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A Note on Diffuse Random Measures

L. Weis
Fachbereich Mathematik, Universitit Kaiserslautern, Postfach 3049, 6750 Kaiserslautern

Summary. Let (u,) be a random measure on a measure space (€, X, u), such
that all u, are diffuse measures. Then there is a subalgebra X, =X with p 5,
non-atomic such that (u,5,) is absolutely u-continuous. This is applied to
product measures and bounded linear operators on L (2, ).

I. Random Measures

Let (2,2, u) and (K, o7, v) always be countably generated, non-atomic probabil-
ity measure spaces.

A family (u,),.x of measures on (,2) is called a random measure if the
functions xeK—pu (4)eR are «/-measurable for all (fixed) 4eZ.

A random measure (1), . is diffuse if v-almost all u, are non-atomic.

Theorem. Let (2,2, u) and (K, #,v) be as above. Then, for every diffuse random
measure (i), on (Q,%) with ||| dv(x)<co there is a sub-c-algebra ¥'< X
K

with ws.#0 and non-atomic such that v-almost all y, are p-absolutely continuous
on X'

A disintegration for a probability measure P on a product space (Qx K,
2@} is by definition a random measure (g, ), such that for all MeZ® ./

P(M)={ [ xp(t,x) dpu(t) dv(x)
K 2

where v is the marginal measure of P, ie. v(4)=P(Q x A) for all Aco/. If Qis a

topological space, X the o-Algebra of its Baire sets and the marginal measure

u(B)=P(B x K), BeZ, is tight, then such a disintegration always exists (see [3]).
As an immediate consequence of the theorem we have

Corollary. Let P be a probability measure on the product space ( x K, Z®.2/)
with marginal measure v on (K, /) and a disintegration (u,), ., consisting of
diffuse measures. Then, for every non-atomic measure u on ¥ there is a non-
atomic sub-c-algebra X' < X such that P is u®@v-absolutely continuous on X' ® L.
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Proof of Theorem. Choose a system A7, i=1,...,2"neN of measurable subsets
of Q such that

1) A% i=1,...,2" is a partition of Q for all n.

i) A7=A3TH, LAY A =27

iii) lim 4} contains at most one atom for every sequence i,, i,e{1,...,2"}.
n

n’ ln

Consider the L, (K, v)-valued martingale
2!’1
E)=3 ffag),  frx)=2"p (47
i=1

with respect to the algebras X, generated by A7, ..., 4%.. (F,,Z) is L,-bounded

since
gj; 1E @I 4 ) élﬁ; il dv(x)< oo

and for every xeK with u_ non-atomic we have

|| Fdul ()=l (A7) —=> 0
A7,
for every sequence i,, i,€{1,...,2"}.

Therefore

2".
max || F,dy/—0 ae on K
i=1 A}
and also in L (K,v)-norm by the dominated convergence theorem. By the
following lemma there are algebras X, — X, generating a subalgebra X' <X such
that &y, (F,) converges to some FeL,(u, L, (K,v)). Then k(x,t)=F(t)(x) is Zx .o/-
measurable and for all Ee«Z and Ael ) Z, we have

§ [ k(x,0) dp(e) dv(x)= | p(4) dv(x).

E A

Since | ) %, is countable and generates 2 it follows that k(x, *) Wz =My for v-
almost all xeK. [

Recall that a dyadic martingale is a martingale (F,,X,) (for general reference
see [1, 6]) such that each algebra X, is generated by 2" atoms A! such that
AN =2""and AT=A%F* VAL fori=1,...,2"

Lemma. Let X be a Banach lattice with order-continuous norm and assume that

the L,(X)-bounded X-valued dyadic martingale (F,, X ) satisfies

2an
sup| [ F,du|—0
i=1 47
weakly. !
Then there are algebras Z, <X, with X

’
n

122, such that | ) X, generates a
non-atomic subalgebra of (X, p) and (&, (F,), Z;) converges in L,(X).

Proof. Since X is order-continuous and (F,) takes its values in a separable
subspace of X we may assume by a well known representation theorem (e.g.
[5] Theorem 1.6.14) that X is a Banach function lattice over a probability
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space (K,v) such that L_(K,v)eX <L (K,v). It is enough to show that for
some X, (&, (F,), Z,) converges to some FeL,(L,(K,v)) in the L;-norm. Indeed,
since Uy. . is closed in L (K,v) (X** has the Fatou-property, ie! feUpvs,
£,/ f implies feUy..) it follows from the pointwise convergence theorem that
FeL,(X**) and therefore FeL,(X) because || f||x=|fllx~~ for feX.

Hence we may restrict ourselves to X =L, (K, v) with

sup Ij E du|—0
i=1 A}
in norm.
Assume for a moment that we already constructed a subsequence n,, and a
‘tree’ BT, i=1,...,2", such that
1 B;"eZ,,m, i=1,...,2", forms a partition of 2.
(2) By =By UBSS Y, w(By)=2"" 1
(3) llu(By)~* I mdp— (B3 [ OE L dulss fori=1.,2m,
B BTk
k=-1,0.
For n,<k<n,,_ , let 2, be the algebra generated by B}, i=1,...,2" and put F
=&y, (F,). Then for all m,keN

k-1

H F . .0—F, @Oldut< Z sup 17, ,..O0=F, . @l

PEs

1

II/\
II/\

and (F,, ;) is Cauchy in L,(X).

We construct the tree (B") by induction. Put B°=Q, n,=1. If By,
i=1,...,2", and n_ are known already then apply the following procedure to
all L=B7, ie{l,...,2"}.

If A7,...,A} is a partition of L for some n>n, we write E,=Aj,
E,=A4].
Put 6,;_,=71;, 6,;=—r; for j=1,.. where . is the j™ Rademacherfunc-

tion on [0, 1]. Define for se[0,1]: 2

¥

&= o) xs 8y = E®) xg, (0 du(d).
j=1
Then |g,(t)du(t)=0 for all se[0,1] and by the Khintchine-inequality and the
Cauchy-Schwarz-inequality we get:
min ||] £(t) 8,(t) du()]

se(0,1]

1
<
Q

r

2. 04(8) fi(x)

j=1

3 0,6 £,

j=1

dxds

!
|

dsdx< Clj( (jé:l Ifj(x)lz)%dx

|

1 x> Ko6the-Dual
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IIA

1 i) (5 )

1
2

A

C

2n
max| | F,dyl
i=1 A7

A JIEI O du@)*
Q
By assumption, there is n,,, , >n,, and s,€[0,1] such that
I F,,. 08,0 du| 272"
Q

Put L,={g,, >0} and L,={g, <0}. Since [g,du=0 and |g, |=yx; we have
2

H(Lo) =u(L 1) = %H(L)-
Furthermore

2" E, du=2"" [ F, | dul=2" | E,du— F,.. dyl
L Lo Ly Lo
=2"||FE,,. (0 g,0du®]<27"
L

and the same estimate holds if we replace L, by L,. If we define B} ', =L,
B?f1=L, then (1), (2), (3) follow.

Remark. The order continuity assumption cannot be dropped. If X is o-
complete but not g-order continuous, then X contains [ as a sublattice (see
[5] Proposition 1.a.7). Let T be an isomorphic embedding L,(Q,p)cl <X
and let (F,, X,) be the X-valued martingale given by T:

o
E@®)=3 1) T2y ).
i=1

Then
2n

sup| Ty gl ()

2"
sup| | F,dpl
i=1 A7 b'¢

but T s, is an isomorphic embedding for all subalgebras X’ and not an
representable operator (compare [1], Chap. II1.2).

II. Operators in L,(Z, p)

N.J. Kalton has shown that if (2, Z, u) is a standard measure space with a finite
measure u then for every bounded linear operator T: L,(Q, X, u)—L,(K,«,v)
there is a random measure (v,), g such that

Tf(x)=[f(@®)dv,(t) v-ae.

for all feL,(Q, u). Decomposing (v,) into its diffuse and its atomic part gives

[s9)

Tf ()= 3 a,(x) f(o, )+ f (&) dp(0)

n=1

where (p,), g is a diffuse random measure and the measurable maps ¢,: K—@Q,
a,: K—R satisfy (see [4]):
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i) 0,(x)*0,x) for m+n, xeK,
ii) la,(x)|=a,, ,(x)| v-a.e., xeK.

Say that T has an atomic representation if p, =0 for almost all xeK and
~ that T has a diffuse representation if a,=0 for all n. If v almost all v, are
absolutely u-continuous, then T is just an integral operator. It is well known
(e.g. [1] Kap. III) that T is an integral operator if and only if every AeX,
#(A4)>0, contains some A'€X, u(4)>0, such that T, ., ,,, is compact.

Theorem. Let T: L(2,Z, 1)~ L, (K, o, v) where (2,2, ) is a standard measure
space.

a) T has a diffuse representation if and only if for every AeZX, u(A)>0, there
is a non-atomic subalgebra X' of measurable subsets of A such that Ty 5, is
an integral operator.

b) T has an atomic representation if and only if for every ¢>0 there is a
AeX with p(Q— A)=e¢ such that for every bounded sequence f,€L,(4,pl,) which
converges to zero in measure, Tf, also converges to zero in measure.

Proof. a) “=" follows from Theorem I. On the other hand, if T has non-zero
atomic part, then (by [4] Theorem 5.5) there is an AeZX, u(4)>0, such the
TiLia,u, 15 a0 isomorphism. Hence 7, 4y, cannot be an integral operator

if py, 2'<Z, is non-atomic.
b) “=" We may assume that T=0 and that

oo

T (x)= ). a,(x) f(a,(x)
n=1
with a, and o, as above. Each operator S, f(x)=a,(x) f(0,(x)) maps a bounded
p-convergent sequence into a v-convergent sequence (since S,(fAg)=S,fAS,g
for all f,geL,(u)) and therefore

L. fx)= Zl ay(x) f(0,(x))
has the same property for all meNN.
Since (T, 1)()/(T'1)(¢) for u-almost all teQ, there is an AeX with u(Q
—A)<e and
T=T) xall, = lxa T =T,
ssup|(T"=T)1 (1) -0
ted

for m— oo by Egoroff's theorem. Therefore Ty, has the required property.

“«=” Write T=T"+T? where T° is the atomic part of T and TY is the
diffuse part. By the first part of the proof there is a set AeX, u(A4)>0, such that
Tf, converges to zero in measure whenever the bounded sequence f,eL,(4, ul,)
does. If 7940 we can find a non-atomic s-Algebra X’ of measurable subsets of
A such that Tlil( 4,50 1S @ compact integral operator. Then there is always a

1
sequence A,eX’ with u(A4,)—»0 such that T (_(A—) X An) norm-converges to
HiAd,
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some f=+0 (otherwise every martingale representing TI‘L( 4,5,y converges to

zero in L {L,)). It follows from our choice of A that T(T X An) does not
converge to 0 in measure either. [] Ay

It was shown by Doss [2], that for a locally compact abelian group every
multiplier from singular measures to singular measures is necessarily given by
convolution with a discrete measure. Our theorem allows us to give a short,
purely measure-theoretic proof also for the non-abelian case.

Corollary. Let G be a locally compact group and denote by J its right Haar
measure. Then, for every diffuse measure u on G there is a A-singular measure v
on G such that vy* p is A-absolutely continuous.

Proof. Tv=v=* u defines an operator T: L,(G,1)—L,(G, 1) which has the diffuse
representation v, (4)=v(4x~'). Choose a sub-c-algebra 2" of the Borel sets of
G, such that T; . ;. is compact and also a bounded sequence f,eL, (2", 4y)
such that f,-4 converges to some singular measure v, in the weak topology
(o(M(G), C(G))-topology). But then T(f)=f,*p norm converges and vy*pu
=T(v,) belongs to L (G,4). O

An extension of these results to larger classes of operators will be given in a
forthcoming paper [8].
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