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Asymptotically Efficient Non-parametric Estimators 
of Location and Scale Parameters. II 

J. Wolfowitz* 

9. Introduction 

The present paper is a continuation of the paper [1] of the same name. In [1] 
the authors showed how to construct (asymptotically) efficient estimators of scale 
and location parameters and of the two jointly, when the form of the density func- 
tion is unknown to the statistician (i.e., in the non-parametric case). Their estimators 
are functions of the "middle"  n(q-p) observations, where n is the total number of 
observations and 0 < p < q < 1. The estimators are efficient modulo this fact. Since 
p can be chosen close to zero and q close to 1, the demands of statistical applications 
would probably be better served by improving this estimator rather than by 
eliminating the restriction to the middle n(q-p) observations. However, for the 
purposes of statistical theory and the eventual development of a theory of non- 
parametric estimation, it seems of some interest to eliminate this "waste" of 
observations. 

In the present paper we construct an estimator of the scale parameter o- which 
is asymptotically as efficient as the best estimator which can be constructed when 
the form of the density function is known to the statistician and all the observations 
are used. (Actually, we estimate the ratio of two a's, because the assumptions we 
make are not sufficient to identify o-; see [1] and a remark in Section 15 below. If 
the parameter o- is identified then the method given below gives an efficient estima- 
tor of it.) It will be readily seen that the same method is applicable to estimating a 
location parameter #, and p and o- jointly. The parameter ~ was chosen because a 
choice had to be made (it is not necessary to do both) and because it is perhaps 
slightly the more difficult of the two 1. We believe that the method developed is of 
general interest and that it will be applicable in the development of a general theory 
of non-parametric estimation which has begun to emerge only recently. 

In the present paper we assume familiarity with [1], whose notation and 
definitions are assumed herewith. Other notation will be added in Section 10, 
where the assumptions are stated. The numbering of the sections follows that of [1 ] 
consecutively. The assumptions will be discussed in Section 15, where the relation 
of this paper to work by other authors will be discussed. 

* Research supported by the U.S. Air Force under Grant AF-AFOSR-70-1947, monitored by the 
Office of Scientific Research. 

By our method, that is. It has not as yet been estimated by any other method. 
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After the formulae (1.3) and (1.4) (see [1]) of Bennett, Jung, and Blom were 
discovered, and even more after the formulae (1.7) and (1.8) of Weiss, it was 
trivial to conjecture that these formulae could be used to obtain non-parametric 
estimators of # and a. The difficulty was to carry out this program, since the 
error in estimating just one coefficient exceeds, by an order of magnitude, the error 
permitted the entire estimator (see [1]). In the same way, it is trivial to conjecture 
that full efficiency can be obtained by pushing the "cut-off" points p, and q, to 0 
and 1, respectively, as n ~ o0. Carrying out this program, as is done in the papers 
cited in Section 15 below and in the present paper, is not at all a trivial matter, and 
encounters a number of difficulties. 

We now give an extremely brief outline of the present paper. In Sections 1 land 
12 we assume that appropriate cut-off points for every n, and all the coefficients 
B} "), are known to the statistici an, and that,between these cut-off points, the positive 
lower bound on the derivative g is known to the statistician. (Of course, in the 
nature of the problem, this is impossible, but we assume it temporarily.) In these 
sections we then obtain bounds (which approach zero as p ~ 0 and q ~ 1) on the 
difference between the distribution of the normalized estimator and the desired 
limiting normal distribution. Thus, if these (impossible) conditions were to be 
fulfilled, an efficient estimator would be at hand. Throughout  this paper, the form 
of the estimator is always that of [1], but the crucial question always is what the 
suitable cut-off points are. The final decision is made only in Section 14, after a 
number of changes in different steps. 

In the first half of Section 13 we prove that, if the coefficients B} ") are not known 
to the statistician, but estimated as in [1], then an estimator which is a function of 
certain of the observed variables is still efficient. In the second half of this section 
we estimate the cut-off points, so that, with probability approaching one, a 
satisfactory lower bound on g between the cut-off points, can be given. 

This would seem to remove the assumptions with which the argument of Sec- 
tions 11 and 12 was carried out, assumptions which involve knowledge by the 
statistician which he cannot possibly possess. Three obstacles still remain: 

(9.1) The cut-offpoints determined are chance variables, not the constants which 
occur in the proofs of normality, like that of [2], for example. 

(9.2) Since the chance cut-off points are functions of the middle observations, the 
latter are now not necessarily independently and identically distributed with the 
common truncated distribution, as required by the proofs of normality, e.g., that of 
[2]. Every method of moving out the cut-off points, as functions of the n obser- 
vations, so that p -~ 0 and q --* 1, must reckon with this difficulty. 

(9.3) One must take into account how many of the n(q-p) observations lie in the 
prescribed interval. For  fixed p and q, as in [1], this was of no consequence for the 
limiting distribution. 

In Section 14 these difficulties are resolved and the final estimator is given. 
This estimator has in the limit, after normalization, the same distribution as the 
most efficient estimator which can be constructed as a function of all the obser- 
vations and with full knowledge of the form of the distribution function. 
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I0. Assumptions 

Before giving the assumptions we add some more notations, necessary or 
useful facts. 

Define 

( G-~(q)[ g,(y)\2 
V(p,q)=la_!(p , ~y~-}~) g(y) dy - (q -p )  

(G-1 (p) g(G -~ (p)))2 (G -~ (q) g(G -~ (@)2 
-+ 

p 1 - q  

+2G-l(q)g(G-l(q))-2G-l(p)g(G-l(p)) , 

g, (y) 2 , 

V'(p,q)= a-!~p) g(y)dyq 

V**= { - ~  (g'\7~f!(Y)]2(]d "~-1 g Y, Yj �9 

The significance of these quantities is as follows: a 2 V(p, q) is the variance of the 
normal distribution with mean zero which is the limit of the distribution of 

]/n (a,(Y)-a), 

where 3-,(Y) is the estimator of (1.8). V'(p, q) is the variance of the normal dis- 
tribution with mean zero which is the limit of the distribution of 

where ft,(X) is the estimator of (1.7). Both of these results are derived in [2], and, 
in a simpler way, in [5]. When g is symmetric about zero, the value of V'(p, p) is 
supposedly given at the top ofp. 150 of [i] ,  but the expression given there involves 
an algebraic error. The correct expression for V'(p, q) in the general case is given 
above in this section. V* and V**, respectively, are of course the variance of the 
limiting normal distributions of the maximum likelihood estimators of (r and #, 
respectively, when the statistician knows the form of g and the latter satisfies the 
conditions of the "regular" case. These are then the best variances (of the limiting 
distribution) which the statistician can achieve. 

(We take this opportunity to correct a few minor errors in [1]. In Section 8, 
V(n) should be replaced by V throughout. That V is now called V'(p,p) for the 
symmetric case, because we now need a finer differentiation. In (7.12) there should 
be absolute values about A(n,j). In the denominator of (7.10) the factor (2,p + 2,~) 
should be deleted. A non-trivial error made in [1] was to omit the requirement that 
g" satisfy a Lipschitz condition.) 

(The error made in V(n) of [i~ is carried over into [12], (3.9), (3.13), (3.16), and 
Lemma 8.) 

9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 30 
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In the present paper we make the following assumptions: 

Assumption 1.0 < V* < oe. Let T" be any estimator of a which is such that, for 
every a, 1/n (T , ' - a )  is asymptotically normally distributed with mean zero and 
variance V'(a). Then, for (Lebesgue) almost every or, V'(~r)>a 2 V*. 

Assumption 2. The set where g is positive is the entire line. The derivatives g', g", 
and g"  exist and are bounded above in absolute value. 

Assumption 3. As p --,0 and q ~ 1, V(p, q) ---> V*. 

Assumption 4. E]Vil 3 < oe. (For the definition of V i see the first paragraph of [1].) 

Assumption 5. There exists an s, 0 < s < l, such that 

a) for x < 0 ,  

and 

b) for x > 0 ,  
1 g x s 

The quantity s may depend on a. 

The assumptions will be discussed in Section 15. We will carry out the proof 
in the next four sections under the following additional assumptions, for the sake 
of a little simplicity. These additional assumptions will be eliminated in an almost 
trivial manner in Section 14. 

Assumption 2'. The statistician knows K t, the largest of the bounds in Assump- 
tion 2. 

Assumption 4'. The statistician knows an upper bound on 

E[~I 3 

Assumption 5'. The statistician knows the number s. 

11. Heuristic Introduction to the Proof  

In this section we describe some of the basic ideas of the proof in a non-rigorous 
manner for the sake of easier understanding. These ideas are carried out rigorously 
in Section 12. The proof is then completed in Sections 13 and 14, which depend on 
ideas not discussed in this section. Only a superficial familiarity with [1] is needed 
for Sections 11 and 12. 

Let ~i, i=  1, 2, . . .  be a descending sequence of positive numbers such that 
el < 1 and ei--->0. Assume now that the statistician knows, sequences {Pi} and {qi} 
such that 

(11.1) always O<pi<qi<l, and (ql-pi)--*l, and 



Asymptotically Efficient Non-parametric Estimators 121 

(11.2) whenever a G - l ( p i ) < x < ~ G - l ( q i ) ,  

1 
ch< ~ - g ( a  x~) =d(x), say. 

Suppose also that the statistician knows the coefficients B} ") in the estimator (1.8) 
of [1], i.e., 

nqi--1 1 
S" %- R(.n) y.(n) 4- B ' (n)  y(n) 4- B'(n)  Y (n) 
/ '  Fl - J  -J - - - - n p i  -npi - - - - n q i  -nqi 

j = n p i +  l 
(11.3) 

- -  B (.n) G - '  | ~--| + B'  (") G -  ~ (p~) + B'n~)G- 1 (q,) 
j=np~+ l n : \ n ] npl 

(Of course, the problem is such that the statistician cannot possibly know these 
things. In Sections 13 and 14 we will remove these assumptions.) 

We will then find an integer N~ such that, when n > N~, the distribution of 

(11.4) ] /n  (~i)( Y ) - 0 - )  

differs from the normal distribution with mean zero and variance (r 2 V(p~, q~), by at 
most ei, uniformly in the argument of the distribution function and all G which 
satisfy out assumptions. 

From the determination of N~ it will follow that: 

(l 1.5) The above conclusion about the uniform approach of the distribution of 
(11.4) to its limit is a fortiori true if, in 8}~)(Y), we replace Pi and q~, respectively, by p 
and q such that p~ < p < q < qi. 

(11.6) We may choose the N~ strictly increasing. Then N/]" oe. 

For any n let i(n) be the largest i such that N~ < n. It follows from the above that 
the distribution of 

(11.7) ] /n (3-(ni(")' (Y) -- o-) 

approaches the normal distribution with mean zero and variance 0-2 V*. Hence 
9~,(")(Y) is an (asymptotically) efficient estimator of a. 

The coefficients B} ") are, of course, unknown to the statistician. We will estimate 
them as in I-1]. We will have to prove, and will do so in Section 13, that 

(11.8) The ratio of the estimators of o- 1 and 0-2, with the coefficients estimated as 

in [1], is an asymptotically efficient estimator of al . (This was also proved in [1], 
o- 2 

but there c h did not approach zero.) The distribution function of this ratio differs 
from the distribution function of the ratio of estimators with coefficients known, 
by at most a multiple of ei. 

(11.9) We will determine {p~} and {ql} so that (11.1) and (11.2) are satisfied, not 
literally, but in a probabilistic sense. This will cause some difficulties which will 
have to be eliminated by additional arguments. This will be done in the second 
half of Section 13 and in Section 14. 

9* 
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12. Proof of the Theorem when the Statistician Knows {Pi}, {qt}, 
and the Coefficients B (n) 

Our proof in this case leans heavily on the clever proof of normality in [21, 
p. 4-6, and is actually a refinement of this proof for purposes not present in [21. 
For this reason and to avoid needless repetition we assume familiarity with these 
pages of [21 and will indicate where modifications are to be made. Our problem, 
not present in [21, is to obtain an N~ large enough so that the distribution of (11.7) 
is, uniformly in the argument of the distribution function, within ~i of the normal 
distribution with mean zero and variance ~2 V(pi ' qi). 

Let p and q of [2] now be Pl and q~, respectively. We now concern ourselves 
with the conditional distribution of S, of [2], given that I1, = v and W, = w, with 

K ( ~ - ) o f  [2] equal our B~ "). From the definition of V, and W, of [2] it follows 

that there exists an absolute (i.e., independent of G) constant H i and an N~ such 
that, for n > N~, 

(12.1) P{IV.]<H~, IW.I<H,}>-I ~i 
- 6 

The inequality in (12.1) provides the bounded region in the (v, w) plane discussed 
in [21, p. 6. The expression Q"(Oj, n) of [2] comes from the derivative of B} ") of [1]. 
The latter (derivative) is a sum of terms, each of which consists of a product of 
non-negative powers of g', g", g"', and G-1, divided by a positive power of g. Now 

g',g',g'"are, byAssumption2, boundedaboveinabsolutevalue. I G - l ( J  ) 

is bounded above by I G-  1 (�89 + ~- 1 a -  1 which, for i sufficiently large, is less than 
i e/-1. Consequently, in the interval (Pi, qi), Q" (0j, n) of [2] is bounded above in 
absolute value by a known multiple of a negative power of c h, Increasing N~, if 
necessary, this bound can be made less than Ni~ for a ~<�89 

It follows from [3], Lemma 2, that, for i sufficiently large, 

(12.2) P ~  max [ Y j - G  -1 ] ~ (F1~2)-1 ~ 1 0 { i  
~tlpi <--_j<--_nqr 6 

In the notation of [2], therefore, we have then 

n. n ~ �9 max - G-  
npi<--j<=nqi 

(12.3) [5,(v, w)l<  2n ~ 

Hence, increasing N~ if necessary, we have 

(12.4) P 1~5,(v,w)L<~- > 1 6 

We can now directly consider the conditional distribution of S, of [2], given 
that 11, = v and W, = w. From the argument of [2], especially p. 6, line 6, we see that 
everything now depends on the distribution of T. of [21. The function Q ([2], p. 3, 
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line 9) is still at our disposal, subject to the condition given in [2]. We define Q (z) as 

(12.5) i K(G(y))dy. 
G-1(~) 

The argument by which we proved Q" bounded by Nir applies a fortiori to Q', 
and we obtain that 

(12.6) [Q(z)[ < [z-  G -1 (�89 Ni ~. 

From (12.6), the definition of the chance variables Zi of [2], the definition of T,, 
Assumption 4', and the Berry-Esseen theorem, we conclude that, for N~ sufficiently 
large, the distribution of T, of [2] differs from the normal distribution with mean 

zero and variance one by less than ~J-, uniformly for v and w in the set [vl<H~, 
I w l <//,-, for i large. 

u 

The chance variable (11.7) is a linear function of T,, V,, and W, of [2]. Following 
the proof of [6], p. 367-370, it is not difficult to prove that, when N i is sufficiently 
large, because of Assumptions 1 and 2, the distribution of the normalized chance 

variable V, differs from its limiting normal distribution by less than ~L, and the 

conditional distribution of the normalized chance variable W,, given that [V,[ < Hi, 

differs from its limiting normal distribution by less than ~-. We have already 

proved the corresponding result for the conditional distribution of T,, given the 
event in (12.1). Now, it is easy to see that, if the distribution of a chance variable Z' 
differs from a distribution G', say, by less than/~, then, for any non-zero constant c, 

the distribution of c Z' differs from the distribution G'o ( G'o (X)-- G' ( Xc-) when c > O, 

with a corresponding definition when c < 0) by less than/3. From these facts it is 

not difficult to see that, when N~ is sufficiently large, the distribution of (11.4) 
differs from the normal distribution with mean zero and variance ~2 V(p~, q~) by at 
most ~i- Since V(p~, qi) ~ V it follows that ~-~,~")(Y) is an asymptotically efficient 
estimator of a. 

If G, {p~}, and {qi} were known to the statistician our work would now be 
finished. Of course, they are not known, and, in the nature of the problem, cannot 
be known. 

13. Proof of (11.8). Determination of p; and qi 

We begin by proving (11.8). It follows from Lemma 2 of [3] that, for large i, 
a "belt" of constant half-thickness (~i n~) -1, about the graph of the distribution 

function G (ax---), will include the graph of the empiric distribution function of 

Y~ . . . .  , Y, with probability >_ 1 - ~i. We now retrace the argument of [1], Section 5, 

conditioned upon the event in the last sentence. In the interval (Pi,qi),G-l ( j )  
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is bounded above in absolute value by IG-1 (�89 +c~/-1 if-l, which is less than ie~ -1 
for i sufficiently large. We will now estimate the errors incurred in estimating 

o.G_ 1 , l g  ~ _ ,  _ l _ g , . ,  an d al~g,,  

as in [1], Section 5. This will give us simultaneous bounds on the errors of all the 
C(n, i,j) of Section 3. 

The error in estimating c(n, i, j) of [1] is, from the construction of the "belt", 
not greater than (~2 n~)-l. 

Proceeding as in (5.5), the first of the errors in estimating d(n, i,j) of [1] is not 
greater than 2 (e~ n ~)- 1. The second of the errors is not greater than K 1 (ei n~)- 1, 
where K 1 is the largest of the bounds on Ig'l, [g"l, Ig"'l. For large enough i, the 
larger of these two bounds is 2(e 2 n+)-l. 

We continue in this manner as in Section 5. The details are not important, 
because it is obvious what the conclusion will be, and the actual computations 
are tedious. The conclusion is that, for large i, the error in estimating C (n, i, j) of 
[1] is, with probability > 1 -~ i ,  simultaneously for all j such that Yj lies in the 
interval (a G-l(p~), ~r G-l(q~)), bounded in absolute value by a multiple of n- 
multiplied by a negative power of e~. (In [1] there was no need to take into account 
this negative power of e~, because e~ did not approach zero.) Increasing Ni, if 
necessary, we can make this bound less than n-N. 

Let K /=  cq . Then 

(13.1) P {aG-l(pi)< Yi< aG-l(qi) 

when npi+ K ' i t / ~ i <  j < n q i -  K ' i ~  qi)} > 1-2oq. 

From now on in this section we shall use the estimator (11.3) with np~ replaced by 
npi + K'f]/-~i and n qi replaced by n q i -  K'd/n(1 - q~). 

We now proceed almost exactly as in Section 3 of [1]. Let 8~(")(Yj) and 81,(")(Y2) 
be, respectively, estimators of a 1 and of a 2, computed as though G (and hence the 
coefficients B j) were known. Let Vr be the ratio of the corresponding estimators 
with the coefficients estimated as in [1], Section 5. As in [1], Section 3, using the 
bounds obtained above, we conclude that, with probability > 1 -6e~(,~, 

(13.2) ]fn (Vgj ~"(")(Y~)~ <4(~2(,)n~) -1. 
( r2) ! 

Increasing Ni, if necessary, the bound in (13.2) can be made less than ~i. This 
proves (11.8). 

We now turn to (11.9). Increase Ni, if necessary, so that N i > ~-3. Let/ / ,  (-) be 
the empiric distribution function of Y, . . . .  , Y,. Using the method of [4] we con- 
struct a confidence belt of constant thickness with confidence coefficient > 1 - ~.  
Increasing N~, if necessary, we make the half-thickness of this belt less than ~ .  
From this we obtain a maximal x-interval, say Jo, such that, with confidence 
coefficient > 1 -~ i ,  for every X~Jo, 

(13.3) rain [H(x), 1 - H(x)] > ~ .  
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It follows from Assumption 5 that d(x)>~ i for XeJo, with probability > 1 - a  i. 
Let J* be the set ofindicesj  such that YjeJo. Let 

(13.4) 

and 

(13.5) 

Then 

(13.6) 

Jl = min {JlJs J*}, j2=max{j[J ~J* } 

Jl + K'i n} j 2 -  K~ n~ 
Pi -- , q~ 

P {d(x) > cq whenever a G-  1 (pz) < x < a G-  1 (qi)} > 1 - 3 ai. 

It follows, from the above construction of pz and q~, by a tedious but obvious 
argument (for which, in the paragraph which follows (13.2), we made the half- 
thickness of the confidence belt less than a2), that 

(13.7) (q~- p~) converges stochastically to one. 

However, this is not (11.9), because the p~ and q~ we have just constructed are 
chance variables. Moreover, these pz and q~ are not necessarily independent of the 
Yj with Jl <:J<=J2, so that the latter Yj cannot be used as in the theory developed in 
this section. Section 14 is devoted to overcoming these difficulties. When this will 
have been done the proof of the theorem will be complete. 

14. Completion of the Proof 

Let {N/} be the sequence hitherto obtained, and replace each N/by 2Ni 2. This 
is to be the final sequence {A~}. Always, as before, i(n) is the largest i such that 

N~(,)<n. Write n'= n-1 /n .  We have, from the construction of the final sequence 
{N~}, that always 

(14.1) 

and 

(14.2) 

Define 

(14.3) 

. '  K;1/  < . '  p, < 2 . '  

n'(1 -qi)+K'i]/n'(1 - qi) < n' (1 _ qi) + n, ]//1 _ qi < 2 n, ]/1 _qi .  

P{p,->-A} P{q/_-_I-A}=B'.. 
Since p~ and q~ converge stochastically to zero and one, respectively, ft, + fl' --. 0. 

We are now ready to give the definition of our final estimator and to prove the 
desired result. 

The original observed (i.i.d.) chance variables are V1, ... , V,. Let Y1, ..., Y,, 
now be the chance variables Vv~+l , ..., V, ordered in ascending size. We determine 
Pi and qi in the manner described in Section 13 as functions of Vl, ..., Vv~. From 
the construction of Section 13, Chebyshev's inequality, (14.1), and (14.2), it follows 
that the probability exceeds 1 - 4 ct~ - f t , -  fl' that p~ < A,  1 - q~ < ~4, and 

(14.4) Yzn'I/~,-", Yn'(1-zl/r:--,/i) 
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lie in an interval in which d ( ' )>  c~ i. Our final estimator is defined to be the esti- 
mator of [1] in terms of the variables (14.4), with, of course, the coefficients Bj 
estimated as in [1]. It follows from the final definition of N~ and Section 13 that 
the distribution of our normalized estimator of a, i.e., of 1/~(estimator - a ) ,  
when the chance variables Pi and qi are fixed, differs from the normal distribution 
with mean zero and variance 0 -2 V(2 l/~i, 1 - 2 l ] / ~ i )  by at most e~, on a set of 
values of pi and q~ whose probability exceeds 1-4oh-ft,-fl', for large i. From 
Assumption 3 it follows that V(2 I / ~ ,  1 - 21/1 - q~) converges stochastically to 
V*. Since e~ c 0, the limiting distribution of our normalized estimator of 0- is 
normal, with mean zero and variance 0-2 V*, the smallest (for (Lebesgue) almost 
every 0-) variance which can be attained by an asymptotically normal estimator 
even when the statistician knows G. The corresponding conclusion holds for our 

0-1 
estimator o f - - .  This proves the desired result. 

0-2 

15. Miscellaneous Remarks 

First we eliminate Assumptions 2' and 4'. To do this, compute N~ as if K 1 
were i, and i were also an upper bound on the expression in Assumption 4'. 
For all i sufficiently large this procedure will be correct. To eliminate Assumption 5', 
compute N~ as if s = ( - l o g  el)-~. For all i sufficiently large this, too, will be correct. 
Thus we have eliminated Assumptions 2', 4' and 5' in a trivial manner. Another 
method of doing this is to estimate the several quantities from a "wasted" sub- 
sample of size ]/n. 

Our program for proving the (asymptotic) efficiency of our non-parametric 
estimator of a is to show that its limiting distribution is the same as that of the 
best estimator which can be constructed even when the statistician knows g. 
Assumption 1 says that the maximum likelihood estimator is efficient. Sufficient 
conditions for the latter are known (e.g., [10, 113), but necessary conditions are 
not known and, in the nature of things, are not likely to be known. It is clear, 
however, that this assumption implies conditions which are not necessarily 
independent of the conditions in the other assumptions. The first part of As- 
sumption 2 is usually made in proofs of properties of the maximum likelihood 
estimator. 

Assumption 3 is perhaps essential for the problem. Because of the obvious 
difficulties in the tails of the distribution, where g is small, it would seem that one 
is forced to omit the end observations and move out with p and q at the proper 
rate only. 

Assumption 4 could be weakened by requiring only the finiteness of a (2 + 6)-th 
moment. This assumption is probably not an essential one and may be necessary 
only because of the particular method of proof employed. 

Assumption 5 says in effect that the tails of the distribution must not approach 
zero too slowly. It is probable that it is needed because of the particular method 
of proof. An assumption about the monotonicity of g would render it unnecessary, 
as would other assumptions. 
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In [-7-9] the authors give non-parametric estimators of # whose limiting 
distribution after normalization has variance V**. The first result of this kind 
was in [7], which is a brilliant tour de force not likely to be applicable to other 
problems. Nor has it yet been demonstrated that the methods of the interesting 
papers [8] and [9] will solve the problem of estimating o-, or of estimating # 
and rr jointly, or of estimating the appropriate functions of these parameters 
when they are not identified. Incidentally, it is not easy to give natural conditions 
under which a will be identified. The assumptions of these papers and those of 
the present paper are not directly comparable, since no set is uniformly stronger 
or weaker than another. 

We devote a few words to Assumption 2. The actual estimator contains no 
derivatives, but only difference quotients. Preliminary work by the author suggests 
that one may be able to dispense with at least some of these derivatives. As- 
sumption 1 may well have implicit consequences about derivatives. Also, in a 
non-parametric problem, where the statistician does not know the function g, 
is it likely that he would know that g is symmetric 2 ? How shall we compare such 
an assumption with Assumption 2 ? 

Until recently, the theory of non-parametric estimation consisted of a number 
of ad hoc procedures for which no optimality properties had been proved and, 
most probably, could not be proved because the procedures were not really 
optimal. With the publication of the two pioneering papers of this series and then 
of the subsequent papers, asymptotically optimal estimation procedures have 
been obtained in all papers for #, and in one paper for #, o-, and # and ~ jointly. 
Now it is obvious that no statistician dealing with a practical problem will ever 
employ the estimators of [-7, 1, 8, 9], or the present paper. They are too complicated 
to compute, and the convergence rate of their distributions to their limits is too 
slow. Their value lies in their being existence theorems, as it were, that optimal 
estimators do exist and can be obtained in these different ways. It seems to the 
author that a next big step in the theory would be to get away from the limitation 
to scale and location parameters, in the direction of the general parameters 
treated in the parametric theory. The method of proof of the present paper may 
lend itself to this purpose. 

When a comprehensive non-parametric theory of estimation becomes avai- 
lable, it will be desirable, on the one hand, to reduce the regularity assumptions, 
and, on the other, to make the theory accessible for practical purposes, e.g., by 
speeding up convergence and making compromises in the interest of computational 
simplicity. It may then happen that, by using estimators which are functions of 
the middle n(q-p) observations with (q-p) close to unity, one will gain much 
practical convenience and applicability, at the expense of a small loss of efficiency. 
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2 Except in [1] (and the present paper), p has always been estimated under the assumption that g is 
symmetric. This is also the case in the manuscript by C. J. Stone just received by us. 
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