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Discontinuous Additive Functionals 
of Dual Processes* 

M I C H A E L  J .  S H A R P E  

1. Introduction 

Let X be a standard Markov  process with state space E and let ~ be an excessive 
reference measure for X. In recent work ([6], E7]) Revuz associates with certain 
additive functionals of X measures on E which determine those additive functionals 
in case they are natural and X is in duality, relative to 3, with another standard 
process X. In this paper we use an analogous method to associate with every finite 
additive functional A o f X  a measure v A on E x E which turns out to be a-finite and 
whose projection upon the second co-ordinate is Revuz's measure on E. Under 
the hypotheses of duality, but with no other assumptions as, for example, on the 
left-continuity of the fields or Feller properties of the resolvents, we give a formula 
for the "bipotent ia l"  of a finite additive functional A in terms ofv A and we construct 
a canonical measure v on E x E for the process X which reflects the behavior of 
the jumps of X. Using this canonical measure, we can prove that if A is a finite 
purely discontinuous quasi-left-continuous additive functional of X then A is of 
the form A t = ~ F(Xs_, Xs), a result due to Motoo  (see Watanabe [8]) in the case 

S<=t 

where X is a special standard process. We also use the canonical measure v to 
prove that a L6vy system (n, H) exists for X, thus taking into a different context 
work of Watanabe [8] whose method for special standard processes involves the 
heavy machinary of stochastic integrals relative to square-integrable martingales. 

All terminology and notation which is not specifically explained here will be 
that of Blumenthal and Getoor  E1]. The basic object is a standard Markov  process 
X=(•, ~ Yt, Xt, 0, px) whose state space E is LCCB and which has transition 
semigroup {Pt; t>=0}, resolvent {U~; ~=>0} and lifetime ~. The a-fields ~, ~ and 
~* are respectively the Borel sets, nearly Borel sets and universally measurable 
sets in E. The object of our attention here is an additive functional (AF) of X. 
We call A a finite AF of X if A t < ~ on [0, ~) a. s., and we denote by ~r the class of 
finite AF's  of X. The restriction to finite AF's  makes it possible to avoid a number  
of tricky points dealt with by Revuz [6]. 

We assume throughout that there is a a-finite measure ~ on E which is an 
excessive reference measure for X. For  the main results of this paper, when X is 
assumed to be in duality with a standard process ){ relative to the a-finite measure 
3, then ~ automatically possesses all the above named properties. All the regularity 
properties discussed in Chapter V of [-1] may be assumed. One particularly useful 
result is that if f and g are a-excessive and f <  g a.e. (r then f <  g everywhere. 
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2. The Bipotential Operator 
For A an AF of X, we define the e-bipotential 8/~ F of Fe(g x g)* relative to 

oo 

A by 8/~F(x)=E x ~ e-StF(Xt_, Xt)dA t. (2.1) 
0 

A standard argument shows that 8 /~Feg* .  For f e g * ,  define 
or 

U~ f (x) = E x ~ e-~ t f (Xt) dA t (2.2) 
0 

and o0 

W~ f (x) = E ~ S e-St f (Xt-) dAt. (2.3) 
0 

s * Then U~f and W] feg+, and we call them respectively the right and left e-poten- 
rials o f f  with respect to A. Of course, U~f is the usual a-potential o f f  with respect 
to A. One has the obvious relations 

8/~F(x)=U~f(x) if F(y,z)=f(z), 
and 

8/ iF(x)= W 2g(x) if F(y,z)=g(y). 

If A is natural (i.e. almost surely, A and X have no common discontinuity) then 
U ~ f -  W2f and 8/IF reduces to U~f, where f(x)=F(x, x). The usefulness of 8/i 
and WA s is confined therefore to their use in the study of non-natural AF's. 

In the study of 8/i, an important tool is the analogue of the resolvent equation 
to the effect that under certain finiteness assumptions, 

Ui f  -Uaa f =(fi--e) U s Ua~f=(fi--e)U e U~f. 

In exactly the same way, we obtain 

Lemma2.1. Let A e d ,  e>O, fi>-_O and F e ( g x  g)*. I f  ql~F(x) and 8/PAF(x) 
are finite, then 

8/~ F(x)-8/~ F(x)=(fi-e) U s 8/~A F(x)=(fi--e) U ~ 8/~ F(x). 

I f  one drops the finiteness assumptions, one has 

8/~F<=8/~AF+(fl-e) US8/~r if e=<fl. 

From this lemma follows the equation for U I cited above as well as the anal- 
ogous formula for Wd. 

It should be remarked that in order to conform to the notational conventions 
about operators and kernels stated in [1], p. 253, one should regard F(y, z) as a 
function of the single vector (y, z), and the kernel corresponding to the operator 
8/I as 8/~(x, d(y, z)). 

Lemma 2.2. If  Fe(g x ~)*, then 8/~Fe2r s if AesJ, and consequently U i f  and 
W~feS m if f eg* ,  Aesff. 

Proof. A routine computation of Pt s 8/~ F. [7 

Notice that if A e J  and f ebg* ,  then 

B t= ~ f(Xs) dA~ and U' t= ~f(Xs_)dA~ 
( 0 ,  t] ( 0 ,  t] 

are in ~r and if Feb(8 x g)*, then C, = ~ F(X~_, Xs) dA~ is in sr 
(O,t] 
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A result of Meyer states (see [1] p. 157) that if A and B are AF's such that for 
some fixed c~ >0, u~(= U~ 1) is everywhere finite and if U~f= U~f for all f e  C{, 
then A and B are equivalent. We want something a bit different from this. 

Proposition 2.3. Let A, B e d and suppose that for some fixed c~ > O, u] < oo 
a.e. (4) and that U~f= U~f for all fEbg+ having compact support. Then A and B 
are equivalent. 

Proof The following nice proof was supplied to the author by R.K. Getoor. 
Notice firstly that {u]= oo} = P  is polar. If one examines the proofs of Pro- 

position 2.8, 2.11 and 2.12 of ([I], Ch. IV), one sees that if xCP, then (2.9) holds 
with Mt=lLo.o(t), and that (2.11) holds with Mt=lEo,~)(t ) if one assumes 
EX{f(Xt) At} =E x {f(Xt)Bt} for all febg*~_ t>0 ,  xCP. Finally, for A and B as in 
the statement of the present proposition, we obtain, as in the proof of (2.12) that 
for fl>c~, U~A f = U~ f off P, and consequently UPA U~ f = U~ U~ f off P. This implies 
that A = B  a.s. px, xCP. Consider now T=inf{t :  At+B,}. It is easy to see that T 
is an exact terminal time, and px(T=oo)=l  if xCP. But q)(x)=EX{e -T} is 
1-excessive and equals 0 when xq~P, so ~o(x) is identically 0, which tells us that A 
and B are equivalent. 

Thus, if A e d  and u ]<oo  a.e. (~), the operators U~ and q/~] determine A 
uniquely. This is not the case with the left a-potential operator W2, unless A is 
assumed to be natural. 

Proposition 2.4. I f  A and B are AF' s such that EX At = E ~ B t < oo for every x eE  
and t >__ 0, and if A has a finite c~-potential for some c~ > 0, then W2 = W~ as operators 
on bg+. Conversely, if for some c~>0, W2= W~ as operators on bg+, and if u~ is 
bounded then E ~ A t = E ~ B t for all x GE and t > O. 

Proof If E~At=E~Bt for all x~E and t_>0, then A, B e d ,  and it suffices to 
prove that W2 f = W~f  for every f e C~, xeE.  Since t --*f(Xt_ ) is left continuous 
a.s. and A t - B  t is a martingale relative to each W, the result follows by T.17 of 
([4], Ch. VII). Conversely, if U~A(X) is bounded and W2= WB ~, then 

EXAt<=e~t E~ ~ e - ~  dAs<_e~tu~A(X)<Oo, and u](x)=u~(x) 
(o, t] 

so E x B t < oo also, for all t > 0, x e E. From the equations in Lemma 2.1, we obtain 
that W~t~-- W~ for all f l> c~, and hence U~A=U~ is bounded for all fl>c~. Since 
E "~ e-'tAt<u](x)<= C = s u p  u](x) < oo, then if fl>ct, E ~ e-~tAt < C e-(~-~)t--*O as 

x 

t--* oo, and the same holds for B r Then we obtain 

u~(x)=l imE ~ ~ e -~dA~  
t ~  oo (0, t] 

= lim E ~ ds 
t ~  ~ 0 

= f i ~ e - ~ E X A ~ d s  if f l>a ,  
0 

and similarly 
oo 

U~B(x) = fl f e-P~ Ex B~ ds. 
0 

6* 
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Thus E ~ A s = E ~ B s for a.a. s (Lebesgue) by uniqueness of Laplace transforms, and 
hence for all s > 0, x e E, using right-continuity of these functions in s. [3 

3. The Measures Associated with an AF 

Inspired by Revuz [6], we define, for any AF A of X and Feb(E • ~)* 

For  f ~  b 8" ,  define 

VA(F ) = sup t-* E r ~ F(Xs_, X~) dA s. 
t>  0 (0 ,  t] 

v ] ( f ) = s u p  t -1 E r ~ f (X,_)dA~ 
t > 0  (0, t] 

v 2 ( f ) =  sup t -1 E r ~ f(Xs) dA s. 
t>O (O,t] 

The VA(f) of Revuz is v2(f)  in our notation. If F(x, y)=f(x) ,  VA(F ) = v* A(f), and 
if F(x, y)=g(y), then vA(F ) = v~(g). 

We call A integrable if va(1)< co. (This is not the same as E ~ A, < m for all t > 0  
and xEE.) If there is a decomposition of E x E into a countable union of sets F i 
such that Va(1F,)< cO for each i, we call A a-integrable. 

We remark that A is integrable in our sense if and only if it is integrable in 
Revuz's sense, but our definition for a-integrability is more general than that of 
Revuz which allows only decompositions of the form E x E~. 

With only a trivial modification of Revuz's proof  of the analogous proposition, 
we obtain 

Proposition 3.1. Let A be an AF of X and F ~ (g x g)*. 

(a) VA(F ) = lim t-* E r ~ F(Xs_, Xs) dA s 
t ~  0 (0 ,  t] 

= lira ~ <~, ~ F> 

and the latter limit is increasing. 

(b) I f  A is a-integrable, the mapping F---, va(F ) is a positive a-finite measure 
which is a finite measure iff A is integrable. Denote the measure also by v a. 

Obviously, if A is a-integrable, v*a and v 2 are (possibly non-o--finite) measures 
on E such that VA(FX E)=v](F) and vA(E x A)=v2(A). 

It is clear that 

v ] ( f ) = l i m  t -1 E r 5 f(Xs_)dA~=!imooc~<~ , W ~ f }  
t ~ 0  (0, t] 

and 
v 2 ( f ) = l i m  t - 1 E  r ~ f(Xs) dAs= lim ~<~, U~f> 

t ~  0 (0 ,  t] ~ oo 

if f z b ~ * .  
Using the fact that i f K  is polar in E, then for all xEE, W { X ,  o r  Xt~K for 

some t > 0} = 0, one sees that v~ (K) = v~ (K) = 0 for all A. One sees in the same sort 
of way that if A is continuous and L is semipolar in E, then v](L)= vaa(L)= O. 
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It is immediate that if A e d and F e b (g x do) *, then 

Bt= ~ F(X~_ ,Xs )dA  ~ is in d and vB(G)=vA(FG), Geb(do xdo)*. 
(0, t] 

Thus, in particular, if A e s~r is a-integrable, B is ~-integrable and dv B = F dv a. Let 
J denote the class of integrable AF's of X, and let a J  denote the class of a-inte- 
grable AF's of X. It is shown in [6] that ~r ~ ~r and that every AF A of X whose 
jumps are a.s. bounded away from oe is in ~r J .  We shall see later, under duality 
hypotheses, that ~r c a J .  For the moment, we content ourselves with a much 
simpler result. 

Proposition 3.2. I f  A~sJ ,  then A can be expressed as ~ A" where each A" is 
rY3 

integrable, A n E,;d. ,,= 1 

Proof Let Bt= ~ A A ~ ,  C t = A t - B t ,  so that B and C~s~r and C is continuous. 
$_<t 

Then C is ~r-integrable by ([-7], 1.3), and 

c=Z c", c7= S 
n (0, tl 

defining an integrable AF. Write 

B,= ~B~' where B~= ~ A A ~ .  I~A~[,_I,,) ~. 
n = l  s<=t 

Then each B" is ~-integrable, by ([-7], 1.3); and so can be expressed as a sum of 
integrable AF's. 

This means that for Fs(do x do) * and A ~ d ,  VA(F)= ~ vA,(F), using the mono- 
n = l  

tonicity in the limit which defines vA(F ). Thus if A ~ d ,  v A is a countable sum of 
finite measures. 

Proposition 3.3. Let A ~ a  J .  Then A is natural if and only if v A is carried by the 
diagonal D in E x E, and in this case v 1 = V2A . The same result holds if one assumes 
A 6 s~r 

Proof. If A ~ a J  is natural, and F ~ b ( #  x do)+ vanishes on D, then clearly 

~ F(x) = E ~ ~ e-~'  F ( X  t_, Xt) dA t 
0 

is identically zero, so v A (F)=0, hence v a is carried by D. On the other hand, if 
A s a ~  and v A is carried by D, then for any pair of disjoint Borel sets K, L, 
VA(K•  , so for all c~>0, U~I~c• a.e. (~), and since ~215176 , 
U~ 1K• everywhere. Hence we have a.s. AAt=O for all t such that Xt s K  
and Xt~ L. We can however, find a countable collection of such pairs K, ,  L,,  n__> 1, 
such that E x E \ D = ~ K,  x L, and then a.s. AA~ = 0 for all t such that X~_ 4: X,, 
t ' < ~ .  " 

The modification to the case where A ~ r  is simple. [7 
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It is apparent from Proposition 3.2 that nothing new is being introduced when 
A is natural. A non-decreasing right-continuous function 4~ on [-0, oo) is called 
purely discontinuous if for every t>0,  ~b(t)= ~Acb(s). An AF A of X is called 

S~t  

purely discontinuous if the sample paths t ~ A t are a.s. purely discontinuous. We 
call an AF A of X quasi-left-continuous if a.s., all jumps of the sample paths t ~ At 
occur at jump times of the sample paths t ~ X t. It is well known that A is quasi- 
left-continuous (q.1. c.) if and only if A t ,  ~ A T whenever { T} is a sequence of stop- 
ping times which increases to T, in case X is special standard. 

Proposition 3.4. I f  A ~ a  J ,  then A is purely discontinuous and q.l.c, if and only 
/f va(D)=0. The same result holds if A e d .  

Proof If A is purely discontinuous and q.l.c., then for every 

c~>O, 
oo  

U ~ l D ( x ) = E ~ e - ~ t l D ( X t _ , X t ) d A t = O  for all x ~ E ,  
0 

so vA(D)=0. Conversely, if va(D)=0, then U~ 1D=0 a.e. (~) and hence U~ 1D-0, 
for each ~>0. This means that the measure on [0, () determined by t---,At(o~) is 
carried by the countable set {t: Xt_(co)# Xt(o~) } a.s. and this obviously implies 
that A is purely discontinuous and q. 1. c. 

Once again, the case A ~ d is settled by trivial modification. 
For any A s a J ,  the part of ~A which will and be of interest to us is the off- 

diagonal part, and we shall see in the next section that under duality hypotheses, 
we can determine the most general purely discontinuous q.l.c. AF of X. 

4. The Representation of the Bipotential 
In this section, we assume that the standard process X is in duality with a 

standard process 3~ relative to the a-finite measure ~. The reader is referred to [1], 
Chapter VI, for details, but briefly, it is assumed that there exist functions uS(x, y) 
on E x E, c~ > 0, such that the resolvents { U s} and { U~} of X and )( respectively 
satisfy, for all ~ > 0 

(i) 
(ii) 

(iii) 

U s (x, dy)= u s (x, y) ~ (dy), U~ (dx, y)= ~ (dx) u s (x, y) 

x --* u ~ (x, y) is c~-excessive for X 

y ---, u'(x, y) is e-excessive for 3? (i.e. a-coexcessive). 

(4.1) 

No regularity assumptions are made on the resolvents, nor is it assumed that 
either process is special standard. We write ~ (dx)= dx and ( f ,  g ) = S  f ( x ) g ( x ) d x  
if f, g~g*.  

Our first result, though having very special hypotheses, contains the core of 
the results on representing the bipotential operator, and follows by trivial modifi- 
cation of the very nice argument of Revuz [-6] in the natural case. 

Proposition 4.1. Let A ~ J .  Then u~ < oo a.e. (4)/fc~> 0, and 

u~(x) = U ~ v~(x)= S u~( x, Y) vla(dY) �9 
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Proof The fact that u~<c~ a.e. (0 follows from (1,~U~)<VA(1)<oO. Fix 
c~>0, and for qSeb#+ ~ 5f~(d~) consider 

oo 

v~ (4) (U)= l i m  fi Er ! e -as 0 (Js(Xs-) dAs. 

The remainder of the proof is exactly that of Revuz ([6], V.1). We provide a brief 
sketch. 

By a theorem of Weil [9], the mapping s ~ q5 ~=(Xs_ ) is left-continuous, so 

~,, e-ak/2" 0 ( fs(Xk/2.)  l(k/2-,k+ 1/2-1 (S)--+ e -as ~ US(Xs_) 
k = 0  

as n ~ 0% and this implies that 
o(3 

v~(q5 0s)= lira l imflE ~- ~ e -ak/2" ^s U (Xk/2,,_) [&+ ~/2--&/2-] 
a~oo n~oo k=0 

< lira lira e -ek/2~ ~4(JS(y)EYAl,,e,~(dy) 

= lirn ~ 2" (o (y) U s (E" A ~/2,) (Y) ~ (dy) 

oo 

=~z ~ e -ss Eel(A,) ds= (0 ,  U~A) �9 
o 

Thus <~b, U s VlA)=<<(b, u~) for all ~beb#+ ~ 5~i(d~), so Us vi<u~ A a.e. (~), hence 
everywhere, since both functions are in 5 ~.  

On the other hand, the resolvent equations and Eq. (2.2) give 

u~ - U = V~A ---- lim U s (fi UPA + s -  fi U a +~ v~), 
a ~ o o  

so 
dx [u~ (x) - U s v] (x)] =< lira inf c~ -1 ~ dx [fi Uea + =(X) -- fl U a +~ v] (x)] = 0 

f l + o o  

"-u~uh.  El SO U A - -  

Theorem 4.2. I f  A s s 1  and F e ( g  x ~)*, then 

q/i F(x)= ~ u~(x, y) F(y, z) VA(dY , dz). 
gxE 

In particular, if f eo ~*, 

W~f (x )= ~ u~(x, y) f(y)  vl(dy) 
and 

U~ f (x)= 5f us (x, y) f (z)  v A (d y, dz). 

Proof One need only observe that A = ~  An where each A" is integrable and 
for which the corresponding formula holds, because i fF  is bounded and we define 

n B , -  ~ F ( X s _ , X , ) d A  ~, then dVB,,=Fdva..  
(o, t] 

Upon passage through a monotone limit, the general result follows. [] 
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Proposition 4.3. I r A  ~ d and u~ < ~ a.e. (~) then v A determines A uniquely. 

Proof. Immediate, using Proposition 2.3 and Theorem 4.2. 

Proposition 4.4. I f  A ~ d  is a-integrable, then v a determines A uniquely. 

Proof. Let A, B e d  and suppose VA=V B is a-finite. 
oo 

Let E • E =  ~) F~ (disjoint), where VA(F,)< ~ for n =  1, 2 . . . . .  Let 

A~= ~ lr,(X~_,Xs) dA~ and B~= j l r , (Xs_,X) dA~. 
(0, t] (0, t] 

We have d v a , = d v B , =  lr,  dVA, so by Proposition 4.3, A" and B" are equivalent, 
so A = ~, A" and B = ~ B ~ are equivalent. D 

For  later use, we record here the following characterization of associated AF's 
with bounded a-potentials. Recall that two AF's A, B of X are said to be associated 
if for all x E E  and all t>=O, E ~ A t = E ~ B t < ~ .  

Proposition 4.5. Let  A ~ ~4 have bounded ~-potential for some ~ > 0 and let B ~ ~' .  
Then A and B are associated if  and only if  v~ = v~. 

Proof  If A and B are associated, then W,~ - W~ by Proposition 2.4, so u a - uB, 
and this proves that ~ v A = v B because of Proposition 4.1 and Proposition 1.15 of 
([13, Ch. VI). 

Conversely, v~ = v~ implies W~= Wff because of Theorem 4.2, and so by 
Proposition 2.4, A and B are associated. D 

We are now going to associate with the standard process X (in duality with ~T 
relative to ~) a canonical measure v on E x E which will reflect the jumping be- 
havior of X. In the sequel, we shall find ourselves frequently in the following situa- 
tion: let K and L be Borel subsets of E which have disjoint compact closures in E, 
or more generally, let F be a Borel subset of E x E whose closure in E x E is com- 
pact and disjoint from the diagonal. Define in the first case, JK, L = inf {t > 0: X t_ ~ K, 
Xtm L} A ~ and in the second case J r  = inf{t > 0: (X  t_, Xt)~ T} A ~. It is clear that 
J = J r  is a thin terminal time, and we denote by J" the n-th iterate of J, namely, 
J~= J and inductively, J"+ 1= j , §  j o 0j,. Because X possesses left limits on [0, #) 
a.s., lim J" = ( a.s. We call JK, L the time of first jump from K to L, and J r  the time 

n ~ o o  

of first jump within F. 

If F is as above, we consider the AF ~/1 defined by 

~A,= F, 1Axe_, xs) 
s < t  

n ~ l  

so that rA counts the number of jumps within Y, Since ~irn J~= (, r A ~ d .  Since rA 

has bounded jumps, it is ~-integrable because of Theorem 1.3 of Revuz [7]. The 
measure rv for rA clearly is carried by Y, and if A is another such Borel subset of 
E • E, it is easy to see that the a-finite measures rv and AV agree on Y c~ A. There 
exists therefore, a a-finite measure v on E x E which assigns zero mass to D and 
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such that i f F e g  x g has compact closure disjoint from D, then rv is the restriction 
of v to F. Thus, for such F, 

E ~ ~ e -~t lr (Xt_,  X~)= ~ u~(x, y) lr(Y, z) v(dy, dz). 
t > O  E x E  

(4.2) 

But (4.2) uniquely determines v, for the following reason. Let v 1 and 1~ 2 be two 
o--finite measures satisfying (4.2) for all F e g  x g having compact closure disjoint 
from D, with e = 1, say. Fix such a F and let A = rA. By Theorem 1.3 of Revuz [7], 
E is the union of an increasing sequence E, of nearly Borel sets in E such that for 
each n > 1, Ua* (x, E,) is bounded and integrable in x. Let F, = F c~ (E x E,), A" = r"A, 
d#l  = lr, dvl, dfl2 = lr .  dv 2. We have U~(x, E,)=UlA.(X) which is equal, by (4.2), 
to U 1/~l and U 1 #~. Thus # l=u~  by Proposition 1.15 of ([1], Ch.VI) and this 
implies that Vl(F~)= v 2 (F,), so that we obtain, finally, vl(F ) = v 2 (F), and thus v 1 = v 2 . 

What has been done therefore is that a unique a-finite measure v on E x E such 
that v (D) = 0 has been associated with X in such a way that (4.2) holds. 

Remark. The intuitive notion that J~ is X run backwards in time suggests that 
the canonical measure ~) for 3? ought to be obtained from v by reversing the co- 
ordinates. That  this is so follows from recent work of Getoor  [3]. 

Proposition 4.6. The jumping measures v and ~ for the dual processes X and 2 
satisfy v(K x L)=9(L  x K) for  any K, Leg .  

Proof It suffices to prove that v (K x L) = ~) (L x K) in case K and L are open sets 
in E having disjoint compact closures. By Proposition 2.5 of [3], T=JK, L and 
T =  JL, ~: are dual exact terminal times in the sense that Pr ~ u== u ~ Pr =. It follows 

. p ~  U ~ ~ p a  inductively that (P~)" u~= u~(/3~)" for n = 1, 2 . . . .  so ~r- = u ~r-. The equations 
(1, U ~ I ) = ( 1 D ~ , I )  and (1, P ~ . U ~ I ) = ( 1  ^ ~ %  U P~.,1) together imply, using 
Dynkin's lemma, that 

T ~ T "  

E~ ~ e-~t dt=~e- ~ e-~t dt, 
0 0 

so that E ~ e-=r~ ~ e -=r" for n=  1, 2 . . . . .  Thus, if 

A,=~l{r.<_t} and At=~l{f.__<,,, 
n = l  n = l  

v ( L x K ) = v A ( 1 ) = l i m ~ E r  ~ e-~r"=vA(1)=v(K• D 
~ o z  n = l  ~ o o  n = l  

5. The Representation of a Purely Discontinuous q.l.c. AF 
Watanabe [8] has shown that every purely discontinuous q.l.c. AF of a special 

standard process X has the form ~ F ( X s _ , X s )  , his proof depending on the 
S_<t 

existence of a L6vy system for the process, which relied in turn on fairly deep 
martingale techniques. In this section, we prove this result by simpler methods in 
the case where X is assumed to be in duality with another standard process )(, 
though it is not assumed that X is special standard. For  the remainder of the paper, 
the duality assumptions stated at the beginning of Section 4 are in force. 
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Proposition 5.1. Let A ~ d  be purely discontinuous and q.l.c, and suppose that 
a.s., the jumps of A are ~ fl < 0o. Then A is a-integrable and v A ~ v. I f  F is a Radon- 
Nikodym derivative of v A with respect to v which vanishes on D, then F <= fl a.e. (v) on 
E • E and A t is equivalent to Ct= ~, F(Xs_, Xs). 

S ~ t  

Proof That A is a-integrable follows from a previously discussed theorem of 
Revuz. In order to prove that VArY and F<fl  a.e. (v), it suffices to prove that if 
F ~ 8 • 8 has compact closure disjoint from D and B = rA, then v~ (G)< flv B (G) for 
every GE b (8 • 8)+ which vanishes off F, and for this inequality it suffices to prove 
that q/~ G_-< fl 0//~ G for every ~ > 0. But for such G, 

oo 

og~ G (x) = E x ~ e-~t G (X t_, Xt) dA t 
0 

= E: ~ e-~'J"~G( Xs.~-, X+~ AA+. 
n = l  

<=fie x ~ e -~JT- G(X j~_, X +7.) 
n = l  

=fl u  G(x). 

Let E x E \  D = ~) F,, (disjoint) where each F,~8 x 8 has compact closure disjoint 

from D. Let ,= 1 
B" = r"A, C 7 = ~ F (Xs_, X~) dB~. 

(0, t] 

Then 

Ct= E(lr F)<Xs_,X)= Cf 
s < t  n = l  s<_--t n = l  

and it follows that dv c-- F dv--dv A, and this proves that A and C are equivalent, 
by Proposition 4.4. D 

Theorem 5.2. Let A ~ d  be purely discontinuous and q.l.c. Then there exists a 
finite function F e ( 8 •  vanishing on D such that A t is equivalent to Ct-- 
~, F(X~_, X~). Moreover, dv A =F dr. 

s < t  

Proof Let A7 = ~ AA~ l~A~f,_l,,) ~. Then A"e~ /h a s  jumps bounded by n and 
s<__t 

A = A ". By Proposition 5.1, VA, ~ v and we can assume that the Radon-Nikodym 
n = l  

derivative, F ", of v~ relative to v everywhere =< n. Let F =  F" 1Do. Since At is 
n = l  

equivalent to C~' = ~ F ~ (X~_, X~), A, = ~ A~ is equivalent to 
s<=t n = l  

Z c7-- Z V(Xs_, Xs)= C,. 
n s ~ t  

To see that F < ~  a.e. (v), let F ~ { F - - o o }  be precompact in E •  It will 
suffice to show that v(F)=0,  or equivalently Jr>(  a.s. But if this is not the case, 
then for some x~E, W { C t = ~  for some t < ( } > 0 ,  and this is known to be false, 
so v (F)--0. We may therefore modify F on a set of v-measure zero so that F is 



Discontinuous Additive Functionals of Dual Processes 91 

finite everywhere without changing C a.s. Finally for any H ~ b ( #  x g)+, 

v A (H) = ~, VAn (H) = ~,, v (F" H) = v (FH) 
n = l  n = l  

and therefore dvA=Fdv.  [7 

Corollary. Every finite AF of X is a-integrable. 

Proof If A ~ d ,  we can write 

B~= ~ lo(X~_,X~)dA~ and C~= f loc(X~_,X~)dA~ 
(0 ,  t] (0, t] 

and A = B + C is the decomposit ion of A into a natural part B and a purely dis- 
continuous q.l.c, part  C, each of which is in d and so each has only finite jumps 
a.s. By Theorem V.3 of Revuz [6], B is a-integrable, and by the above theorem, 
d v c = F d v for a finite function F, so v c is a-finite. [3 

The question of determining those functions F e ( #  • #)+ for which the cor- 
responding AF A t = ~ F(X,_ ,  X~) is in sr is easily settled if one tries an analogue 

S<=t 

of the technique of Revuz [7], Theorems III.3 and III.4. See Getoor  [3J for the 
exact statement. There is one simple situation however in which this approach is 
not necessary. If F < ~ a.e. (v) and F vanishes off a compact subset F of E • E \ D, 
then ~ F ( X ~ _ ,  X~) is clearly in d because it jumps by a finite amount  a.s. at the 

s<=t 

times J~-, j2  . . . .  which tend to ( a.s. 
We are now in a position to describe all finite additive functionals of a process 

X under duality hypotheses. Let X and ~ satisfy the ongoing duality assumptions. 
With X we associate the canonical measure v on # x # and a measure 2 defined on 
the a-ring ~ of semipolar sets by 

ou 

)o(B)-- Z v~,(B,) (5.1) 
i = I  

where B =  U B i (disjoint) is a decomposition of B into totally thin sets (sets for 

which sup E ~ e -r '~ < 1) and AI= l~r~ _<~. It is shown in [7] (Lemma II.1) that 
x ~ E  n=  1 

,~(B) does not depend on the particular decomposition into totally thin sets, so 
that 2 is indeed a well-defined measure on H. It is clear that 2 is a-finite. 

We remark that the canonical measures ~ and ~ for the dual process satisfy. 

(i) 2=2~ 
(5.2) 

(ii) ~ (K x L) = v (L x K) 

because of Proposition II.2 of [7] and Proposition 4.6. 

If A ~ ,  we can express A as a sum A I + A 2 + A  3 where A1, A2, A3e~,, A 1 is 
continuous, A 2 is natural and purely discontinuous and A 3 is purely discontinuous 
and q.l.c. The measure v A on E x E may be decomposed into a sum Vl+V2+V 3 
where va + v 2 is the restriction ofv A to the diagonal D ~ E x E and v 3 is the restriction 
of v a to E x E - ,  D, and where v 2 is carried by a semipolar set K and v t charges no 
semipolar set. We then have v A, = v~, i=  1, 2, 3, and v 2 ~ 2, v 3 ~ v. Thus to each 
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ACsr there corresponds a triple (/~, f, F) where/~ is a measure on E which doesn't 
charge semipolars, f is a Borel function on E which vanishes off some semipolar 
set K and F is a Borel function on E • E which vanishes on D such that vl =/t, 
dv 2 =fd2 and dv 3 = F dr, and in the decomposition of A, one has 

A:= Z Zf(x(rL))l,o,, (r L) 
i = 1  n = l  

where K =  @ K i (disjoint) is a partition of K into totally thin sets, and A~ = 
i = 1  

F(X~_, X~) (up to equivalence, of course). The triple (~, f, F) completely charac- 
s < t  

terizes A and (~1, fl ,  F~) represents the same AF as (#2, f2, F2) if and only if/6 =/~2, 
f l  =f2 a.e. (2) and F 1 = F 2 a.e. (v). The class of possible representing triples (#, f, F) 
comprises those triples for which/~e J/t, f e X  and FeN,  where: ~ is the class of 
measures/~ on E which don't charge semipolars and which are such that there 
exists an increasing sequence {E,} of Borel sets whose union is E and such that 
/~(E,)< oo for all n, ~ u~(x, y)l~(dy) is bounded in x for all n, and lim Teo > { a.s.; 

n ~  oo h -  
En 

X is the class of Borel functions f on E which vanish off some semipolar K and 
which are such that there exists an increasing sequence {E.} of Borel sets whose 
union is E and such that for all n, 

(1 - e -f(y)) 2 (dy)< oo, ~ ul(x, y) (1 - e - f ( r ) )  2(dy) 
En En 

is bounded in x, and lim T~>~  a.s.; @ is the class of Borel functions F on E • E 

which vanish on D and for which there exists an increasing sequence {E,} of Borel 
sets whose union is E and such that for all n>  1, 

~S u*( x, Y)(1 - e -  riy, z)) 1E" (z)v (d y, dz) 

is bounded and integrable in x, and !ira T~ > ~ a.s. 

This summarizes work of Revuz ([6], [7]) in the first two cases and Getoor [3J 
in the last case. 

6. L6vy Systems for Dual Processes 
By a L6vy system (n, H) for a standard process X, we mean that H is a CAF of 

X and n is a kernel on E x E  a (i.e. for all BEga, x ~n(x ,B)  is in & and for all 
x~E, B-~n(x, B) is a G-finite measure) such that n(x, {x})=0 for every xEE and 
such that for every F~(g  • g)+ which vanishes on D, every x~E and every t_>_0 

t 

EX ~ F(Xs-, Xs) =E~ S ~ n(Xs, dy) F(Xs, y) dHs. (6.1) 
s<=t 0 E 

Watanabe [8] proved that a L6vy system exists for every special standard 
process, using the theory of square-integrable martingales. We shall prove here 
that a L6vy system exists for every process X under the duality assumptions in 
force here. The method depends only on factoring the canonical measure v for X 
in an appropriate way. 
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Proposition 6.1, I f  K and L are nearly Borel subsets of E having disjoint compact 
closures, and if K is semipolar, then v(K • L)=0.  

Proof We may assume that K is thin. Since EX {e-rK; TK< oe}E5 PI is strictly 
less than 1, it suffices to prove that v ( K x L ) = O  if K has the property that 
sup E x {e- rK; TK < oe } =< fl < 1, for every thin set is a countable union of such nearly 
x E E  

Borel sets. A standard argument shows that lim T/~___ ~ a.s., T~ being the n-th iterate 

of the hitting time T K. Let D K =inf{t____0: X t ~ K  }. It is shown in ([1], p. 59) that 

DK=inf{t>__0: X t ~ K  or t > 0  and X t_ exists and is in K}. 

It follows that a.s. 
{t>O: X t _ ~ K I c { T K ,  T~, ...} 

and since X T . ~ K  for every n, {t>O: Xt ~K, X t~L  } is empty a.s., hence 
At= ~IK(Xs_~lr(X~)  is equivalent to the zero AF. This implies va=O, so 

S<=t 

v(K x L)=0.  

The simple proof of the following lemma was shown the author by R. K. Getoor, 
and is much simpler and needs fewer restrictive hypotheses than the version pre- 
sented in Meyer [5]. 

Lemma 6.2. Let 2 be a finite measure on E which doesn't charge semipoIars. 
There is an equivalent finite measure # having a bounded 1-potential. 

Proof Since 2 is finite, U 1 2 is integrable and hence finite except on a polar set. 
oo 

Let E o = { U 1 2 = ~ }  and E n = { U 1 2 ~ [ n - l , n ) }  for n>__l, so that E =  UEn (dis- 
n = O  

joint), and if we set d~ k ~ 1Ek d)., then 2 o --0 and if k > 1, ~'k is a measure carried by 
E k which doesn't charge semipolars. By the switching identity ([4], VI, 1.16) 

and 
~ ).k(B)= ~/3Elk(B , X) ,)~(dx)= ~ ~ ( B ,  x)).(dx) 

Ek rE k 

= ~ b~(B)2(dx)=2k(B), B ~ .  
r E  k 

Hence p1 U 12k = U  12k ' But U 12k(x)<k i f x  is in the fine closure of E k, so 

PEI U 1 2k<k everywhere, hence U 1 2,<k.  Now let # =  ~ 2-k2k . Then # is clearly 
k=O 

equivalent to 2 and it has a bounded 1-potential. D 

Theorem 6.3. The canonical measure v for a standard process X which is in duality 
with another standard process X relative to the measure ~ can be represented in the 
form v (dy, dz) = # (dy) n (y, dz) where # is a finite measure on (E, ~) such that # = v~ 
for some CAF He~r and n is a kernel on E x gA such that n(x, {x})=O for all xeE.  
Then (n, H) is a LOvy system for X. 

Proof If v = O, there is nothing to prove, so we may assume v > O. Since v is 
o--finite, we may express E x E \ D as a finite or countably infinite union of disjoint 
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Borel sets F k such that 0 < v (Fk) < ~ for every k. Define 2 k on (E, ~) by 

2 k (B) = v ((B • B) c~ Fk)/v (Fk) , B ~ $. 

Each 2 k is a probability measure on (E, g), and if K ~ $ is semipolar, K • E \ D 
may be written as a countable union of products K,  • L, where K,  and L, are Borel 
sets in E with disjoint compact closures and K,  is semipolar so that v(K, • L,,)=0 
for all n because of Proposition 6.1. This shows that 2 k (K)= 0, so 2 k doesn't charge 
semipolars. Moreover, each of the measures B ~ ~ irK(y, z) v(dy, dz) is absolutely 

B •  

continuous so by the usual argument there exists a kernel h k on E • d~z such that 

1 r~ (Y, z) v (dy, d z) = 2 k (dy) h k (y, d z) 

where hk(y, dz)= lr~(y, z)hk(y, dz) so that in particular hk(y, {y})=0 for all yeE.  

Now define 2 = ~ 2 -k 2k, a probability measure on (E, ~) which doesn't charge 
k=l 

semipolars and such that for every k, there exists fk e b g+ with d2 k = fk d2. We then 
have 

lr~(y, z) v(dy, dz) = 2(dy) rk(y, dz) 

where rk(y, dz)=fk(y ) hk(y, dz) is a kernel such that lr~(y, z) rk(y, dz)=rk(y, dz). 
There exists therefore a kernel r on E x g~ such that r(x, {x})=0 and Ir~,(y, z). 
r (y, dz) = r k (y, d z). Then v (dy, dz) = 2 (dy) r (y, d z). 

By Lemma 6.2, there is a finite measure # on (E, g) equivalent to 2 and having 
a bounded 1-potential so there is a kernel n with n(x, {x})=0 such that v(dy, dz) = 
p(dy) n(y, dz). 

By the second theorem of V.6 in [6], there exists a CAF H such that u~ = U 1 #. 
Notice that H ~ d  since U 1/~ is finite, and vz~ -- v uz __ I~. 

To prove that (n, H) is a L6vy system for X it suffices, by the monotone class 
theorem, to verify (6.1) for F(x, y)= f (x)  g (y) where f, g ~ b g+ are carried by disjoint 
compact subsets of E. 

Let A,= ~f (Xs_)g(Xs) ,  so that A ~ d .  Because the jumps of A are bounded 
S<--_t 

a.s., by Theorem 1.3 of [7] E is the union of an increasing sequence {E,} of nearly 
Borel sets such that U](x, E,) is bounded in x for every n >  1. Thus, modifying g 
if necessary, we may prove (6.1) in case u~ is bounded. We have vA(dy, dz)= 
f(y) g(z) v(dy, dz) so if h z b 8  +, 

v~ (h) = ~ h (y) f (y) g (z) v (dy, dz) 

= ~ h (y) f(y) g (z) n (y, dz) # (dy) 

= v ~ ( h . f  .ng) 

where ng(y)=~ n(y, dz)g(z). Therefore, d v ] = f . n g ,  dv~. By Theorem 4.2, 

u~ (x) = W) 1 (x) = ~ ua(x, y) f (y) n g (y) v~ (d y) 
E 

= U ~ ( f  . ng) 
03 

=E~ ~ e- '  f (X , )ng (X , )dH,  
0 
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a n d  b e c a u s e  u~(x) is f in i te  for  eve ry  xsE ,  

E ~ ~ f(X~) n g (X~) dH s < oo 
(0, t] 

for  e v e r y  t > O, so 

BT= ~ f (Xs)  ng(X~) dHs 
(0, t] 

is in  d a n d  h e n c e  dv~=dv~a . By P r o p o s i t i o n  4.5, A a n d  B a re  a s s o c i a t e d ,  a n d  th i s  

g ives  (6.1). 

R e f e r e n c e s  

1. Blumenthal, R. M., Getoor, R. K.: Markov processes and potential theory. New York and London: 
Academic Press 1968. 

2. Getoor, R. K.: Multiplicative functionals of dual processes. To appear in Ann. Inst. Fourier. 
3. - Duality of L6vy systems. Z.Wahrscheinlichkeitstheorie verw. Geb. 19, 257-270 (1971). 
4. Meyer, P.A.: Probability and potentials. Boston: Ginn (Blaisdell) 1966. 
5. - Un R6sultat de Theorie du Potentiel, S@minaire de Calcul des Probabilit6s III. Berlin-Heidelberg- 

New York: Springer 1969. 
6. Revuz, D.: Mesures Associees aux Fonctionnelles Additives de Markov, I. Trans. Amer. math. Soc. 

148, 501-531 (1970). 
7. - - II. (To appear.) 
8. Watanabe, S.: On discontinuous additive functionals and L6vy measures of a Markov process. 

Japanese J. Math. XXX1V, 53-70 (1964). 
9. Weil, M.: Propri6t6s de continuit6 fine des functions coexeessives. Z.Wahrscheinliehkeitstheorie 

verw. Geb. 12, 75-86 (1969). 

M. J. Sharpe 
Department of Mathematics 
University of California 
San Diego, P.O. Box 109 
La Jolla, California 92037 
USA 

(Received September 29, 1970~December 21, 1970) 


