Z. Wahrscheinlichkeitstheorie verw. Gebiete 65, 239-244 (1983)

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1983

A Note on Diffuse Random Measures

L. Weis

Fachbereich Mathematik, Universität Kaiserslautern, Postfach 3049, 6750 Kaiserslautern

Summary. Let (μ_x) be a random measure on a measure space (Ω, Σ, μ) , such that all μ_x are diffuse measures. Then there is a subalgebra $\Sigma_0 \subset \Sigma$ with $\mu_{|\Sigma_0|}$ non-atomic such that $(\mu_{x|\Sigma_0})$ is absolutely μ -continuous. This is applied to product measures and bounded linear operators on $L_1(\Omega, \nu)$.

I. Random Measures

Let (Ω, Σ, μ) and (K, \mathcal{A}, ν) always be countably generated, non-atomic probability measure spaces.

A family $(\mu_x)_{x \in K}$ of measures on (Ω, Σ) is called a *random measure* if the functions $x \in K \to \mu_x(A) \in \mathbb{R}$ are \mathscr{A} -measurable for all (fixed) $A \in \Sigma$.

A random measure $(\mu_x)_{x \in K}$ is diffuse if v-almost all μ_x are non-atomic.

Theorem. Let (Ω, Σ, μ) and (K, \mathscr{A}, ν) be as above. Then, for every diffuse random measure $(\mu_x)_{x \in K}$ on (Ω, Σ) with $\int_K \|\mu_x\| d\nu(x) < \infty$ there is a sub- σ -algebra $\Sigma' \subset \Sigma$ with $\mu_{|\Sigma'} \neq 0$ and non-atomic such that ν -almost all μ_x are μ -absolutely continuous on Σ' .

A disintegration for a probability measure P on a product space $(\Omega \times K, \Sigma \otimes \mathscr{A})$ is by definition a random measure $(\mu_x)_{x \in K}$ such that for all $M \in \Sigma \otimes \mathscr{A}$

$$P(M) = \int_{K} \int_{\Omega} \chi_{M}(t, x) \, d\mu_{x}(t) \, dv(x)$$

where v is the marginal measure of P, i.e. $v(A) = P(\Omega \times A)$ for all $A \in \mathcal{A}$. If Ω is a topological space, Σ the σ -Algebra of its Baire sets and the marginal measure $\mu(B) = P(B \times K), B \in \Sigma$, is tight, then such a disintegration always exists (see [3]).

As an immediate consequence of the theorem we have

Corollary. Let P be a probability measure on the product space $(\Omega \times K, \Sigma \otimes \mathcal{A})$ with marginal measure v on (K, \mathcal{A}) and a disintegration $(\mu_x)_{x \in K}$ consisting of diffuse measures. Then, for every non-atomic measure μ on Σ there is a nonatomic sub- σ -algebra $\Sigma' \subset \Sigma$ such that P is $\mu \otimes v$ -absolutely continuous on $\Sigma' \otimes \mathcal{A}$. Proof of Theorem. Choose a system A_i^n , $i=1,...,2^n$, $n \in \mathbb{N}$ of measurable subsets of Ω such that

- i) A_i^n , $i=1,\ldots,2^n$, is a partition of Ω for all n.
- ii) $A_i^n = A_{2i-1}^{n+1} \cup A_{2i}^{n+1}, \ \mu(A_i^n) = 2^{-n}.$
- iii) $\overline{\lim_{n}} A_{i_n}^n$ contains at most one atom for every sequence $i_n, i_n \in \{1, \dots, 2^n\}$.

Consider the $L_1(K, v)$ -valued martingale

$$F_n(t) = \sum_{i=1}^{2^n} f_i^n \chi_{A_i^n}(t), \qquad f_i^n(x) = 2^n \mu_x(A_i^n)$$

with respect to the algebras Σ_n generated by A_1^n, \ldots, A_{2n}^n . (F_n, Σ_n) is L_1 -bounded since

$$\int_{\Omega} \|F_n(t)\| d\mu(t) \leq \int_{K} \|\mu_x\| d\nu(x) < \infty$$

and for every $x \in K$ with μ_x non-atomic we have

$$\left|\int_{A_{i_n}^n} F_n d\mu\right|(x) \leq |\mu_x|(A_{i_n}^n) \xrightarrow[n \to \infty]{} 0$$

for every sequence i_n , $i_n \in \{1, \dots, 2^n\}$.

Therefore

$$\max_{i=1}^{2^n} |\int_{A_i^n} F_n d\mu| \to 0 \quad \text{a.e. on } K$$

and also in $L_1(K, v)$ -norm by the dominated convergence theorem. By the following lemma there are algebras $\Sigma'_n \subset \Sigma_n$, generating a subalgebra $\Sigma' \subset \Sigma$ such that $\mathscr{E}_{\Sigma'_n}(F_n)$ converges to some $F \in L_1(\mu, L_1(K, v))$. Then k(x, t) = F(t)(x) is $\Sigma \times \mathscr{A}$ -measurable and for all $E \in \mathscr{A}$ and $A \in \bigcup \Sigma_n$ we have

$$\int_E \int_A k(x,t) \, d\mu(t) \, d\nu(x) = \int_E \mu_x(A) \, d\nu(x).$$

Since $\bigcup \Sigma_n$ is countable and generates Σ' it follows that $k(x, \cdot) \mu_{|\Sigma'} = \mu_{x|\Sigma'}$ for v-almost all $x \in K$. \Box

Recall that a dyadic martingale is a martingale (F_n, Σ_n) (for general reference see [1, 6]) such that each algebra Σ_n is generated by 2^n atoms A_i^n such that $\mu(A_i^n) = 2^{-n}$ and $A_i^n = A_{2i-1}^{n+1} \cup A_{2i}^{n+1}$ for $i = 1, ..., 2^n$.

Lemma. Let X be a Banach lattice with order-continuous norm and assume that the $L_1(X)$ -bounded X-valued dyadic martingale (F_n, Σ_n) satisfies

$$\sup_{i=1}^{2^n} |\int_{A_i^n} F_n d\mu| \to 0$$

weakly.

Then there are algebras $\Sigma'_n \subset \Sigma_n$ with $\Sigma'_{n+1} \supset \Sigma'_n$ such that $\bigcup_n \Sigma'_n$ generates a non-atomic subalgebra of (Σ, μ) and $(\mathscr{E}_{\Sigma'_n}(F_n), \Sigma'_n)$ converges in $L_1(X)$.

Proof. Since X is order-continuous and (F_n) takes its values in a separable subspace of X we may assume by a well known representation theorem (e.g. [5] Theorem 1.6.14) that X is a Banach function lattice over a probability

A Note on Diffuse Random Measures

space (K, v) such that $L_{\infty}(K, v) \subset X \subset L_1(K, v)$. It is enough to show that for some Σ'_n , $(\mathscr{E}_{\Sigma'_n}(F_n), \Sigma'_n)$ converges to some $F \in L_1(L_1(K, v))$ in the L_1 -norm. Indeed, since $U_{X^{\times \times}}$ is closed in $L_1(K, v)$ ($X^{\times \times}$ has the Fatou-property, i.e.¹ $f_n \in U_{X^{\times \times}}$, $f_n \nearrow f$ implies $f \in U_{X^{\times \times}}$) it follows from the pointwise convergence theorem that $F \in L_1(X^{\times \times})$ and therefore $F \in L_1(X)$ because $||f||_X = ||f||_{X^{\times \times}}$ for $f \in X$.

Hence we may restrict ourselves to $X = L_1(K, v)$ with

$$\sup_{i=1}^{2^n} |\int_{A_i^n} F_n d\mu| \to 0$$

in norm.

Assume for a moment that we already constructed a subsequence n_m and a 'tree' B_i^m , $i=1,\ldots,2^m$, such that

(1) $B_i^m \in \Sigma_{n_m}, i = 1, ..., 2^m$, forms a partition of Ω . (2) $B_i^m = B_{2i-1}^{m+1} \cup B_{2i}^{m+1}, \mu(B_i^m) = 2^{-m}$. (3) $\|\mu(B_i^m)^{-1} \cdot \int_{B_i^m} F_{n_m} d\mu - \mu(B_{2i+k}^{m+1})^{-1} \int_{B_{2i+k}^{m+1}} F_{n_{m+1}} d\mu\| \leq \frac{1}{2^m}$ for $i = 1, ..., 2^m$, k = -1, 0.

For $n_m \leq k < n_{m+1}$ let Σ'_k be the algebra generated by B_i^m , $i = 1, ..., 2^m$ and put $F'_k = \mathscr{E}_{\Sigma'_i}(F_k)$. Then for all $m, k \in \mathbb{N}$

$$\int_{\Omega} \|F'_{n_{m+k}}(t) - F'_{n_m}(t)\| d\mu(t) \leq \sum_{j=0}^{k-1} \sup_{t \in \Omega} \|F'_{n_{m+j+1}}(t) - F'_{n_{m+j}}(t)\|$$
$$\leq \sum_{j=0}^{k-1} \frac{1}{2^{m+j}} \leq \frac{1}{2^{m-1}}$$

and (F'_k, Σ'_k) is Cauchy in $L_1(X)$.

We construct the tree (B_i^m) by induction. Put $B^0 = \Omega$, $n_1 = 1$. If B_i^m , $i=1, \ldots, 2^m$, and n_m are known already then apply the following procedure to all $L = B_i^m$, $i \in \{1, \ldots, 2^m\}$.

If $A_{i_1}^n, \dots, A_{i_r}^n$ is a partition of L for some $n > n_m$ we write $E_1 = A_{i_1}^n, \dots, E_r = A_{i_r}^n$.

Put $\sigma_{2j-1} = r_j$, $\sigma_{2j} = -r_j$ for $j = 1, ..., \frac{r}{2}$ where r_j is the jth Rademacherfunction on [0, 1]. Define for $s \in [0, 1]$:

$$g_s(t) = \sum_{j=1}^r \sigma_j(s) \chi_{E_j}(t), \quad f_j = \int F_n(t) \chi_{E_j}(t) d\mu(t).$$

Then $\int g_s(t) d\mu(t) = 0$ for all $s \in [0, 1]$ and by the Khintchine-inequality and the Cauchy-Schwarz-inequality we get:

$$\min_{s \in [0, 1]} \left\| \int_{\Omega} F_n(t) g_s(t) d\mu(t) \right\| \\
\leq \int_{0}^{1} \int_{K} \left| \sum_{j=1}^{r} \sigma_j(s) f_j(x) \right| dx ds \\
\leq \int_{K}^{1} \int_{0}^{1} \left| \sum_{j=1}^{r} \sigma_j(s) f_j(x) \right| ds dx \leq C \int_{K} \left(\sum_{j=1}^{r} |f_j(x)|^2 \right)^{\frac{1}{2}} dx$$

¹ X^{\times} Köthe-Dual

L. Weis

$$\leq C \int_{K} \left(\max_{j=1}^{r} |f_{j}(x)| \right)^{\frac{1}{2}} \left(\sum_{j=1}^{r} |f_{j}(x)| \right)^{\frac{1}{2}} dx$$

$$\leq C \left| \left| \max_{i=1}^{2^{n}} |\int_{A_{i}^{n}} F_{n} d\mu \right| \right|^{\frac{1}{2}} \cdot \left\| \int_{\Omega} |F_{n}|(t) d\mu(t)| \right\|^{\frac{1}{2}}$$

By assumption, there is $n_{m+1} > n_m$ and $s_0 \in [0, 1]$ such that

$$\|\int_{\Omega} F_{n_{m+1}}(t) g_{s_0}(t) d\mu\| \leq 2^{-2m}$$

Put $L_0 = \{g_{s_0} > 0\}$ and $L_1 = \{g_{s_0} < 0\}$. Since $\int_{\Omega} g_{s_0} d\mu = 0$ and $|g_{s_0}| \equiv \chi_L$ we have $\mu(L_0) = \mu(L_1) = \frac{1}{2}\mu(L)$.

Furthermore

$$\begin{aligned} \|2^{m} \int_{L} F_{n_{m}} d\mu - 2^{m+1} \int_{L_{0}} F_{n_{m+1}} d\mu \| &= 2^{m} \| \int_{L_{1}} F_{n_{m+1}} d\mu - \int_{L_{0}} F_{n_{m+1}} d\mu \| \\ &= 2^{m} \| \int_{L} F_{n_{m+1}}(t) g_{s_{0}}(t) d\mu(t) \| \leq 2^{-m} \end{aligned}$$

and the same estimate holds if we replace L_0 by L_1 . If we define $B_{2i-1}^{m+1} = L_0$, $B_{2i}^{m+1} = L_1$ then (1), (2), (3) follow.

Remark. The order continuity assumption cannot be dropped. If X is σ -complete but not σ -order continuous, then X contains l_{∞} as a sublattice (see [5] Proposition 1.a.7). Let T be an isomorphic embedding $L_1(\Omega, \mu) \subset l_{\infty} \subset X$ and let (F_n, Σ_n) be the X-valued martingale given by T:

$$F_n(t) = \sum_{i=1}^{2^n} \chi_{\mathcal{A}_i^n}(t) \cdot T(2^n \chi_{\mathcal{A}_i^n}).$$
$$\left\| \sup_{i=1}^{2^n} \left| \int_{\mathcal{A}_i^n} F_n d\mu \right| \right\|_X \leq \sup_{i=1}^{2^n} \|T\chi_{\mathcal{A}_i^n}\| \xrightarrow{n \to \infty} 0$$

but $T_{|L_1(\Sigma',\mu)}$ is an isomorphic embedding for all subalgebras Σ' and not an representable operator (compare [1], Chap. III.2).

II. Operators in $L_1(\Sigma, \mu)$

N.J. Kalton has shown that if (Ω, Σ, μ) is a standard measure space with a finite measure μ then for every bounded linear operator $T: L_1(\Omega, \Sigma, \mu) \rightarrow L_1(K, \mathscr{A}, \nu)$ there is a random measure $(\nu_x)_{x \in K}$ such that

$$Tf(x) = \int f(t) dv_x(t)$$
 v-a.e.

for all $f \in L_1(\Omega, \mu)$. Decomposing (v_x) into its diffuse and its atomic part gives

$$Tf(x) = \sum_{n=1}^{\infty} a_n(x) f(\sigma_n(x)) + \int f(t) d\mu_x(t)$$

where $(\mu_x)_{x \in K}$ is a diffuse random measure and the measurable maps $\sigma_n: K \to \Omega$, $a_n: K \to \mathbb{R}$ satisfy (see [4]):

Then

A Note on Diffuse Random Measures

i)
$$\sigma_m(x) \neq \sigma_n(x)$$
 for $m \neq n, x \in K$,

ii)
$$|a_n(x)| \ge |a_{n+1}(x)|$$
 v-a.e., $x \in K$.

Say that T has an atomic representation if $\mu_x = 0$ for almost all $x \in K$ and that T has a diffuse representation if $a_n = 0$ for all n. If v almost all v_x are absolutely μ -continuous, then T is just an integral operator. It is well known (e.g. [1] Kap. III) that T is an integral operator if and only if every $A \in \Sigma$, $\mu(A) > 0$, contains some $A' \in \Sigma$, $\mu(A') > 0$, such that $T_{|L_1(A', \mu|_{A'})}$ is compact.

Theorem. Let $T: L_1(\Omega, \Sigma, \mu) \rightarrow L_1(K, \mathcal{A}, \nu)$ where (Ω, Σ, μ) is a standard measure space.

a) T has a diffuse representation if and only if for every $A \in \Sigma$, $\mu(A) > 0$, there is a non-atomic subalgebra Σ' of measurable subsets of A such that $T_{|L_1(A, \Sigma', \mu)}$ is an integral operator.

b) T has an atomic representation if and only if for every $\varepsilon > 0$ there is a $A \in \Sigma$ with $\mu(\Omega - A) \leq \varepsilon$ such that for every bounded sequence $f_n \in L_1(A, \mu|_A)$ which converges to zero in measure, Tf_n also converges to zero in measure.

Proof. a) " \Rightarrow " follows from Theorem I. On the other hand, if T has non-zero atomic part, then (by [4] Theorem 5.5) there is an $A \in \Sigma$, $\mu(A) > 0$, such the $T_{|L_1(A, \mu|_A)}$ is an isomorphism. Hence $T_{|L_1(A, \Sigma', \mu)}$ cannot be an integral operator if $\mu_{|\Sigma'}$, $\Sigma' \subset \Sigma$, is non-atomic.

b) " \Rightarrow " We may assume that $T \ge 0$ and that

$$Tf(x) = \sum_{n=1}^{\infty} a_n(x) f(\sigma_n(x))$$

with a_n and σ_n as above. Each operator $S_n f(x) = a_n(x) f(\sigma_n(x))$ maps a bounded μ -convergent sequence into a v-convergent sequence (since $S_n(f \wedge g) = S_n f \wedge S_n g$ for all $f, g \in L_1(\mu)$) and therefore

$$T_m f(x) = \sum_{n=1}^m a_n(x) f(\sigma_n(x))$$

has the same property for all $m \in \mathbb{N}$.

Since $(T'_m 1)(t) \nearrow (T' 1)(t)$ for μ -almost all $t \in \Omega$, there is an $A \in \Sigma$ with $\mu(\Omega - A) \leq \varepsilon$ and

$$|(T - T_m) \chi_A||_{L_1} = ||\chi_A(T' - T'_m)||_{L_{\infty}}$$

$$\leq \sup_{t \in A} |(T' - T'_m) \mathbf{1}(t)| \to 0$$

for $m \to \infty$ by Egoroff's theorem. Therefore $T\chi_A$ has the required property.

" \Leftarrow " Write $T = T^a + T^d$ where T^a is the atomic part of T and T^d is the diffuse part. By the first part of the proof there is a set $A \in \Sigma$, $\mu(A) > 0$, such that Tf_n converges to zero in measure whenever the bounded sequence $f_n \in L_1(A, \mu|_A)$ does. If $T^d \neq 0$ we can find a non-atomic σ -Algebra Σ' of measurable subsets of A such that $T^d_{|L_1(A, \Sigma', \mu)}$ is a compact integral operator. Then there is always a sequence $A_n \in \Sigma'$ with $\mu(A_n) \to 0$ such that $T^d_{|\mu(A_n)} \chi_{A_n}$ norm-converges to

some $f \neq 0$ (otherwise every martingale representing $T^d_{|L_1(A, \Sigma', \mu)}$ converges to zero in $L_1(L_1)$). It follows from our choice of A that $T\left(\frac{1}{\mu(A_n)}\chi_{A_n}\right)$ does not converge to 0 in measure either. \Box

It was shown by Doss [2], that for a locally compact abelian group every multiplier from singular measures to singular measures is necessarily given by convolution with a discrete measure. Our theorem allows us to give a short, purely measure-theoretic proof also for the non-abelian case.

Corollary. Let G be a locally compact group and denote by λ its right Haar measure. Then, for every diffuse measure μ on G there is a λ -singular measure v_0 on G such that $v_0 * \mu$ is λ -absolutely continuous.

Proof. $Tv = v * \mu$ defines an operator $T: L_1(G, \lambda) \to L_1(G, \lambda)$ which has the diffuse representation $v_x(A) = v(Ax^{-1})$. Choose a sub- σ -algebra Σ' of the Borel sets of G, such that $T_{|L_1(\Sigma', \lambda|_{\Sigma'})}$ is compact and also a bounded sequence $f_n \in L_1(\Sigma', \lambda|_{\Sigma'})$ such that $f_n \cdot \lambda$ converges to some singular measure v_0 in the weak topology $(\sigma(M(G), C(G))$ -topology). But then $T(f_n) = f_n * \mu$ norm converges and $v_0 * \mu$ $= T(v_0)$ belongs to $L_1(G, \lambda)$. \Box

An extension of these results to larger classes of operators will be given in a forthcoming paper [8].

Acknowledgement. A special case of Theorem I was proved independently by M. Talagrand [7]. I also want to thank H.v. Weizsäcker for several stimulating discussions on this subject.

References

- 1. Diestel, J., Uhl, J.: Vector measures, Mathematical surveys No. 15. Prov. R.I.: Amer. Math. Soc. 1977
- 2. Doss, R.: Convolution of singular measures. Studia Math. 45, 111-117 (1973)
- 3. Edgar, G.: Disintegration of measures and the vector-valued Radon-Nikodym theorem. Duke Math. J. 42, 447-450 (1975)
- 4. Kalton, N.J.: The Endomorphisms of L_p ($0 \le p \le 1$). Indiana Univ. Math. J. 27, 353-381 (1978)
- Lindenstrau
 ß, J., Tzafriri, L.: Classical Banach Spaces II. Berlin-Heidelberg-New York: Springer 1979
- 6. Neveu, J.: Martingales à temps discret. Paris: Masson 1972
- 7. Talagrand, M.: Un théorème de théorie de la mesure lié à deux théorèmes de Mokobodzki. [To appear in Ann. Scient. Éc. Norm. Sup.]
- 8. Weis, L.: On the Representation of Order continuous operators by Random Measures. To appear in Trans. Amer. Math. Soc.

Received March 4, 1982