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Summary. Let (#~) be a random measure on a measure space (O, X, #), such 
that all #~ are diffuse measures. Then there is a subalgebra S o ~ S with #/Zo 
non-atomic such that (#xlz0) is absolutely #-continuous. This is applied to 
product measures and bounded linear operators on LI(O, v). 

I. Random Measures 

Let (~2, S, #) and (K, d ,  v) always be countably generated, non-atomic probabil- 
ity measure spaces. 

A family (/~x)x~K of measures on (f2,N) is called a random measure if the 
functions xeK--*#x(A)slR are d-measurable  for all (fixed) A t S .  

A random measure (#x)x~K is diffuse if v-almost all #x are non-atomic. 

Theorem. Let (f2, N, #) and (K, sd, v) be as above. Then, for every diffuse random 
measure (#x)x~K on (f2, E) with ~ IF#~]ldv(x)< oo there is a sub-a-algebra S ' c S  

K 

with #1~" ~ 0 and non-atomic such that v-almost all #x are #-absolutely continuous 
on S'. 

A disintegration for a probability measure P on a product space (f2 x K, 
X |  is by definition a random measure (#x)~K such that for all M s S |  

P(M) = y y x) d x(t) d (x) 
K~2 

where v is the marginal measure of P, i.e. v(A)=P((2 • A) for all A s d .  If ~2 is a 
topological space, ~ the a-Algebra of its Baire sets and the marginal measure 
#(B)=P(B x K), BsE,  is tight, then such a disintegration always exists (see [3]). 

As an immediate consequence of the theorem we have 

Corollary. Let P be a probability measure on the product space (~ x K, 2~|  
with marginal measure v on (K,~r and a disintegration (#~)~1( consisting of 
diffuse measures. Then, for every non-atomic measure # on S there is a non- 
atomic sub-a-algebra X ' c X  such that P is #| continuous on U|162 
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Proof of Theorem. Choose a system AT, i=1,  . . . ,2~ncN of measurable subsets 
of ~2 such that 

i) A~, i = 1 . . . .  ,2", is a partition of (2 for all n. 
ii) ~ , _ a , + l  , ,~.+i 2-". 

iii) lim A,." n contains at most one atom for every sequence i,, i,e{1 ... .  ,2"}. 
n 

Consider the L,(K,  v)-valued martingale 
2 n 

F.(t) = y~ f?  zar(t), f?(x) = 2" ~x(A~) 
i = 1  

with respect to the algebras s generated by A~,.. . ,A~..  (F,,X.) is L,-bounded 
since 

5 IIF.(t)ll d#(t)<= 5 [t#~11 dr(x)< oo 
~-~ K 

and for every x e K  wi th /~  non-atomic we have 

[ ~ F.d#[ (x)=<l~xl (A~'.) ~7-&-+ 0 

for every sequence i., i.E {1 .. . .  ,2"}. 
Therefore 

2 ~ 

max]5 F,d/~l--+0 a.e. on K 
i=1 A? 

and also in L,(K,v)-norm by the dominated convergence theorem. By the 
following lemma there are algebras Z', c E,, generating a subalgebra Z'm 2 such 
that gsa(F,) converges to some F eL1 (~, L l (K, v)). Then k(x, t) = F(t) (x) is Z x al-  
measurable and for all E s d  and A e ~  22, we have 

5 ~ k(x, t) dt~(t) dr(x)= 5 #~(A) dr(x). 
E A  E 

Since ~ 27. is countable and generates Z' it follows that k(x, ")#tz.=#.lz, for v- 
almost all xeK.  [] 

Recall that a dyadic martingale is a martingale (F., 27.) (for general reference 
see [1, 6]) such that each algebra X. is generated by 2" atoms A~ such that 
/~(A7)=2-" and a , _ a , + l  ,+1 ~.i--~.2i_lk)A21 for i=1, . . . ,2" .  

Lemma. Let X be a Banach lattice with order-continuous norm and assume that 

the L,(X)-bounded X-valued dyadic martingale (F,,Z~) satisfies 

2 ~ 

sup[ 5 F~ d/~l-+0 
i=1 a? 

weakly, 
t Then there are algebras Z',c27, with X',+ 1 Z, such that (,,)U, generates a 

n 

non-atomic subalgebra of (2,1~) and (Ex~(F,),27,) converges in LI(X ). 

Proof. Since X is order-continuous and (F,) takes its values in a separable 
subspace of X we may assume by a well known representation theorem (e.g. 
[5] Theorem 1.6.14) that X is a Banach function lattice over a probability 
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space (K,v) such that  L~o(K,v)cXcLI(K,v). It is enough to show that  for 
some 2;'., (gxa(F.), 2;'.) converges to some FeL 1 (L 1 (K, v)) in the L l -no rm.  Indeed,  
since Ux• is closed in LI(K,v ) (X •215 has the Fa tou-proper ty ,  i.e. 1 f.eUxx x, 
f . /~f  implies f~Ux• x) it follows f rom the pointwise convergence theorem that  
F~LI(X • • and therefore F~LI(X ) because ][f[[x= [[f[Ix• • for f~X. 

Hence  we m a y  restrict ourselves to X=LI(K, v) with 

2 n 

sup I S F. d#l ~ 0  
i=1 a7 

in norm.  
Assume  for a m o m e n t  that  we already constructed a subsequence n m and a 

' t r ee '  B~, i = 1 ,  . . . ,2  m, such that  

(1) BT'e2;.m, i = 1  . . . .  ,2 m, forms a par t i t ion of f2. 
(2) rim_rim+l, ,W.+l  ~i - ~ 2 i -  1 ~ ~  , #(B~') = 2 - ~ "  

(3) II (B ) S _1 �9 F,,d#-#(B2i+k ) ~ F,=+ d#l[_-< for / = 1  . . . . .  2 = , 

k =  - 1 , 0 .  

Fo r  n m < k < n,,+ 1 let Z~ be the algebra genera ted by B~', i =  1, . . . ,  2 m and put  Fs 
=gs~(Fk). Then  for all rn, k~N 

k - - 1  

][F'.~+~(t)-F'.m(t)l F d#(t)< ~ sup IIF; . . . . .  (t)-F'.m+j(t)H 
Y2 j = O  t~-Q 

k - - 1  1 1 

= Z 
j=0 

and (F~,Z~) is Cauchy  in LI(X ). 
We construct  the tree (B~') by induction. Put  B~  n l = l .  I f  B m i ,  

i =  1 . . . .  ,2" ,  and n~ are known  al ready then apply  the following procedure  to 
all L=B~, i~{1 . . . .  ,2m}. 

I f  A" A." is a par t i t ion  of L for some n>n,, we write E~=A ~. il ~ ""~ tr l l~  " " ~  
__ n E~ - A~. 
Put cr2j_l=r j, az j=-r j  for j = l  . . . . .  r where rj is the jth Rademacher func-  

t ion on [0, 1]. Define for s~[0,  1]: 

g~(t)= ~ aj(s)ze~(t), fj=~F,(t)Zej(t)d#(t ). 
j=J  

Then  ~gs(t)d#(t)=O for all s6 [0 ,  1] and by the Khintehine- inequal i ty  and the 
Cauchy-Schwarz- inequal i ty  we get: 

min  H S F,(t) g~(t) d#(t)II 
s e [ 0 ,  11 (2 

~ i ~K j~l ~TJ'S) fj( X, dXds 

j(s) f j(x) <~ io ~ dsdx<C[~ (j~_llfJ,x)12)~dx_ 

X • K6the-Dual 
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:< c ~ x If~(x 
K j = l  

2~ ~. 

__<C maxis  F.d#l II~lF.l(t)d#(t)ll ~ 
i = l  Ar  Y~ 

By assumption, there is nm+ 1 >nm and so~[0,1] such that 

II~f.,~+,(t)gso(t)d#[I <2 2m�9 
f2 

Put Lo={g~o>0 } and Ll={g~o<0 }. Since ~g~od/~=0 and [g~ol=--ZL we have 
f2 

a(Lo)=/4LO=�89 
Furthermore 

L Lo L 1 Lo 

= 2" [I ~ F,~+ ,(t) gso(t) d#(t)I] < 2-  " 
L 

and the same estimate holds if we replace L o by L~ If we define n,~+~ - r  
�9 ~ 2 i - -  1 - - ~ 0 '  

BT+I=LI  then (1), (2), (3) follow. 

Remark. The order continuity assumption cannot be dropped. If X is a- 
complete but not a-order continuous, then X contains l~ as a sublattice (see 
[5] Proposition 1.a.7). Let T be an isomorphic embedding Ll(f2, #) c l~ ~ X 
and let (F,, Z,) be the X-valued martingale given by T: 

2" 

F.(t)= Z ZA?(t)" T(2"ZA?). 
i = l  

Then 
2- 1/ 2- ~upljv r.d~ ~ _-__supltT~lli=l n~oo > 0  

but T~L~Z.,. ~ is an isomorphic embedding for all subalgebras Z' and not an 
representable operator (compare [1], Chap�9 III.2). 

II. Operators in LI(Z , i1) 

N.J. Kalton has shown that if (g2, Z,/~) is a standard measure space with a finite 
measure # then for every bounded linear operator T: LI(~,Z,t~)-->LI(K,d,v ) 
there is a random measure (vx)~ K such that 

Tf(x) = ~ f(t)  dvx(t ) v-a.e. 

for all f~Ll(f2,t~ ). Decomposing (vx) into its diffuse and its atomic part gives 

Tf(x) = ~ an(x ) f(%(x)) + ~ f(t)  d#~(t) 

where (/~x)~K is a diffuse random measure and the measurable maps a.: K ~ 2 ,  
a.: K-~]R satisfy (see [4]): 
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i) %(x)+G(x ) for re+n, xeK,  
ii) [a,(x)] >__ [a,+ I(X)[ v-a.e., x~K. 

Say that T has an atomic representation if # x = 0  for almost all x~K and 
that T has a diffuse representation if a, = 0 for all n. If v almost all v~ are 
absolutely g-continuous, then T is just an integral operator. It is well known 
(e.g. [1] Kap. III) that T is an integral operator if and only if every AsZ, 
#(A)>0, contains some A'~Z, g(A')>0, such that TIL~(A,,t~IA, ) is compact. 

Theorem. Let T: Ll( f2 ,X,#)~La(K,d,v  ) where (f2, Z,g) is a standard measure 
space. 

a) T has a diffuse representation if and only if for every A~S`, #(A)>0, there 
is a non-atomic subalgebra Z' of measurable subsets of A such that TIL~(A,X,,, ) is 
an integral operator. 

b) T has an atomic representation if and only if for every e > 0  there is a 
AeZ  with #((2-A)<_e such that for every bounded sequence f,~LI(A, flA ) which 
converges to zero in measure, Tf, also converges to zero in measure. 

Proof a) " ~ "  follows from Theorem I. On the other hand, if T has non-zero 
atomic part, then (by [4] Theorem 5.5) there is an AsS,  #(A)>0, such the 
TIL,(A,.I~) is an isomorphism. Hence T~LI(A,,~,,# ) canno t  be an integral operator 
if #Ix', Z ' c Z ,  is non-atomic. 

b) " ~ "  We may assume that T > 0  and that 

Tf(x) = ~ a,(x) f(G(x)) 
n = l  

with a, and o-, as above. Each operator S,f(x)=a,(x) f(G(x))  maps a bounded 
#-convergent sequence into a v-convergent sequence (since S,( fA g)=S ,  f A  S,g 
for all f, gcLl(#)  ) and therefore 

T,,f(x)= ~ a,(x) f(G(x)) 
n = l  

has the same property for all msN.  
Since (T~,l)(t)/7(T'l)(t) for g-almost all tsf2, there is an AsS, with #(f2 

- A ) < e  and 
II(T- Tin)ZAII~, = I[zA(T'-- T')IIL~ 

< sup I(T' - Z )  1 (t)l---,0 
t E A  

for m--, oo by Egoroff's theorem. Therefore TXA has the required property. 
" ~ "  Write T=  T~+ T d where T" is the atomic part of T and T d is the 

diffuse part. By the first part of the proof there is a set AeZ, #(A)>0, such that 
Tf~ converges to zero in measure whenever the bounded sequence f,6LI(A,#[A) 
does. If T~4=0 we can find a non-atomic c~-Algebra Z' of measurable subsets of 
A such that T, d is a compact integral operator. Then there is always a [LI(A,-Y',  ft) 

sequence A,es`' with g(A,)---,O such that T d ZA, norm-converges to 
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some f : # 0  (otherwise every mar t ingale  represent ing TI~I~A,~,,u ) converges to 

zero in LI(L1)  ). It follows from our choice of A that  T ZA, does no t  
converge to 0 in measure either. []  

It  was shown by Doss [2], that  for a locally compact  abel ian  group every 
mult ipl ier  from singular  measures to s ingular  measures is necessarily given by 
convo lu t ion  with a discrete measure.  Our  theorem allows us to give a short, 
purely measure- theoret ic  proof  also for the non-abe l i an  case. 

Corollary. Let  G be a locally compact group and denote by )~ its right Haar 
measure. Then, for  every diffuse measure # on G there is a 2-singular measure v o 
on G such that v o ,  # is 2-absolutely continuous. 

Proof  Tv = v * # defines an operator  T: L I(G, 2 ) ~ L  1 (G, 2) which has the diffuse 
representa t ion vx(A)= v (Ax-1 ) .  Choose a sub-a-a lgebra  S '  of the Borel sets of 
G, such that  TILI~z,,z~,) is compact  and  also a bounde d  sequence f ,  eL l (S ' , 2W)  
such that  f , - 2  converges to some singular  measure v o in the weak topology 
(a(m(G),  C(G))-topology). But then T ( f , ) = f , . #  n o r m  converges and  v0* # 
= T(vo) belongs to L I(G,)O. [] 

A n  extension of these results to larger classes of operators  will be given in a 
for thcoming paper  [8]. 

Acknowledgement. A special case of Theorem I was proved independently by M. Talagrand [-7]. 
I also want to thank H.v. Weizs~icker for several stimulating discussions on this subject. 
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