 
method of deducing some C r results from C ~ results by approximation is 
described in [13]. We will prove the basic results on regularity of the flows, 
convergence of piecewise linear approximations, the generalised It8 formula of 
Bismut (Theorem 5.3), [2, 3], some of Kunita's results [21, 22] on backward 
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stochastic differential equations, and his criterion for the flow to be a diffeo- 
morphism. They are mostly first proved for stochastic dynamical systems with 
compact support, and the version for general systems on IR" is deduced later. 

1.2. Stochstic Dynamical Systems: Their Solutions and Flows 

All stochastic differential equations will be Stratonovitch equations with an m- 
dimensional Brownian motion B t a s  the driving noise. However, the methods 
will work more generally. 

A stochastic dynamical system on a separable Hilbert space H will there- 
fore be a pair (X, z) where 

X: H~IL(Rm+ 1; H) 

is a map into the space of linear maps of lR m+l to H and zt: f2~lR "+ 1 is given 
by 

B 1 . z,=( ~, .., BT, t) 

for (~2, {~t},_>o,P) the probability space, with filtration, of B t. A process {~t.~: 
O_<t<_ T} (always adapted and with continuous sample paths) is a solution to 
(X, z) starting from x e H  if 

~t, = x +  iX(~s,x)odzs O < t < T  
0 

(where "o" denotes Stratonovich integral). 
By a flow for (X, z) on H, in the time interval [0, T] we mean a family of 

continuous maps it(co): H ~ H ,  for (t, co)~ F0, T] x f2 such that {~t(')x: 0_<t_< T} 
is a solution to (X, z) starting from x, for each x in H. 

When X has bounded first and second derivatives and dim H < oo it follows 
easily [1, 4, 19, 27], from Totoki's generalisation of Kolmogorov's theorem 
[33] that a flow exists for all time, moreover it can be chosen to be jointly 
continuous in (t, x). 

Strictly speaking we should define the flow (or solution starting at x) to be 
the equivalence class under the relation of almost sure equality. By {~t}t we 
mean a "version" of the flow, and one of our aims will be to obtain especially 
nice versions. 

Note 1.2. For our systems the Markov property implies that if (X, z) has a flow 
for the time interval [0, T] then it has a flow for all time. 

2. Prel iminary Results  

2.1. Behaviour of Solutions Under Transformations 

Proposit ion 2.1. Let U and V be open in Hilbert spaces H and K. Consider C 2 
stochastic dynamical systems (X, z) on U and (Y, z) on V for which there is a C 2 
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map O: U ~  V, not necessarily bijective, such that DO(u)(X(u)e)= Y(O(u))e for all 
(u, e) in U x IR "+ 1. Then 0 maps solutions of (X, z) to solutions of (Y, z). 

Proof Suppose 
t 

~=u+ ~x(~Oodz ~. 
0 

Then by the It6 formula 

t 

O ~t=Ou + y D O(~) X(~s)~ + i Y(O ~)odz~. 
0 0 

In case the solution ~ is only defined up to a stopping time z the above 
equations still hold on the set {t <~}. // 

2.2. Uniform Covers: a Non-explosion Criterion 

Let (X, z) be a system on the open set U of H. A uniform cover for X, (radius 
r>0 ,  bound k), is a family {4)i}i of diffeomorphisms qSi: U/~V/ of open subsets 
of U onto open sets of H such that 

t .  B3rc~b~(U~) each i (B~ denotes the open ball about 0, radius e). 
2. {q571(B~)}i covers U. 
3. If (q~),(X): V/--~]L(]Rm+ 1; H) is defined by 

(gbl), (X) (v) e = D qSi (4)71 v) X((~71 v) e 

then (~bi) , (X) and its first derivative are bounded by k on B2~. 

Theorem 2.2 (It6 [18]). I f  X admits a uniform cover then (X,z) has solutions 
going on for all (positive) time. 

Proof See It6 [18], Clarke [7], or Elworthy [13]. //  

When solutions exist for all (positive) time we will say (X, z) is complete, 
sometimes the terms non-explosive or conservative are used. 

2.3. Piecewise Linear Approximations 

By the piecewise linear approximation to the system (X, z) in the time interval 
[0, T], with respect to the partition H given by 0 = t o < t 1 < . . .  < t m = T we mean 
the system (X, z~) where z~ is the piecewise linear approximation to z, given by 

z~(t)=(tj-- t j_l)- l[( t-- t j_l)z(t j)+(tj-- t)z(t j_l)]  tj_l<=t<--_t j. 

Note that (X, z~) can be considered as a family of ordinary dynamical systems 
parametrized by c o ~  since the sample paths of z are all piecewise C 1. 
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Theorem 2.3 (McShane [25], Elworthy [11, 13], see also [3, 9, 16, 17]). Suppose 
(X,z) on the open set U of H is C 2 and complete and that the approximations 
(X, z=) are also complete. Then as mesh 1I--,0 the solutions to (X, z=) converge to 
the corresponding solutions of (X,z) in measure uniformly in teE0, T] for the 
given time interval [0, T], i.e. for c5>0 

P{ sup I[~,~-~,,~ll~>a}~0 
O ~ t N T  

as mesh ~c~O, where ~t~,~ refers to the solution to (X,z~) starting from x in 
u. // 

3. The Lift to the Diffeomorphism Group 

3.1. Sobolev Spaces of H ~ Maps 

Let C~(I(n;N p) denote the space of C ~ functions f :  IRn--,IR p with compact 
support. For s=0,  1, 2 . . . .  and f, g in C~~ R p) set 

( f '  g)~ = Y', 5 (D=f(x), D~ g(x)>~, dx 
I~l =< s ~ 

where the sum is over multi-indices e = ( ~ ,  ..., %) and D = -  with I~1 
&{~ ... ~x~- 

= % + . . . + % .  Then, for s=0 ,1 ,2 , . . ,  the Sobolev space H*(R";1R p) can be 
considered as the Hilbert space completion of C~~ p) under the inner 
product ( , ) ~ .  There is a natural isomorphism 

H~ (Rt.n ; P,,v) ~_ L2 (lt " ; N p) 

which we will take as an identification, and natural dense continuous in- 
clusions 

. . . cHS+l  c H i c . . ,  c H  0 = L  2. 

The following references may be useful for Sobolev space theory: [5, 30, 31, 
32]. 

For U open in IR n a map f :  U--*IR p is in H~o o, or /-/~oc(U; IRP), if q)f is in 
H~(IR~;IR p) for all qSeCa~ Then /-/~o~(U;~',. p) is given the topology 
determined by the seminorms {f~--+llq)flls: 49~C~ i.e. the smallest topology 
such that f~--+q)f is continuous into H ~ for each ~b in C~ ~ Give the space 
C'(R"; P,P) of C" maps the topology of uniform convergence on compacta of 
the first r derivatives. By the Sobolev embedding theorem we then have a 
continuous inclusion 

s n .  p ~ r ~ . n .  p &oc(R , ~  ) c (  ,~. ) 

as well as the obvious one 

n 
for s>~+r ,  

c '  OR o; de)  ~ 11~oo(~"; F.~). 
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From these we obtain 

C~(~-~.n; IR p) = ~-) HlSoc(]Rn; ]R p) 
s~o 

both as a set and as a topological space. 
n 

For X a function of compact support on IR" and s > ~  set 

H~c(IR"; IR p) = {f~HS(lR"; IRP) with s u p p f c  supp X}. 

n 
Since s > ~  the evaluation maps f~.-.~f(x) are continuous on H ~ so H )  is a well 

defined closed subspace of H ~, or equivalently of Hl~oo. 
n 

For s > ~ + 1 set 

@~= {f: IR"~N":  f is a C 1 diffeomorphism, fEHlSc, and f l l R " - s u p p X = I d }  

where Id denotes the identity map. Since diffeomorphisms are open in the C 1 
topology (see e.g. [28] or [15]), N~ is an open subset of the affine subspace Id 
+ H ) ( N " ;  IR") of Hl~oc. In particular it can be identified with an open subset of 
the Hilbert space H~c. This will enable us to talk of differentiable functions on 
~ and stochastic dynamical systems on N~. 

From now on take s > ~ + l .  Since @~ can be identified with closed sub- 

manifolds of the diffeomorphism groups @~(S"), [10], or ~S(B) for suitable 
domains B of IR", [5], the following can be obtained from [5, 10, 29]: 
(However they are comparatively easy to prove directly.) 

1. @~ is a topological group under composition 
2. For all h in ~ right multiplication 

Rh: N~x~Ni  Rh( f )= foh  
is C ~. 

3. For  k=0 ,  1, 2, ... the composition map 

Ok: ~ s + k  s s ~ X  ~( ~ X - - - ) ' ~ X  4 k ( f ~  h ) = f o h  

p s s n. p is C k. [Indeed it is C k as a map H~+kr]R"'loc t , IR ) x Nx-,Hlo~(R , N. )]. 
4. For k =  1, 2, . . . ,  inversion, considered as a map 

~-k : rV'~s + k ,'r~s 1 ~ x  -~ ~ x  h~-*h- 

is C k with derivative given by 

DJk(h ) ( f)  (x)= - D h(h- l(x))- l ( f  oh- l(x))= - D h-  l(x) ( f  oh- i(x)) 

h ~ )  +k, f~H~: +k, x~lR". 
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3.2. The Lift (27, z) on ~ 

Suppose now that X: IRn~IL(Nm+~;IR") has compact support and lies in 
tl 

H s + z (IR n; IL ( ~  + 1 ; ~,))  where, as always, s > ~ + 1. Then X ( - )  e e H)  + 2 for all 

e in ~,,+1. Define 27: N)~IL(IRm+ 1; H)) by 

20) (e) x = X(h(x)) (e) x~B. 
Then 

27(h) (e)= q52(X ( - )  e, h) 

so that 27 is C 2 by 3 above. Equivalently we could define 27 by 

27(Id) (e)= X( - ) ( e )  and right invariance: 

)~(h) (e)= DRh(Id ) ( X ( - )  e) h e~c .  

Theorem 3.2. The stochastic dynamical system (27, z) on ~ x  is complete. I f  it: 
f2-+~x is the solution with {o=Id  then for each xeN"  the IR"-valued process 
{ t ( - )  (x) is a version of the solution to (X, z) starting from x. Thus ~ is a flow 
for (x, z). 

Proof Since 3? is C a, solutions of (27, z) exist for some positive time and are 
unique. To show completeness take an open neighbourhood U of Id in N) and 
define 

O: U~H~x 
by O(h) = h -  Id. 

For h in @~c set 

Uh=Rh(U)c~Sx and Oh=OOeh-l: Uh--+HSx, 

Since Rh_l is C ~ so is O h . By taking U sufficiently small we see that 
{(Uh, Oh)}h~ is a uniform cover for 27 and we can apply Theorem 2.2. 

To show that ~ t ( - ) x  is a solution to (X, z) consider the evaluation map 

ev~: ~ ] - ~ R "  

given by ev~(h)= h(x). 
This is the restriction of a hounded linear map and is therefore C ~ with 

D(ev~) (h) [27(h) e] =X(h(x)) e h ~ ] .  

Corollary 3.2. I f  X: ~"--*IL(IR~+ 1; ]R ") has compact support and is in ~4~+ 2 for ~Ioc 
17 

some s > ~ + l  (or in particular is C +) then (X,z) has a flow defined for all 

positive time. The flow is an H~o o (respectively C ~) diffeomorphism of l(" which is 
the identity outside of the support of X. As a function of time t it is continuous 
into the H ~ (or C ~ topology. 

Proof This is simply a rephrasing of the theorem. The C ~ case follows by the 
remarks in w 3.1. //  
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4. Properties of the Flow When X Has Compact Support 

The results of this section are preliminary to those given later for general X. 
Here we assume throughout that X has compact support and is in i4s+2 for ~ 1 0 r  

some s > n/2 + 1. Corresponding C ~~ results follow automatically. 

4.1. Uniformity of Piecewise Linear Approximation 

Proposition 4.1. For each partition 17 of a fixed time interval E0, T] and each 
oo~f2 let ~(co): ~"--*~", O<t<T, be the flow of the ordinary differential 
equation 

dz~ 
~, = X(xt) di-  (o~). 

Then, as mesh I I ~ O  so ~ converges in measure in the H s topology uniformly in t 

t~[0, T], with limit the flow ~t of (X, z). i .e. /f  c~ > 0 then 

P{ sup H t -~,Hs>6} ~ 0  as mesh H ~ O  
O<=t<T 

where H ]Is denotes the H s norm. 
In particular ~ t ( - )  x converges in measure uniformly in x s ~ "  to ~t,x. 

Proof. Since ~ can be identified with the solution to (37, z~) starting from Id in 
N) as in Theorem 3.2, the result follows by Theorem 2.3. //  

4.2. The Generalized Itd Formula 

The results given here are essentially special cases of those of Bismut E2, 3], see 
also Kunita [-20] and Ustunel [34]. 

n 
Proposition 4.2. Suppose s > ~ + 2 .  Let Pt be a continuous semi-martingale with 

values in ~". Suppose X has compact support and is in ns+2 " ' l o e  " I f  ~ iS the flow of 
(X, z) then the process 

~ = ~ P~ 
i.e. 

~ (~ )  = ~(<~) (p,(~)) 
is an ~"-valued semi-martingale with 

dYlt = D ~t (Pt)o dpt + X(Ylt)o dz t. (1) 

Remarks 4.2. (a) By (1) we mean 
t t 

th = Po + S D ~t(P,) dp, + �89 ~ DX(rlt) (D ~,(p,) dpt ) dz t 
0 0 

t 

+~ i D~ ~,(p,) (dp~, dp~) + S X%) dz, 
0 0 
t 

+�89 DX(tlt) (X(rh) dz,) dz t a.s. (2) 
0 
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see (b) below. Taking this to be the definition of equation (1) means that there 
is no need to spend time discussing the existence of the Stratonovich integral 
t 

D~t(pt)odpt. (In fact given one extra degree of differentiability our argument 
0 

below would apply with (~(Pt), D~t(Pt)) replacing ~t(Pt) to show that D ~t(Pt) is 
a semi-martingale; more generally we could use Corollary 1D Chap. VIII of 
[13]). 

Remark 4.2. (b) Since differentiation gives a map 

n r~ .  s s - 1  n.  ~x~Hx (F.,1LOR";P.")) s>~+l / J .  

which is continuous linear, and hence C 2, It6's formula shows that D it consid- 
ered as a process with values in 

satisfies 
/-/i-10~"; L(~.; ~.)) 

d(D ~3 = DX(~(-)) (D ~,(-) (-))o dz,. 

n 
Proof  Since s > ~ + 2  the map 

E: ~ (  x 1R"~IR" 

is C z with derivatives 

E ( h , x ) = h ( x )  

DE(h, x) (f, v) =f(x)  + D h(x) v 
and 

D 2 E(h, x) (( f ' ,  v'), (f, v)) = DF(x)  v' + Df ' ( x )  v + D 2 h(x) (v', v), 

for (h, x)eN)  x IR", and (f, v) and ( f ' ,  v') in H)  x ~". 

The result follows from the It6 formula, using Remark 4.2(b) above, since ~/t 
=E(~t, Pt). However the most easily available version of the It5 formula in this 
generality, [263, Remarks 3.9(2), Chap. 2, requires D2E to be uniformly con- 
tinuous on bounded subsets of N ) x  IR" (more precisely we shall work on the 
linear space H i x IR"). In fact this is so since it holds for the first two terms in 
the expression for D2E, by local compactness of IR ~, and the last term 

(h,x)~--,DZh(x) H~ x N"~IL(IR", IR"; IR ") 

mapping into the space of bilinear maps, factorizes 

H~x x IR n -* C 2 (IR " ; IR n) x IR " --* IL ( N  ~, P." ; IR ") 

where the first map comes from the natural inclusion H~:~ C 2 and the second 
is the map (h, x)~--,DZh(x), which is continuous. However by the Rellich theo- 
rem the inclusion H~xoC 2 is compact i.e. sends bounded sets to sets with 
compact closure [30, 323. // 
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4.3. The Inverse of the Flow 

n 
Proposition 4.3 (c.f. Kunita [21]). Suppose that s > ~ + 2 .  Then the inverse ~ of 

the flow 4t of (X, z) satisfies 

d(47 ~(x))= - D  47 ~(x) X(x)odz~. 

Proof The map J 2 : ~ } ~ )  -2 given by J2(h)=h-1  is C 2 with 

D J z ( h ) ( f ) ( x ) = - D h - 1 ( x ) ( f o h - * ( x ) )  he~c ,  fEH~c, x~lR". 

n 
Since s >~  + 2 the evaluation map 

evx: 9}-  2 ~IR" 

is continuous affine. The result follows by applying It6's formula to ev~oj  2. //  

5. The General Case 

5.1. The Partial Flow 

When X is merely in r4s+z the system may not have a flow defined for all 
time, for example the solutions may explode. However there is a partially 
defined flow as we shall show. First we recall a well known local uniqueness 
result. 

Lemma 5.l. Consider two stochastic dynamical systems (X1, z) and (X2, z) on ~". 
Suppose that both X 1 and X 2 are C a and agree on a bounded open subset U 
of IR". Let ~i,x denote the solution from x of (Xi, z) and let z~ be its first exit time 
from U. Then if xelR" 

and 

1 _ _  2 
"C x - -  T x a . s .  

~1 =42 a.s. for t<z~. 
t , x  t , x  

Proof See for example [14] or [13]. //  

The following result (in the C r case) is due to Kunita [19]. The method we 
use is essentially that used in [13] for the manifold case (where slightly more 
refined results are proved). See also [27]. 

Theorem 5.1. Consider the stochastic dynamical system (X, z) on ~ where X is 
n 

in **loor4s+2 for some s > ~ + l .  Then there is an explosion time map z: IR ~ 

x (2--+ [0, 001 and a partially defined flow ~ for (X, z) such that if 

M(t)(co)={xe~(': t < z(x, co)} coe(2 
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then for  all co in ~ :  

(i) M(t)(co) is open in IR ~ i.e. z ( - ,  co) is lower semi-continuous. 
(ii) ~t(co)x is defined for  x~M(t)(co)  and 

~,(co): M(t)(co)-,~" 

is in Hl~oc and is a diffeomorphism onto an open subset o f  ]R ~ with inverse in H~o ~. 
(iii) For each x in JR" the random variable z(x) is a stopping time and 

{~t(X)}o_<t<~(x) is a maximal solution to (X, z ) f r o m  x. Moreover  for  any compact 
set K in ]R n set 

z (K)  (co)= inf{r(x)(co): x e K } .  

Then on {z(K)< ~ }  we have almost surely 

sup{LCt(x)(co)]: x s K ) ~ o o  as t--+x(K)(co). 

(iv) The map e~+~,(co) of  [0, t] into H~o~(M(t ) co; IR ~) is continuous for  each t 
and co. 

(v) When X is C oO then ~t(co) can be chosen to be C ~ on M(t)(co) and so that 
in (iv) the map is continuous into the Coo topology. 

Proof. Take Coo maps 2~: IR"~[0,  1] with 

supp 2~ c B~+ 1 
and 

2~IB~- 1 r = 1 , 2  . . . . .  
Set 

X~ = 2~ X. 

By Corollary 3.2 the systems (X~, z) have flows ff in @s (where we write @~ for 
@x). Let r  be the first exit time of if(x) from B~ and set 

M[(co) = {xelR": t < ~(x) (co)} coe f2. 

By local uniqueness, Lemma 5.1, for each r and each x in N~ we have 

r ' ( x )<r~§  a.s. 
and 

r for 0<t<'c~(x) a.s. 

The separability of IR" and the continuity of the flows ensures that these 
inequalities hold for a set of full measure s say, in f2 which is independent of 
xe l (" ,  as well as independent of the natural number r. On/2 '  set 

z(x) = sup ~qx) < oo, 
r 

and 
i t (x)= lim {~(x) 0 < t < ~ ( x ) .  

r ~ o 0  

Since {~(x) is independent of r for r sufficiently large when t<r (x) ,  this limit 
exists on f2'. Outside /2' set { , (x)=x and ~(x)=oo: clearly all our assertions 
hold on this set so from now on we restrict ourselves to ~2'. 
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Clearly is(x) is a solution of (X,z) and since l im]~ t (x ) ]=~  as t ~ ( x )  
whenever ~(x)< ov it is a maximal solution, giving the first part of assertion 
(iii) after noting that the supremum of a sequence of stopping times is a 
stopping time. 

For the second part observe that ~K(co)=~(x, co) for some x in K, by the 
lower semi-continuity of ~ and compactness of K. But since it is a maximal 
solution 4 t ( x ) ~  as t---)z(x) almost surely on {~(x)< ~},  as is well known (e.g. 
Corollary 6.2, Chap. VII of [13]). 

Since M(t)(co)= ~) M~(co) assertion (i) holds. Also from this we see that for 

every compact subset K of M(t) (co) there is an r with 4s ( - )  (co)[K---- 4 ] ( - )  (co)[ K 
for 0_<s<_t. From this we have assertion (iv) and the fact that ~t(co) is a local 
diffeomorphism on M(t)(co) in Hjo ~. Moreover it is seen to be injective by 
taking K to consist of any 2 given points. Thus (ii) is true. 

Finally (v) follows since the C ~ topology is the limit of the H s topology as loc 
s ~ .  // 

Remarks 5.1 (a). The second part of assertion (iii) of the theorem is a maxi- 
reality condition on ~. It is enough to ensure uniqueness of the pair (4,~). In 
fact suppose (4', z') also satisfy assertions (i) to (iv). By separability of IR" the 
flows agree up to the time inf{z(x),v'(x)}, after discarding a negligible set 
independent of x. To show that ~=z '  a.s. let co[f2 be fixed and set N(co) 
= {x: ~'(x) < ~(x) (co)}. Then if B r ~ N(co) 4:0 we have 

~'(B~) (co) < ~(B~) (co). 

It follows from (iii) that co lies in some null set, ~2, say. Then 

{co: N(co) 4: 0} ~ (~ ~ 
r = l  

and so has probability zero. Thus (4, ~) and (~',,') agree outside of one set of 
measure zero. 

(b) Note the "almost surely" in (iii), (thanks to the referee). The "proof"  in 

[-13] only yields the rather obvious sure statement: lira [4t(co)(x)[=~ as 
t ~ z(x, co) whenever ,(x, co) < or. 

Theorem 5.1 raises the following questions: 
A. When can the explosion time map*  be chosen to have z ( x ) - ~  all 

xelR"? If so we will say that (X,z) is strongly complete; the term strictly 
conservative has also been used. 

B. Given strong completeness when is is almost surely surjective for all t? 
On IR completeness implies strong completeness, as observed by Kunita 

[21]. For higher dimensions this is not so: the simplest example [11, 13] is of 
the system restricted to ]R 2 -  {0} given by (X,B) where B is a 2-dimensional 
Brownian motion and X: IR2-{0}----~]L(]R2; R 2) is simply X(z)e=e for all z in 
]R 2 -  {0}. To get an example on all of ]R 2 w e  only need to apply the inversion 

1 
z~-~-, in complex notation. The resulting system ()~, B) o n  ]R 2 with 

Z 

)((x, y)(e~, e2) = ( -  (x 2 _y2) e~ +2xye2, - ( x  2 _y2) e2 _2xye l  ) 
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is complete but not strongly so. In [6] Carverhill constructs a stochastic 
differential equation on IR 2 with the same associated infinitesimal generator as 
(J(, B) but which is strongly complete. 

Bessel processes furnish good examples of one dimensional processes which 
are strongly complete but do not have the surjective property. These are the 
radial components of n-dimensional Brownian motions where n > 2, and are 
defined on (0, o~) rather than IR. However their logarithms give a process on 
IR. The lack of surjectivity follows from the results of [21] (or [12]). 

The strong completeness of It6 equations given global Lipschitz conditions 
was shown by Blagovescenskii and Freidlin in 1961 [4], using an extension of 
Kolmogorov's criterion for the existence of sample continuous versions of 
stochastic processes. This method was also used by Baxendale [1], see also 
[19] and [11], [13]. Surjectivity also holds in this case and the fact that there 
is a flow of homeomorphisms is proved, most beautifully, by Kunita in [19], 
using ideas of Varadhan. Malliavin gave a completely different approach in 
discussing the existence of flows consisting of diffeomorphisms see [23] or 
[24], and recent interest in the problem was mainly stimulated by his work. 
The treatments in the books of Ikeda and Watanabe [17] and Bismut [3] are 
close to those of Malliavin. A careful analysis when the coefficients have 
bounded derivatives was given by Bismut [2]. See also Meyer [27]. 

Warning. The statement of Theorem 2.4, Chap. V of [17] seems to be incorrect: 
see the examples in [13] Chap. VIII. 

5.2 Uniform Convergence of the Piecewise linear Approximations 

Theorem 5.2. (Elworthy [13], see also Bismut [3], Ikeda and Watanabe [173, 
Baxendale [0]). 

Fix a time interval [0, T]. Consider (X, z) on JR" with XEH~o +2 and let ~ and 
z be its partial flow and explosion time map as in Theorem 5.1. For partitions 1I 
of [0, T] let ~ be the partial flow of (X, z~). 

Then ~'~ converges to ~t in H~o c uniformly in each subinterval [0, S] of [0, T], 
in measure, in the sense that if U is open in ~n and 6 > 0 then 

P { U c M ( S ) &  sup IL~Iu-~LuII'>~}-~o asmesh 11--.0 
O~t<_S 

where II I1' is any continuous seminorm on H~oc(U) and M(S)(co) is as in 5.1, and 
the norm is taken to be infinite when ~ is not defined on U. 

In particular there is convergence of ~(x)  to ~(x) uniformly in tE[0, SI and 
on compacta in ]Rn: if K is compact and (5>0 then 

P { K  ~ M(S)&sup{ll('[(x)-(t(x)lLlR~: O<_t<_S, x e K }  > 5}-~O 

as mesh 11~0 ,  

with the same convention if ~(x)  is not defined. 
When X is C ~ the convergence in x is that of convergence uniformly on 

compacta of derivatives of all orders. 

Proof. The measurability of the events considered in the statement of the 
theorem, and below, follows from the general theory in [8] Theorem No. 44. It 
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is also discussed in [13] where there is an alternative proof of the result we are 
proving. 

We shall use the notation of the proof of Theorem 5.1. By definition of the 
topology of H~o r we can assume that 0 is compact. We will ignore the 
negligible event f 2 -  f2'. Now 

{co: OcM(S)(o)}= 0 {co: OcM}(co)} 
r = l  

and the right hand side is an increasing union. The convergence in H~o~ will 
therefore be assured if we can show that 

P { U c M }  - l &  sup I[~lu--~l  UIl*>6}~0 
O < t < S  

as mesh /7-~ 0 

for all sufficiently large r, since ~TlU=(~[ U for O<_t<_S if U=M~s -1. 
Set 

O(r, II)={ sup rl t' -~11co=1} 
O<t<_S 

where ~'~ is the flow of (X~, z j .  On O(r, n)c~ {0  c m~s - l} we have 

C~(~:)=B~ O<_t<_s 
and therefore 

~10=~.~1 0 o<_t<_s. 
Theorem 4.1 then yields 

(*) 

P({OcM~s-1}c~O(r,H)c~{ sup II~,~u ~ r [  - ,I UIl*>~})~0 
o 6 t < s  

as mesh H ~ 0 

giving (*) since P(O(r,/7))--* 1 as mesh /7--+0 by Theorem4.1. The other asser- 
tions follow as usual from the Sobolev theorems. // 

For  Malliavin's approximations to the flow by flows of (X, z~) where z~ is 
the 'regularization' 

for a suitable bump function u see Malliavin [-23], [-24]. For approximation by 
flows of generalized Ornstein-Uhlenbeck processes see Dowell [9]. 

5.3. Generalized It6 Formula 

Continuing with the same notation as in Theorem 5.1 and its proof set 

M(co)= {(x, t)~lR" x [0, ~); t<~(x)(co)} 
and 

Mr(co) = {(x, t ) e~"  x [0, oo); t < zr(x) (co)} r=1,2, .... 
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Then each M~(co) is open in lR"x [0, oo) and so therefore is M(co) since M(co) 

= ~) M~(~o). 
r ~ l  

If p is a sample continuous adapted process with values in IR ~ let rp(m) and 
z~(o)) be the first exit times of {(&(co), t): t>0} from M(co) and M'(co) re- 
spectively. Then z~ is the first exit time of f f -p  from B~ and zp=supz~. 

Therefore zo is a stopping time. 
We can now extend the generalized It6 formula of Bismut [2], [3] and of 

Kunita [20]. As we saw in w 4.2 it is essentially an integration by parts formula. 
See also Ustunel [34]. 

Theorem 5.3. Let Pt be a continuous semi-martingale with values in IR ~. Suppose 
n 

X is in ~1o~r4~+2 where s > ~ + 2 .  I f  ~ is he partial flow of (X, z) then the process 

tlt = it " Pt t <'co 

is an lR"-valued semi-martingale with 

dt h = D ~t(pt) o dpt + X (tlt ) o dz t, 

Proof Set t/~=ff. t &- Then r/t=r/[ for t<z~ and zpl"z p as r--*oo. The result 
follows by applying Proposition4.2 to t/~, and observing that D~[(&)=D~t(p~ ) 
f o r t < r ; .  // 

5.4. The Backward Equation for the hwerse" 
Kunita's Surjectivity Criterion 

For 0_<s < t  < ov let ~ t  be the completion of the a-algebra generated by z(t') 
-z(s ' )  for s<_s'<_t'<_t. For fixed T > 0  define the IR m+l valued process z ~ by 

z V ( t ) = z ( T - t ) - z ( T )  O<_t<_T. 

Then, given X as before, the system (X, zV) is of the same type as we have 
been considering, apart from the fact that our time interval is restricted to 
[0, T], and that the filtration is {gT-t,T: 0 < t <  T}. 

In our preliminary lemma we follow essentially the same method as used 
by Malliavin when he discussed the diffeomorphism property of these flows 
[23, 24]; and it is a special case of what he obtained. 

Lemma 5.4. Suppose X is in T4s+2 and has compact support. Let {~F" O<t<-T} ~ 1 0 0  

denote the flow of (X ,z  v) and {it: O=<t< ~}  that of (X,z). Then, with probabil- 
ity one, 

and in particular 
~t v . ~ T = ~ T _ t  O<_t<_T 
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Proof For part i t ions/7 of [0, T] let ~v~ be the flow of (X, (z~) v) where 

(z ~) v (t) = z . (  T -  t) - z (  T ) ,  

and let H ~ be the partition O < T - t , , < . . . < T - t ~  if H is given by 
O<t~ <...<t,,<=T. 

Observe that (zV),~ =(z~) v and mesh H v ~ 0  as mesh H ~ 0 .  Therefore 
v ~ converges to ~ v in ~ uniformly in [0, T] as mesh /7  ~ 0 as in Proposition 

4.1. Now 

since 
~v~.~}=~t  r - t  0 < t < T _  _ 

d . - 2(~}_t) ~ ( r -  t) = 2 ( ~ _ t )  d~t (z~)v 

using the lifted system Jf on ~}. Also composition 

is continuous and so taking limits as m e s h / 7 ~ 0  by Proposition 4.1 we obtain, 
with probability one, 

~ �9 ~ r = ~ r _ t  all O<_t<_r 

as required. // 

The following extension of Kunita [21], Theorem 2, is due to Carverhill, it 
was proved by Kunita under the assumption that both (X,z) and (X,z  v) are 
strongly complete, and with X of class C s and extended to include X of class 
C a in [22]. See Malliavin [23, 24] and Bismut [2, 3] for earlier results. As with 
all the main results we give it holds equally well when N" is replaced by an 
arbitrary smooth a-compact manifold, with essentially the same proof. 

Theorem 5.4. Suppose that X is in r4s+2 Let {it: 0=<t<oo} and {~t ~ " O<_t< T} 
~ I o c  ' 

denote the partial flows of (X, z) and (X, z v) respectively, where T>O  is fixed. 
Set 

M(t) (co)= {xeN": t <z(x) co} 
and 

MV(t)(co)={xelR": t<rV(x)co} coeQ, O<_t<_r 

where r and z v are the explosion time maps of ~ and ~ v. Then with probability 
one, ~r(co) maps the open set M(T)(6o) as an H s diffeomorphism onto the open set 
M v (r)(co) and its inverse is ~ (co). 

Furthermore, with probability one, 

~v .~T=~T_,IM(T) for all O<t<_T, 

In particular, for every T, ~r is almost surely a diffeomorphism of IR" onto ]R" if 
and only if both (X,z) and (X,z  ~) are strongly complete. 

Proof. Let ~ and ~ w be the flows of (X,, z) and (X~, z v) for X~ as in the proof 
of Theorem 5.1. As in that proof let r and r v' be their exit time maps from B~ 
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and set 

M~= {x~lRm: ~r>T} 
and 

v r -  {xMRm: z v , > r } .  M r - 

We can throw away one negligible set to assume that 

r _ _  r ~tlMT--~t  O<_t<--T 
~v v r  v r  t I M r  - M r  O < _ t < T  

M ( T )  (co) = t,_) M~r(co), M v ( r )  (co) = U M }  r(co) 
r r 

and, by Lemma  5.4, ~-r" ~ ) = ~ ) _  t 0 < t <  T, r = l , 2 ,  3, .... 
For  x ~ M ( r ) ( c o )  we can therefore choose r with x~M~(T)(co). Set y 

=4r(co) (x). Then, for 0<_t_<T, 

4?'(co) (y)= 47 ~(co) ~ ~(co) (x) :  4~_~(co) (x)~/L. 

It follows that y is in M~r(co) and therefore 

~7 ~(co) (y) :  4? (co) (y) 0_< t _< T. 
Consequently y ~ M  ~ (T)(co) and 

4~'(co)(y):~r_t(co)(x)  O<_t<T 

as required. / /  

Corollary 5.4 (Kunita [21], Theorem 3, in the C 5 case, see also [22] for the C 2 
case). Consider a stochastic differential equation on IR ~ 

dx  t : Xo(xt) o dB t + A(x~) dt 

where A: IR"~]R"  and X o" IR"-*IL(~";IR")  are in r4s+2 and B t is a Brownian 
x ~ I o c  

motion on IR ~. 
I f  this system is strongly complete then it has a f low which for  each T > 0  is 

surjective with probability one if  and only if  the adjoint system 

dy t = Xo(Yt) o dB t - A(Yt) dt 

is strongly complete. 

Proof. This follows from the theorem since: 
(a) t v = - t  and B ~ is again a Brownian motion up to time t o , so the 

adoint system corresponds to our system (X, z ~) with z ~ replaced by a process 
with the same distributions. 

(b) if z and ~ have the same distributions then the strong completeness of 
(X, z) implies that of (X, ~. This is discussed in detail in Elworthy [13]. // 

Remark  5.4. Even if ~r is only assumed to be almost surely a diffeomorphism 
of I t "  onto itself for some given T > 0 then the arguments above show that the 
adjoint equation has a flow defined at least up to time T. By the time 
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homogeneity in law of Brownian increments it follows, as in (b) immediately 
above, that the adjoint system also has a flow of solutions starting from time T 
and continuing to time 2 T. Composition of these gives a flow from time 0 to 
time 2T, and iteration of this shows that the adjoint equation must again be 
strongly complete. 

Note that the negligible set in Theorem 5.4 and its Corollary may depend 
on T. More work is needed to get surjectivity of it for all t>0 ,  with probability 
one. This was done by Kunita, and we discuss it in the next section (Corollary 
6.2). For the moment let us simply observe that if we set 

~,r=~_~ O<s<T 

and allow T to vary then it will be enough to prove that there is a version of 
{t/0,t: t >  0} (consisting of continuous flows) which is continuous in t. 

6. Backward and Forward Equations 

All of this section was inspired by Kunita [21]. For O < s < t <  oo let ~'~t be the 
a-algebra defined in w 5.6. We shall consider processes indexed by pairs (s, t) 
and will insist that at the index (s, t) they are ~t-measurable. 

6.1. Backward and Forward Continuity 

Let {4,,: O<_u<_t< oo} be the flow for (X, z) starting at times u>0.  We want to 
find a version which is continuous in u and t, and for fixed t, t = T say, to find 
a stochastic integral equation satisfied by (~ur(x): 0_<u_<T} for x~lR". (The 
relevant filtration will be { ~ r :  0_< u___ T}). 

Lemma 6.1. Suppose X has compact support and is in *~looHS+ 2. Let ~o,t=~t be its 
flow, 0 <- t < oo. For each u > 0 set 

~.,=~,.~21 u<t<oo. 

Then {~,t: u < t  < ~ }  is a version of the flow starting at time u, and for all coco 
(i) ~ut(Co) is in ~ x  for all O<u<_t < oo and 

(ii) it is jointly continuous in u and t as a map into ~x .  

Proof By the uniqueness of flows we must have 

for any version ~,t of the flow starting at time u. Therefore ~,t is a version of 
that flow. Since N) is a topological group under composition both (i) and (ii) 
hold. // 

The following construction of nice versions of ~ is due to Carverhill: 
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Theorem 6.1. Suppose X is in -Uor . . . .  Take X~ for r = l , 2 ,  as in the proof of  
Theorem 5.1 with corresponding flows {~t: 0 < t <  oo}. Set 

r _  r. O < u < t < o O  ~ut-- it (~)-1 
For each u>O construct a version of the partial f low {~.~: u N t  < oo} with the 

ff < t < o v }  as in the proof of  explosion time map denoted by % using { ,~: u 
Theorem 5.1. Set 

M,v(co)={x~lR~: ~,(co)>v} coat2, O<_u<_v< oo. 

Then with probability one (independent of  u and v) : 
(i) M,~(co) is open in IR". 

(ii) M,~(co) c M,t(co ) if u < t < v, 
(iii) ~,(co) Msv(co ) c M,v(co ) if s < u <_ v. 
(iv) ~,v(co): M,v (co )~N"  is a diffeomorphism onto an open subset in IR" and is 

in H~lo~, for O<_u<v< oo. 
(v) ~o(co)'~,,(co)lM~(co)--~,v(co) u<-t<-v. 

(vi) the map t~--~ ~,t(co) is continuous into H~or on the interval [u, v], 
(vii) Set My(co) = {(x, t)al~" x [0, v]: xaM,v(co)}. 

Then each f/iv(co ) is open in IR ~ x [0, v]. For any open set in f/l (co) of the form 
U x (a, b) the map (t, u)~-~r ) is continuous into H~o~(U) on the set {(t, u)e(a, b) 
x [0, v]: t<u} .  

Proof. We will use the nota t ion of the proof  of Theorem 5.1. We  shall ignore 
the negligible event t 2 - t2 '  of that proof. 

For  u > 0 ,  xa lR ~ and r = l , 2 ,  ... set 

~;(x) (co) = ~(~(co)- '  x) (co) coat2. 

Then z;(x) is the first exit t ime of {~i~: t > u }  from B~. Set 

M~.(CO) = {xMR": z~(x)(co) > t}. 
By definition 

z,(co) (x)=  lim -c~(e)) (x) 
g ~ o 5  

and 
Mu,(co) = U M;,(co). 

r 

Assertions (i) and (ii) are immediate  from the corresponding facts about  M[, v. 
Also if XaMsv(co) then xaM~v(co ) for some r; but  then xaM~,(co) if s<_u<v, and 
so 

~s,,(co) x = ffs,,(co) xeM~v(co) 
since 

r r _ _  r 

Thus (iii) holds, and a similar argument  proves (v). 
Assert ions (iv) and (vi) come as in Theorem5.1.  For  (vii) set ~/~(co) 

-- {(x, t )eN"  x [0, v]:xEM~v(co)}. Then 

My(co) = U ~Uco). 
r 
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Now each M~(co) is open in N" x [0, v] by the continuity of ~ in (t, v) shown 
in Lemma 6.1. Thus M~(co) is open. 

For  the continuity of ~t,(co) in (vii) we can assume without loss of generality 
that 0 x [a,b] is contained in Mo(o)) and therefore in ~~ M~(co) for some r. But 
then Ct,(co)=~t,(co) on the relevant domain and the result follows from 
Lemma 6.1. // 

From now on {~m: O<_u<_t < oo} will always refer to a version constructed as 
in Theorem 6.1. 

6.2. A Version of the Inverse 

For a fixed T > 0  let z v be as in w Replacing z by z v in Theorem6.1 
construct a version of the flow ~ of (X,z  v) just as in the proof of that 
theorem: it will be defined for 0_< u _< t _< T on subsets M~t(co) of N". 

Theorem 6.2. Except for a set of probability zero, depending only on T, for all 
O<u<s<_t<_T, ~ut(co) maps Mut(Co ) as an H s diffeomorphism onto M~. t,r_.(co ) 
and has inverse ~._t,T_.(O)). Furthermore, 

~_,, T-  ~" 4~ = ~.s I M . , .  (1) 

Proof With the notation of the proof of Theorem 6.1, if x~Mut(co) then 
x~M~,t(co) for some r. For this r we have 

~.,(co) x = ~;,(co) x = r o ~ ; (co ) -  i x .  

By Lemma 5.6 we have i t =  ~ - [ t '  ~) giving 

r r - 1  r = ~(co) o ~.(co) x=~.~(co) xeB,  

since M~,t(co)cM~(co ). This shows that r is in m~[t,r_~(co ) since the 
equation is true for all s in [u, t]. However on that set ~[t.r_~(co) agrees with 
~ ' - t ,  r-~(co). Therefore 

~ - , ,  r - s (C~  o ~.,(co) x = ~u~(Co) x 

proving (1). 
Now take s=u. The proof so far shows that ~.t(co) maps M.t(co ) into 

M~_t,r_.(co ) with the required inverse. However we can equally well in- 
terchange the roles of z and zV; this will show that r t,r_.(co) maps 
M~_t,r_,(co ) into M . t ( o 9  ) with inverse (,~(co), and so complete the proof. // 

Corollary 6.2. I f  for each t>O there is probability one that r is an H ~ 
diffeomorphism of N" onto itself then with probability one (,t(co) is such a 
diffeomorphism for all 0 <- u <- t < oD. 

Proof u n d e r  the given hypotheses it will be enough to prove that for T 
=1 ,2 , . . .  with probability one M,~(co)=lR" and ~ut(Co) is surjective, for all 
O<_u<_t<T. 
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To show M,~(co)=IR" let Zt={co: it(co) not onto}. Then P(Zt)=O for each 
0_<_ t < oo by hypothesis. From the definition 

~tlR" x ( f2 -Z~)~  oo 0 < t <  oo. (1) 

Let A be the event that the conclusions of Theorem 6.1 hold. Then P(A)= 1 
and if co ~ A 

r ~.(co) = ~,(co) 0__ u _< t < oo. 

Therefore if Z ' t = Z t u ( O - A  ) for co~Z' t we have surjectivity for ~,t, O<_u<_t. 
Also for coaA, by 6.1(v), 

~tT(co).~ut(co)[MuT(co)=~uT(co) O<_u<~t~T. 
Therefore 

~ut(co) [MuT(co)] ='MtT(O5)) O ~ u ~ t ~  T 

whenever co~A and ~uT(co) is surjective. In particular, if coggZ'ruZ;, with 
0<t<_ T, so that Mtr(co)=lR" by (1), then 

M,T(co ) = M,t(co ) 0 <_ u <_ t, 

Set 
z = U {z; :  t ~ } .  

Then if co~eZ and O N u < t N T ,  choosing t '~Q c~(u, t), 

M,t(co ) ~ M,+,(co) = M,T(co) c M,t(co ). 
Thus 

Mut(co)=M,r(co) 0<=u<t=<T, co~Z. 

However for all u >_ 0 we have 

~.(x, co) > u x~]R n, co~Q. 

O<_u<T 

all O<_u<t<T 

Therefore 
m " =  U M.~(co) 

u<t~T 
and so 

MMco)  = M M c o )  = e . "  

if co 4: Z, as required. 
For  surjectivity of ~,t(co) we apply the above argument to (X , z" )  using 

v _ n Theorem 5.4. This shows that MT_t,T_u(co)--IR for all O<u<t<<_T, almost 
surely. The surjectivity then follows from the theorem. // 

6.3. The Backward Equation 

We continue with the same notation and hypotheses on X. For  fixed T > 0 let 
p: M x f2 --* [0, T]  be given by 

p(x, co) = sup {u~ [0, T l  : xr 
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It is the "backwards explosion time map". Note that p(x)< T for all x in lR", 
almost surely, by Theorem 6.1, and that 

p(x)=inf{p'(x): r = 1, 2,.. .} 
where 

p'(x, co) = sup {u~[0, T]:  xCM~T(C0)}. 

Let us say that a map e: ~2 ~ [0, T] is a starting time if for each re[0, T] we 
have {c~ < t} e ~ T .  

Lemma 6.3. For each x in JR", p(x) is a starting time. 

Proof It suffices to show that each p'(x) is a starting time. However T - p ' ( x )  is 
the first exit time of the process UF-*ffT_,,T(X ) from B and this process is 
adapted to { ~ ,  ,, r: 0 < u < T}. This means that 

{ J ( x ) < t }  = { T - p ' ( x ) >  T-t}s~.~tr 

as required. //  

The following was given by Kunita [21], [22] under C s, respectively C 2, 
conditions on X, and assuming that (X, z) is strongly complete. 

Theorem 6.3. For fixed T > 0  set ( , = ~ , r ,  0_<u_<T. Then for each x in ]R n if 
f:IR"--*IR is C 2 and z is any starting time strictly greater than p(x) we have 

T 

f (~ , vd X) )= f ( x )+  ~ X( f .~s ) (x )od  G O<_u<T, a.s. 
u v ~  

Proof. Since p(x)=infp ' (x)  we can assume that z>pr(x) for some fixed r, 
thereby only being wrong on a set of arbitrarily small measure. But then 

Set 

G(col(x)=G~(~o)(x)=~:.(co)-~(x) r(co)<_u<_T. 

X - -  ~ v r ( o . ) l -  1 t - -  t ~ J X 0 = < t < o O .  

By Proposition 4.3 

i.e. 
dx t = - D(~ t ' ) -  l(x) X,(x)o dz v 

t 

f (xt) =f(x)  - 5 D f  (G) D(r v ' ) -  l (x)  X r ( x  ) o d z  v 

o 

T 

D(~ v, ~- l(x ) X,(x) o dz s. = f ( x ) +  S Df(XT-s) ,~T-~, 
T- - t  

Therefore if y , = x  T_ t, since X , ( x ) = X ( x )  for r sufficiently large 

T 
f (Y , v~ )= f  (x)+ ~ Df(ys) D(~,~[s)-l(x) X(x) od G. 

u v v  

(1) 
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Therefore,  by  (1) 

as required.  / /  
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T 

f ( [ . ~ , ( x ) )  = f ( x )  + J Df(~(x)) D[~(x) X(x) o dz~ 
u v ' C  

T 

= f ( x )  + j" D(f. ~) (x) X(x) o dz s 
u v z  

T 

= f ( x )  + J X(f .  ~) (x) o dz~ 
u v ~  

w 7. Equations on Manifolds 

Suppose  now tha t  our  equa t ion  dx=X(x)o dz is on  a separable ,  finite d imen-  
sional,  C oO mani fo ld  M. F o r  s impl ic i ty  we will suppose  tha t  X is Coo. 

If  X has compac t  suppor t ,  ra ther  than  work  with the d i f feomorph i sm 
groups  as in [11], we can e m b e d  M as a c losed Coo submani fo ld  of IRp for 
some p, and  t ake  a Coo extension 32 of  X with  c ompa c t  suppor t ,  to ob ta in  the 
equa t ion  d x = X o d z  on IR p. 

Using  Coro l l a ry  3.2 we ob ta in  a flow ~- for (Jr, z). By separab i l i ty  of  M, we 
can modi fy  ~ on  some negl igible  set so tha t  it  restr icts  to give a flow for (X, z) 
on  M. Thus  we ob t a in  the  ana logue  of  Coro l l a ry  3.2 in the mani fo ld  case, at  
least  for X of  class C ~176 

To get a pa r t i a l  flow for X no t  of compa c t  suppor t  we s imply  do exact ly  
BoO the same as in T h e o r e m  5.1 bu t  wi th  { ~}r= 1 now a family  of open subsets  of 

M, wi th  c o m p a c t  closures,  cover ing M and  having  / 3 , c B r +  1 for each r. 
T h e o r e m  5.1 then goes t h rough  in exact ly  the same way  with M rep lac ing  IR", 
as do  the o ther  results  wi th  the embedd ing  technique  used to get the necessary 
p re l imina ry  vers ion for the " a p p r o x i m a t i o n s "  X .  
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