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Summary. We prove in this paper a law of ErdSs-R6nyi type for arrays of 
independent and identically distributed random variables. The relationships 
of our theorem with similar results obtained in the theory of runs and 
spacings are investigated. Applications include the evaluation of the rate of 
convergence of Erd6s-R6nyi maxima in limiting cases and a generalization 
of a Theorem of Erd6s and R6v6sz on runs. 

1. Introduction 

Let X~ ...... ~, i1>=1 . . . . .  id>l ,  be a d-indexed array of i.i.d, random variables. 
Let, for n, > 0  ... .  , nd>O, O<-K<N, 

nl+K na+K 

S ( n  I . . . .  , l"ld, K ) ~ -  E .. .  E x j  ...... jet, 
j i = n l + l  jd=nd+ l 

and 
I(N, K)=  max S(n I .... ,nd, K). 

O<nl ..... na<N-K 

The main purpose of this paper is to establish the following Theorem, 
which appears as a direct extension of the Erd6s-R6nyi-Shepp law in the case 
of d-dimensional arrays. 

Theorem 0. Suppose that X I = X  i ...... id is such that 

(i) E(X~)=O<E(X~)< o0. 
(ii) t o =sup  {t; 4)(t)=E(etXg< oe} >0. 

%'(t) } 
Then, for each ~ ( ~ ,  0 < t < t  o , / f  c=c(c  0 is related to ~ via the equation 
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for any d > 2, we have 

lim sup [I(N, [{cd Log N}l/e]) -c~[{cd Log N}l/d] d] <c_ l  d 
N-~oo {cd Log N} (d- 1)/d = 

almost surely. Here, Log u=logeu is the Neperian logarithm of u, and [ul stands 
for the integer part of u. 

The second purpose of the following discussion is to point out the close 
relationship which exists between ErdSs-R6nyi type results and the asymptotic 
theory of longest runs in Bernoulli sequences, maximal uniform spacings, and 
largest gaps in Poisson processes. 

As we shall see, all these probabilistic models yield very similar results 
which can be described in a unified way by the use of strong approximation 
techniques. Aside from the resulting simplification of the description of ap- 
parently different problems, this has the advantage of giving a geometrical 
interpretation of the ErdSs-R6nyi theorem in higher dimensional spaces. 

In itself, the proof of Theorem 0 makes use of methods based on the 
techniques of CsSrg6 and Steinebach (1981) and of Deheuvels and Devroye 
(1983). This explains why we have postponed it to the end (w prefering to 
discuss from the start problems related to runs and spacings (w 2-7). 

Related results on the limiting behavior of I ( N , K )  have been given in 
Steinebach (1983). However, Steinebach's statements have to be formulated 
more precisely with [KN] instead of K N, where {KN, N > I  } is a noninteger 
sequence satisfying conditions (I1, I2, I3) on page62 of his paper. Otherwise, 
there is no possible ultimately non constant integer sequence {KN, N > I  } 
fulfilling the forementioned assumptions. 

In the sequel, Log u =logeu will denote the Neperian logarithm of u, while 
Logpu=Log(Logp_lU), with Log lu=Logu ,  stands for the p times iterated 
logarithm of u. 

2. The Classical Erdiis-R6nyi Theorem 

In 1970, Erd6s and R6nyi proved the following theorem (see also Shepp 
(1964)). 

Theorem A (Erd6s-R6nyi). Let X 1, X 2 . . . .  be an i.i.d, sequence of random vari- 
ables with partial sums S o =0, S n = X 1 +. . .  + X, .  Suppose that 

(i) E(X1)=O<E(X2)= 1. 

(ii) to=SU p {t; r oo} >0. 

For O<_K<_N, put I ( N , K ) =  max {Sn+K-S,}. 
O<_n<_N--K fr } 

Then, for each ~ ( ~ ,  0 < t < t  o , / f  c=c(a) is related to a via the equation 
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we have 

lim I(N, [c Log N]) _- c~ a.s. 
N~ oo [c Log N] 

In 1981, Cs6rg6 and Steinebach precised Theorem A by proving: 

Theorem B (Cs/Srg6-Steinebach). Under the assumptions of Theorem A, we have 

~I(N,[cLogN]) } 
lim [ [cLogN]l/2 c~[cLogN] 1/2 =0 a.s. 

N ~  oo 

The best possible rate of convergence of the Erd/Ss-RSnyi Theorem was 
obtained by Deheuvels and Devroye (1983) (see Deheuvels, Devroye and Lynch 
(1985)) as follows: 

T h e o r e m  C (Deheuvels-Devroye). Under the assumptions of Theorem A, we have 

I(N, [c Log N ] ) -  a[c LogN]  
lim sup 

N~ oo LogLog N 

lim inf I (N, [c Log N]) - c~ [c Log N] 
N~ ~ LogLog N 

1 
- a . s . ,  

2t* 

- 1  
- -  a . s . ,  

2t* 

r  
where t* =t*(cQ is the unique solution of the equation ~(~=~.  

Let us now consider the particular case where X~,X 2 . . . .  is an i.i.d, se- 
quence of Bernoulli B(p) random variables such that 

P(X 1 = 1)=p, P(X 1 =0)-- 1 -p .  

We get then easily from Theorem C (see Deheuvels and Devroye, 1983, 
Theorem 9): 

Corollary1. Let X1,X  2 .... be an i.i.d, sequence of Bernoulli B(p) random 
variables with 0 < p < l .  Then, for any ~ ( p ,  1), or equivalently for any 

1 
C ~  , i f  

- Log p 

we have 

where 

c(c0= {e Log ~+(1 1--~)-1 c=  - c0 Log T~_p ~ , 

I ( N , [ c L o g N ] ) - a [ c L o g N ]  
lim sup 

N ~  LogLogN 

l im in f I (N , [ cLogN] ) - e [cLo gN ]  
N ~  LogLogN 

= fl(~, p), 

= _ fi(~, p), 

( . .  ~ ( 1 - p ) ) - 1  

In the limiting cases c~=p and c~--1, for which Theorem C is not valid, one 
gets respectively c(p)= ~ (corresponding to the law of large numbers), and c(1) 
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1 
=limc(e)= It seems reasonable therefore to expect that the results of 

,~1 - L o g p "  1 
Corollary 1 extend themselves to the case c~ = 1 and c -  

- L o g p '  
For this, it can be noted that, for 0_< L_< K _< N, we have 

then c ( 1 - e ) ~  

O<=I(N,L)<=I(N,K)<=K. 

If we take p < e = l - e < l  in Corollaryl and let e~0, we get easily, since 
1 

- L o g p  ( [LogN 
lira I N, [ ~ j / = 1  a.s. 

[ - L o g p ]  

Unfortunately, this does not give any information concerning the speed of 
convergence of the preceding expression to its limit�9 We shall prove here 
namely that: 

Proposition 1. Under the assumptions o f  Corollary 1, we have, almost surely 

( [ LogN ] '~<[  LogN ] [ L ~  N, 
k - L o g p /  - k _ Log p l ] = [ _ Log p _l as N--* oo. 

This result can be deduced from Theorem 1" in ErdSs-R6v6sz (1975). Its 
main interest comes from the fact that its proof is based on the asymptotic 
theory of runs which is discussed in the next paragraph�9 An interesting exten- 
sion of Proposition 1 completes TheoremC for the rate of convergence of 
ErdSs-R6nyi maxima�9 It is given as follows: 

Theorem 1. Let  X 1, X 2 . . . .  be an i.i.d, sequence of  random variables. Assume that 
the hypotheses o f  Theorem A are satisfied and further  that 

A=esssup(Xx)<O% and P ( X I = A ) > O .  

1 
Then, for  c =  _ L o g P ( X 1  =A)' we have almost surely as N ~ o o :  

[c Log N] - 0 (1) < A -  ~ I (N,  [c Log N]) < [c Log N-I, 

the upper bound in the above inequality being reached infinitely often with 
probability one. 

1 
For c <  _LogP(X1 =A)' c>0,  we have almost surely as N ~ o o :  

A -  1 I (N ,  [c Log N])-- [c Log N]. 
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3. A Generalization and a New Proof  of  a Theorem of ErdiJs and R6v6sz 

Let  X 1 , X  2 . . . .  be an i.i.d, sequence of Bernoul l i  B(p) r a n d o m  var iables  such 
tha t  

P(Xa=l)=p,  P ( X I = O ) = I - p ,  0 < p < l .  

Let  S o = 0, S,  = X t + . . .  + X , ,  and  put,  for 0 < K < N, 

I (N ,K)=  m a x  { S , + ~ - S , } .  
O<n<_N--K 

Let  Z n be the  largest  integer  for which I(N, ZN)= Z N. In o ther  words,  Z N is 
the length  of  the longest run of l ' s  in X1 . . . . .  X N. 

In  1975, ErdiSs and R6v6sz gave the fol lowing cha rac te r i za t ion  of  the upper  
and lower  a lmos t  sure classes of Z N as N ~  oo: 

Theorem D (Erd~Ss-R6v6sz). Let p=�89 Then, for any e > 0 ,  we have 

L Log  2 
and 

P (zN=  rL~176 N io)=1 
[_ Log  2 

Furthermore, if {a(N), N >  1} is a sequence of positive numbers, then 

P(ZN> ~(N) i .o . )=  0 or 1, according as ~ 2 -~(m < oo or = co. 
N = I  

N o t i n g  that  the me thods  of Erd6s  and  Rhv6sz can be used in a s imilar  
m a n n e r  to ob t a in  the a lmos t  sure upper  and  lower  classes of  Z N for an 
a rb i t r a ry  p, we shall  give in the  sequel a new p r o o f  of their  results,  which shall  
be ex tended  to the k-th longest run. 

A run of l ' s  in X 1 . . . . .  X N will be defined as any subsequence  X . . . . . .  X S 
such that  1 < r _< s < N, and  

- I f r > l ,  then X r _ ~ = 0 ;  

- I f s < N ,  then X s + ~ = 0 ;  

- F o r  a n y t : r < t < s , X  t = l .  

The  length of the run  X . . . . . .  X s will be defined as s -  r + 1. 
F o r  any N > I ,  let R(N) denote  the n u m b e r  of runs of  l ' s  in X 1 . . . . .  X N. It  

can be verified tha t  O < R ( N ) < ~  -, and  tha t  R(N)--,oo a.s. as N ~ o o .  Hence,  

for any  fixed k >  1, there  exists a lmos t  surely an  N k such that ,  for any  N > N k, 
we have R(N)>_k. 

W e  shall  denote  by Z ~  ) the k-th longest run of l ' s  in X~ . . . . .  XN, defined as 
the k-th largest  length of the successive runs of l ' s  in Xa . . . . .  X N if R(N)>k,  
and  by 0 if R(N)<k.  

Evident ly  7 - 7(~) ~ N - ~ N  �9 W e  shall  prove  now the fol lowing result.  
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Theorem 2. Let  X 1, X 2 . . . .  be an i.i.d, sequence of  Bernoulli B(p) random vari- 
ables with 0 < p < l .  Let  k >  l be f ixed,  and let Z~  ) be the k-th longest run of  l's 
observed in X 1 . . . . .  X N. Then, for  any r > 3, we have 

P 

1 ( LogN+ ,Log2N+ +Logr 1N+ x+ 'LogrN' t : 
~)> - L o g p  i.o = if if e<0.e>0' 

Furthermore, for  any e > O, 

and 

q l o)=0 
=L ~L~-~ 

( r og _ og  + og(l ;)] ) 
P Z~) < t Z L o g p  i.o. = 1. 

This last result makes precise the corresponding Remark. statement  of 
Theorem D, which is extended to e--0.  

Proof. Let  G l = m i n  {n>  1; X , = 0 } ,  and, for m = 2 ,  3 . . . .  , define recursively G" 
by 

G,, = min {n > G 1 + . . .  + G m_ 1 ; X,  = 0} - (G~ + . . .  + G"_ 1)" 

It can be seen that  the length of the successive runs of l 's  in X1, X 2 . . . .  
coincide with the values greater or  equal to one in the sequence {G,~-1,  m >  1}, 
and that  G1, G 2 . . . .  form an i.i.d, sequence with the following geometr ic  distri- 
but ion:  

P ( G l > r ) = p  r- l ,  r = l , 2 ,  .... 

We shall now make  use of a strong approximat ion  a rgument  consisting in 
considering the geometrically distributed r a n d o m  variables G 1, G 2 . . . .  as the 
integer parts of  exponential ly distributed r a n d o m  variables. This can be done 
by an applicat ion of L e m m a  2 in Deheuvels (1982), giving: 

L e m m a  1. Without loss o f  generality, there exists on the probability space on 
which X 1, X 2 . . . .  is defined an i.i.d, sequence {co,,, m >  1} of  exponentially distrib- 
uted random variables such that 

P ( c o l > t ) = e  -t, t > 0 ,  
and 

F c% ] 1 
G~, = [ _ ~ o g p  I + , m = l , 2  . . . . .  

Let, for m = 1, 2 . . . . .  Um= e -~m. The sequence {U", m >  1} is an i.i.d, sequence 
of  r a n d o m  variables uniformly distributed on (0, 1). If  we denote by 

u~,.< v~, .<  ... < vo_ ~,. < v.,.  

the order  statistic of  U 1 . . . . .  U n, and 

(2) (i) (o(.")<co(."-i)<... <co. <co. 
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the order  statistic of  co~ . . . .  , co,, then evidently we have:  

~0.(k) = _ Log  Uk ,., l<-k<n.  

It  follows that  if 

k - ~ o o g  p ]  + 1-- [ - ~ o  -UN"] + 1' 
- g p  J 

then G~ ) is the k-th largest  value a m o n g  G 1 . . . .  , G., since 

G(.)<_G~.-~)<_ < G(2) <~ G( 1 ) 

Next ,  we use the following lemma.  

L e m m a  2. For any f ixed k ~ 1 and r >= 5, 

P(n Uk,, >= Log  2 n + (k + 1) Log  3 n + Log  4 n + . . .  + Log,_  1 n + (1 + ~) Log  r n i.o.) 

= P(n Ug,, < {(Log n)(Log a n) . . .  (Log~_ 1 n)(L~ n) 1 + ~}- 1/k i.o.) = 0 or 1, 

according as e > 0 or e < O. 

This last result is due to Geffroy (1958) for the lower class of  Uk, . when k 
=1 ,  Barndorff-Nielsen (1961) for the upper  class of  Uk, . when k = l ,  Kiefer 
(1973) for the lower class of Uk, . when k > l ,  and Deheuvels  (1974) for the 
upper  class of Uk, . when k > 1. 

No te  that  Kiefer (1973, T h e o r e m  2), p roved  that  for a fixed k >  1, we have 

nUk'" --1 a.s. l im sup 
.~oo Log 2 n 

Let  us now put,  for any N > I ,  

t o v ( N ) = m a x  m; G i < N ,  where ~ Gi=O. 
i=1 i=1 

For  any N such that  R ( N ) >  k, we must  then evidently have 

r.(k) _ 1 = [ -- Log  U k [ - Log  Uk,~,m+ 1 ] 
~---~L'N ~'*'~v(N)+I [ ~ =j '  Vv(N) ~ ~ J ~ 7(k) ~" [5'_(k) -- 1 = 

Next,  by a simple renewal argument ,  we get, a lmost  surely as N - *  ~ ,  

v (N) = N(1 - p )  + O(N Log 2 N) 1/2, 

Log v (N) = Log  N + Log  (1 - p) + 0 ( N -  1/z (Log 2 N)1/2), 

Log, v ( N ) = L o g r N + O ( 1 / L o g N ) ,  r>2.  

I t  follows f rom L e m m a  1 and L e m m a  2 that  

) = - L o g p  Log  2n J ]  i.o =1 ,  
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and that, for any e > 0, 

i o)__0 
Hence, we have 

and 

P @(k) ~(N)+ 1 - 1 _-< 

-Log n -  Log 3 n + Log (1 - p )  

- L o g p  

l G Log n - Log 3 n + Log (1 - p) 
p (k) ~(N)- 1 < 

= - L o g p  

This suffices to prove the second part of Theorem 2. 
Likewise, it follows from Lemma 1 and Lemma 2 that, for any e > 0, 

(k+ 1) L~ n ]  o l  
2 Log 2 n i. = 1, 

2(k L--~g: n 
+ 1) Log 3 n] \ 

"-1-1 i.o.) =0 .  
1 

[L~176 ln  i   L~ 1 
P ~)-1_> - +1 i.o 

- - L o g p  
while 

=0,  

[ ) G Log n + (Log 2 n + . . .  + Log r_ 1 n + Log~ n) 

P ~ ) - 1 >  Z ~ o g  p i.o =1.  

The first half of Theorem 2 follows from these results, when applied for 
different values of r. 

Remarks. 1 ~ The upper class given in Theorem 2 is less precise as the one 
given in Theorem C. Sharper results could here be obtained by using the 
complete characterization of the lower class of Uk. . due to Kiefer (1973). 

2 ~ Let R(r, N) denote the number of runs of l's in X 1 . . . . .  X N which are 

greater or equal to r. Since R G i =~{Gi>=r+l,l<=i<=n}, we get, by 

Glivenko-Cantelli and the law of large numbers, 

R In, ~ n p  r a.s. as n----~oo. 

This can be restated in: 

Proposition 2. For any r = 1, 2 . . . . .  if R(r, N) denotes the number of  runs of  l 's in 
X1, ..., XN, which are greater or equal to r, then, almost surely, 

lim R(r, N) _ p r o  _p), r =  1, 2 . . . . .  
N~oo N 
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It is well known (see Fisz (1963) for further references) that R(1, N) 
=R(N)  ~ N p ( 1 - p )  as N ~  oo. This enables to obtain likewise upper and lower 
strong bounds for -Nc(k~') when kN _-> 1 is such that lim sup N-1 kN < p ( 1 -  p). 

N~oo 

As an example, we give a solution for the following problem, due to 
P. R6v6sz. What is the number of runs of l's in X1, ..., X N, larger than {LogN 
- Log s N - C}/{ - Log p} ? 

For this, we need a result due to Kiefer (1973): 

L e m m a 3  (Kiefer). Let  re(O, + oo) be given, and let c ' > 0 ,  c'~'>O, i f > l ,  f l~<l ,  
be solutions of  the equations 

C ! Dt i f (Log fi; - 1)= (1 - c'~)/c'~, ~ p, = v, 

f l~(Logf i '~- l )=(1-c '~) /c~,  c~fi~=v. 

Then, if k = k, ~ v Log 2 n as n ~ oo , we have 

, n g k n  
= lim inf Log2 n < lim sup L~ U k . . . . .  n = c~ a.s. c, 

It follows from Lemma 2 that, almost surely, 

L~ ( ~ ' P )  = lim i n f ( -  L~ p)- a ~ c ( k ) N ~  (~ (m - L~ N + L~ N} 

< l im  s u p ( - L ~  l { G ~ ) s ) - L ~  + L~ N } = L ~  (~'~P ) 

We have just proved: 

Theorem3. Let vs(O, +oo) be given, and let c'~>0, c~'>0, fl'v>l, fl~'<l, be 
solutions of  the equations 

fl', (Log fl'v - 1) = (1 - c'~)/c'~, c'~ fl'~ = v, 

fl" (Log fi~' - 1) = (1 - c~)/c", c~ fl'~' = v, 

Then, for any e > O, we have 

and 

( [LogN-Log3 N+Log(1-p)-Lo~c~ 1-~] i o)=0, p Z([NVL~ 
- -Logp 

, (~o~,~[~o~-~o~+~o~,l-p)-~o~c,~ ~] i o)=l 
- Log p 

, ( ~  co~,, > ?o~ ~-~o~ ~+-~o~~ (,-~)-~o~c: ~ ] ~o ) :0 

Remarks. In 1980, Guibas and Odlyzko extended by a different technique the 
results of Erd6s and R6v6sz (1975) to a complete characterization of the lower 
a.s. class oT~ LN~-(1) as N--* oo. 
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4. Runs and the Erdiis-R6nyi Theorem 

A direct consequence of Theorem2 taken with k = l  (or equivalently of 
Theorem D of Erd6s and R6v6sz) is that, almost surely as N ~  0% 

i (N, [ LogN [ Logu ] 
k---Lo~-/] = L ~ J  + O(L~ N). 

We shall make this result more precise by proving Proposition 1 in the 
slightly stronger version (which could also be deduced from Theorem 1" in 
Erd6s-R6v6sz (1975)): 

Theorem 4. Let {d(N), N ~  1} be a sequence such that 

- l < l i m i n f  d(n) n ~  Log3n and l imsup d(n) <1 
n~ o~ Log 2 n " 

Then, under the assumptions of Corollary 1, we have, almost surely as N ~ c~ : 

Log N + d(N) l (N, [Log N + d(N)I ~ < [Log N + d( N)] - ~ . j - l < I  
- L - ~  JI=L L-L~p j" 

Furthermore, in the preceding inequality, the upper and lower bounds are 
reached infinitely often with probability one. 

t l and' " Proof With the notations ofw let 0 , = m a x  (J)2i 1-~-0)21; i = 1 , 2  . . . . .  

0 ; '=max o)2~+co2i+i; i = 1 , 2  . . . . .  [ ~ -  . It is straightforward that 0'n (resp. 

0~') is the partial maximum max {~ 1 . . . .  , ~M}, with M =  [ 2  ] (resp. M =  [ 5 ~ 2 ] ) ,  

of an i.i.d, sequence {~m,m__>l} of random variables with a Gamma F(2) 
distribution: 

L(t)=P(~m>t)=P(col+ooz>t)=(t+l)e -t, t>0 ,  m = l , 2  . . . . .  

Define, for 0 < u <  1, H(u) by L(H(u))=u. We have evidently 

H(u) - Log (1 + H(u)) = - Log u. 

When u ~ 0, it follows that 

H(u)= { - L o g u }  {1 + o(1)}, 

which in turn implies that, as u ~ 0, 

H(u)= - L o g u +  Log H (u) + O (H(u) ) = ~ L o  g U ~ Log ( - L o g  u) + o(1). 

Next, we use the fact that {U,,=L(~m) , m>  1} is an i.i.d, sequence of random 
variables, uniformly distributed on (0, 1). It follows that 

max {41 . . . . .  ~t} = H(min { U 1 . . . . .  UM} ). 
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By L e m m a 2 ,  for any 5>0 ,  there exists almost  surely an M~ such that  
M > M e implies that  

min { U 1 . . . .  U~} < 1 + e Log2 M. 
' ~ m 

It follows that, almost  surely as M ~  0% we have 

max{~ 1 . . . . .  ~ M } > - - L o g  L o g z M  + L o g  - L o g  - - L o g z M  +o(1)  

> Log  M + Log  2 M - L o g  3 M -  Log  (1 +~) + o(1). 

Hence, we obtain (by putt ing successively M = [ 2  ] and M =  [ ~  I ] )  that, 

a lmost  surely as n--.o% we have 

0'. > Log  n + Log  2 n - Log  3 n + O (1) and 0~ > Log  n + Log  2 n - Log  3 n + 0 (1). 

By the notat ions of w 3, we have, for m =  1, 2 . . . .  , 

= [ .  c%~ ] Gm J + 1. L o g p  

It follows that, a lmost  surely as n--, oo, we have 

Log  n + Log  2 n -  Log  3 n + 0(1) 
max {Gin+ G,,+ 1, 1 <_m<n - 1} > - L o g p  ' 

which, in turn, implies that, almost  surely as n--* o% 

Log  n + Log  2 n - Log  3 n + 0 (1) 
m a x  {Gm+ Gin+l, 1 < m < v ( n ) - -  1} > 

- L o g p  

We have also used in the p roof  of Theorem 2 the fact that, a lmost  surely as 
n ---* 0 %  

max {Gin, 1 < m < v ( n ) }  E L ~  n - L ~  
n-}- 0(1) 

- Log  p 

The meaning of these two results is the following. There exists almost  
surely a constant  C and an integer no, such that  any sequence X1, ..., X ,  with 
n > n o contains a run of l 's  of length larger than 

Log  n - Log  3 n + C 

- L o g p  

and two successive runs of  l ' s  (say 1 ... 101 ... 1) whose added lengths are 
larger than 

Log  n + Log  z n - L o g  3 n +  C 

- L o g p  
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If  we now consider any moving average Xm+x+. . .+Xm+r,  O<_m<_m 
+ K < n, where 

K ~ Log n + Log 2 n - Log 3 n + C 
- L o g p  

then we have always X m + l + . . . + X m + r < K ,  and there exists a choice of m, 
O < _ m < n - K ,  such that Xm+ x + ... +Xm~_K>K--1. 

This proves the first half of Theorem 4. The second half will follow from the 
fact that, if 

L o g n + p , , L o g z n  L o g n +  c5~ Log3 n 
max {Gin, 1 <m < v(n)} - = 

- Log p - Log p 

then, by Lemma  2, we have 

l i m i n f 6 . = - i  and l i m s u p p . = l  
t l ~ c o  n ~ c o  

a . s .  

The proof  of Theorem 4 is now complete. 
The following result completes Corollary 1 and Proposition 1. It follows 

directly from the preceding arguments. 

Proposition 2. Under the assumptions of Corollary 1, for any c~ 0, - L o g p  ' we 
have, almost surely as N ~ oc : 

I(N, [c Log N]) = [c Log N]. 

1-- c~ 
It may be remarked that 1 / c ( c 0 = L o g - + ( 1 - e )  Log decreases from 

p 1 - p  
- L o g ( l - p )  to 0 as c~ increases from 0 to p and increases from 0 up to 
- L o g p  as c~ increases from p to 1. It follows evidently that: 

Corollary 3. Under the assumptions of Corollary 1, if 

I ( N , K ) =  max {Sn+K-S,},  and J ( N , K ) =  
O<_n<_N-K 

then, almost surely, 

lim I(N, [c L o g N ] )  ___ 
N~ ~ [c Log N] 

lim J(N, [c L o g N ] ) =  
N~ ~ [c Log N] 

min { S . + K -- S .} , 
O<_n<N--K 

1 
1 for O < c < - L o g - - ~ '  

1 
for c ", 

- L o g p '  

1 
0 for 0<c_< 

- - Log (1 - p) '  

1 
p for c> 

- L o g ( 1  - p ) '  

where c~ (resp. /3) is defined as the unique solution of c=c(a )  (resp. c=c(/3)) such 
that p < c~ < 1 (resp. 0 < 13 < p). 
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Corollary3 can be considered as a special case of the extension of the 
Erd6s-R4nyi theorem given in Cs6rg6 (1979), p. 785, which covers case (ii) of 
Deheuvels and Devroye (1983), Theorem 10. 

The arguments above show that when X~,X 2 . . . .  is a Bernoulli sequence, 
the asymptotic limiting behavior of I(N, [ cLogN]) ,  N ~ o o ,  is closely related 
to the behavior of the longest run of l's in X1, . . . ,  X N. This can be used to 
cover the case of Theorem 1 in a straightforward extension. 

We shall now discuss some further applications of the methods used in w 2 
for the study of runs. We begin with the lemma: 

Lemma4.  Let {Gn, n> 1} be an i.i.d, sequence of geometrically distributed ran- 
dom variables such that 

Put 

Let, for O<_K <_N, 

P ( G i > r ) = p  ~-1, r = l , 2 , . . . .  

To=0, T,=Ga +. . .  +G,.  

H ( N , K ) =  max { T , + r - T , } .  
O<_n<_N-K 

and 

1 
Then, for any a > 1 , we have - p  

lim sup 
N-~ o~ Log 2 N 

H(N, [7 Log N ] ) - a [ 7  L o g N ]  a - 1  -1  

_ - ~ { L o g ( a - t t 1 - 1 ,  \-~-p l j  
lira inf H(N, [y Log N]) - a [3, Log N] 
N~ ~o Log 2 N 

a - 1  - a  Loga  . where 7 = 7 (a) = - Log (1 - p) + ( a -  1) Log ~ -  

Proof. It follows from Theorem C. If we remark that k represents the total 
number of zeroes in {X~, 1 < j  < Tk}, we can deduce from Lemma 4 the follow- 
ing result. 

Theorem 5. Let X 1, X 2 . . . .  be an i.i.d, sequence of Bernoulli B(p) random vari- 
1 

ables with 0 < p <  1. Let S0=0  and Sn-- X ~ +. . .  + X n. For any a > ~ _ p ,  put 

7=7(a )=  - L o g ( 1  - p )  + (a - 1 )  Log - a L o g a  , 

and for n = 0 , 1  . . . .  and N > e  l/v, define K(7, N ,n  ) as the minimum value of 
m> l such that S n + m - S ~ = m - [ ?  Log N], or equivalently, such that there are 
[7 Log N1 zeroes in {X~+i, i <i<=m}. 

Then we have 

{K(7, N , n ) - a [ 7 L o g N ] )  i f .  a - 1  -1 
l imsup max ~ ~ ( ~ p ) }  Logan j= 
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and 
{ } 1{ ( a - 1 t ; - 1  l iminf max K ( 7 ' N ' n ) - a [ T L ~  = - ~  Log \ ap / j  " 

u~oo O<=,+r(~,N,,)<=N Log2N 

Remarks. 1 ~ The result of Theorem 5 cannot be extended to the case a = 1. 

2 ~ By Theorem 5, it can be seen that if K = K N is such that, for some e > 0, 

( l+e)  Log 2 N f  a - 1  -a 
K > a [ T L o g N ] 4  2 . L ~  

then, as N--* ~ ,  there exists almost surely in the sequence {X,, 1 <_ n <_ N + K} a 
subsequence {Xk, n_<k_<n+K} with at least [7 L o g N ]  zeros. If we assume 
further that K N ~ a [7 Log N], then we have 

S.+ K -  S. > lim K - [7 Log N] 
_ - a - l ,  a.s. lim inf max 

,~ o_<,_<N+K[TL0gN]-N~ [TLogN] 

Likewise, if K = K N .-~ a [7 Log N] is such that, for some e > 0, 

_ { ( a - - 1 ] ~  -1 ' K < a [ - T L o g N ]  ( l+e )  Log 2N Log 
- 2 \ a p  / j  

then, there exists a subsequence {Xk, n < k < n + K  } as above with at most 
[7 Log N] zeroes. This result, jointly with the preceding, implies that 

lim m a x  Sn+a[TL~ - S n  a -- 1 
- -  a . s .  

,~o-<,-<N-,t~Logm a [ T L o g N ]  a 

A comparison with Theorem A and Corollary 3 shows that we must have 

aT(a)=C (~a l ) ,  which can be verified directly. 

A direct consequence of the preceding arguments is expressed in the follow- 
ing: 

Theorem 6. Let X1, X z . . . .  be an i.i.d, sequence of Bernoulli B(p) random vari- 
1 

ables with 0 < p < l .  For any c~e]p, 1[-, or equivalently for any c > - - ,  /f c 
and ~ are related by - L o g  p 

c=c(~)={LOgp+(1-c~)Logl l~_-~}  -1. 

Then, for any e>0,  there exists almost surely an N~ such that, for any 
N >  N~, there exists a K = K ( N )  such that 

max {Sn+K--Sn}= [C~C LogN] ,  
O<n<N--K 

and that 

[ K ( N ) -  [c Log NIl ~ (1 + e) Log2 N 

2 L o g -  
P 
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a - 1  
Proof I t  suffices to put  in T h e o r e m  5, c=c(e)=ay(a), and c~= , not ing that  

? ( a ) = l c  
a 

I t  must  be noted  that, even though T h e o r e m 6  is closely related to 
T h e o r e m  C in the specific case of Bernoulli  r a n d o m  variables,  bo th  results are 
not,  strictly speaking, equivalent.  

5. Runs, Poisson Processes and Spacings 

We shall assume th roughou t  this pa rag raph  that  X1, X z . . . .  is an i.i.d, sequence 
of Bernoulli  B(p) r a n d o m  variables with 0 < p < l .  Consider,  on the same 
probabi l i ty  space (eventually enlarged) an i.i.d, sequence ~1, 42 . . . .  of r a n d o m  
variables independent  of X 1, X2, ... and such that  

~r e-,~ 
PG =r)= 

r!(1 - e - ~ )  ' 
r = 1, 2 . . . .  , where 2 = - Log  p. 

It  is then easily seen (see Serfling, 1978) that  the sequence {I1,=(1 
- X , ) ~ , , n > l }  is an i.i.d, sequence of Poisson P(2) dis tr ibuted r a n d o m  vari- 
ables, such that  

P(Vl=r)=2~ e -~, r = 0 ,  1, 
r[ " " '  

and  such that  Y, = 0 iff X,  = 1. 
Wi thou t  loss of generality, it is also possible to define a s tandard  Poisson 

process {N(t), t > 0 } ,  such that, for any n >  1, 

N(n2) - N((n - 1)2)= Y,. 

Let  0 < z  1 < z 2 <  ... be the t imes of arrivals of (N(t), t>=0}, and define, for an 
arbi t rary  T > 0 ,  the largest gap in N(t), 0 _ ( t K  T as 

G( T )= T  if N ( T ) = 0 ,  

G(T)=MaX{Zl ,Z2-Z  1 . . . . .  ZN(T)--ZN(T)_I , T--ZN(r)}, if N ( T ) > I .  

Let  also (as in w Z N stand for the longest  run of l 's  in the sequence 
X 1 . . . . .  Xu. The  relat ionship between Z N and G(T) follows f rom the following 
s t ra ightforward L e m m a :  

L e m m a  5. For any N > 1, we have 

G(N2) 2<_ZN<_G(N2). 

By using exactly the same arguments  as in the p roof  of  T h e o r e m  2, it can 
be seen that:  
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Lemma  6. For any r> 4 and e > O, there exists almost surely a T o, such that, for 
any T >_ To, we have 

2 L o g  3 T + L o g 4  T + . . . + ( l + e )  Log r T 
Log T - L o g  3 T -  <=G(T) 

Log 2 T 

__<Log T +  Log 2 T +  ... +Logr_  1 T+(1  +e) Log 2 T, 

while for e < O, for any T 1 > O, there exists almost surely T 2 > T 1 (resp. T 3 > T2) 
such that the first (resp. the second) inequality is not satisfied. 

This result enables to obtain again upper and lower classes for maximal 
runs, and, by Lemma 5, a limiting ErdSs-R6nyi type theorem for Bernoulli 
sequences. The interest of this approach is that it may be extended without 
modification in the multivariate case. This will be precised in w 6. 

If one considers an i.i.d, sequence UI, U 2 . . . .  of uniformly distributed ran- 
dom variables on (0, 1), whose order statistics will be denoted by 

0 = U o , n <  U l , n <  . . .  < Un, n< Un+l.n= 1, 

the (uniform) spacings of order n are defined by SI")= Ui, . -  U~_ 1.., n = 1, 2 . . . .  ; 
the maximal spacing will be denoted by 

A .=  max S(") --t " 
1__<i<n+1 

The upper and lower almost sure classes of A, as n--*oQ have been de- 
scribed in Devroye, 1981, 1982, and Deheuvels, 1982. There is a close re- 
lationship between A, and G(n). In fact, if one takes Am, ), where II(n) is a 
Poisson P(n) random variable independent of X1, X 2 . . . .  , then An(,) is identical 
in distribution with G(n)/n. However, the limiting almost sure behavior of An(n) 
and of G(n)/n differ slightly as shown in the following. 

Theorem E (Devroye-Deheuvels). For any r > 5, 

P(nA,  > Log n + 2 Log 2 n + Log 3 n + . . .  + Logr_ 1 n + (1 + e) Log, n i.o.) 

= P ( n A , > L o g n - L o g 3 n - L o g 2 - e  i .o.)=0 or 1, 

according as e > 0 or e < O. 

It is easily verified that the limiting almost sure behavior of AN(n) and of A n 
as n ~ o e  are identical. It follows that the corresponding upper and lower 
bounds differ from those of G(n)/n after the second (resp. the third) term. 

The conclusion which can be made from the discussions of w 2, 3, 4 and 5 is 
that the limiting behavior of runs, gaps in a Poisson process, and spacings, are 
closely related together and to the ErdSs-Rdnyi theorem. This general idea has 
driven us toward the multivariate extensions which will be described in the 
next paragraphs. 

We shall make use of a general inequality concerning Poisson processes. 
This inequality which has interest in itself will be described in the next 
paragraph. 
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6. An Inequality for the Poisson Process 

Theorem 7. Let (S, 5", #) be a measure space, on which is defined a Poisson 
process N (. ) such that, for each A ~ 2f , 

A k 
P(N(A)=k)=' -q@. 'e  -"(A), k=0,  1 . . . . .  

Let A t . . . . .  A N be arbitrary #-integrable subsets of 5 P. Then we have 

P (  {N(A~)>I > l - I  P(N(A,)>I) .  
\ i i=1 

Proof. Let 1A stand for the indicator function of A. We have 

IN = b  1 - b  i 

(~ {N(A~)>I} ~ {N(A~)>I} ~ {N(&)>I}c~{N(AN)=O } 
~=1 i=I i = 1  

=IN 1 - b _ ~  
('] {N(A~)_->I} (~ {N(A~-AN)>--_I}c~{N(AN) =0} 

By taking expectations, it follows that 

\ i=t  {N(A~)>__I} - \~=i {N(Ai-AN)>=I})P(N(AN)=O ). 

Since evidently 

P { N ( A i - A N ) > I } ) < P  {N(Ai) > 1}), 

it follows that 

(~=~ 1) P(N(AN) P (i=(~1 {N(A i )>I} )  > P  N(AI)> >=1). 

The result follows by induction on N. 

Remarks. 1 ~ The result of Theorem 7 is trivial if the A i are disjoint. 

2 ~ ) The result is not true if we replace the Poisson process N( . )  by a 
multinomial point process. For  instance, if we throw a point randomly in S, 
and if AlcoA2=0,  then {N(A, )>I  } and {N(A2)>I } are exclusive events, and 
P({N(At )>  1} c~ {N(A2) > 1})=0. 

The following theorem gives an extension of Theorem 7 in the case where 
A i . . . .  , A N are random. 

Theorem8. Let S be a metrizable locally compact topological space, 5 P the 
algebra of Borel subsets of S, # a positive Radon measure on S, and N( . )  the 
Poisson process With expectancy #( . )  on S. Let N > I be a fixed integer, and 
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assume that A 1 .... ,A N are random elements of ~ such that, for any k 
=2, 3, ..., n, 

then, we have 

P (  { N ( A ) > I }  > [ I P ( N ( A ) > I ) .  
\ i=1  i=1 

Proof. It follows by the same arguments as in the proof of Theorem 6. 

The bound given in Theorem 8 is reached in the following simple example. 
Let {N(t) , t>0} be a standard Poisson process with times of arrivals 
0 < z l < z 2 <  .... For  a given 6>0 ,  put Al=(0,6) ,  A2=(zi,z~+8),. . . ,  A N 
= (zN- 1, zN- 1 + 6), and z o = 0. We get then 

P (i~1 {N(Ai)>=I}) =P (i=~ {zl-zi-l<6})=i[I=l (1--e-~) 

N 

: I-[ P(N(A~)>I). 
i - 1  

7. The Area of the Largest Head Square 

Let {Xu, i > l , j > l }  be a double array of i.i.d, random variables with P(Xll  
= l ) = p  and P(X11=O)=l-p ,  0 < p < l .  

Let 
m + K  n + K  

S(n,m,K)= E Z X,j, 
j = m + l  i = n + l  

I(N, K) = Max S(m, n, K). 
O < m , n < N - - K  

R6v6sz (1981) has given the following theorem concerning the asymptotic 
almost sure behavior of the largest head square, defined as the largest integer 
Z N such that I(N, ZN)= Z N. 

Theorem F (R6v6sz). Let p = 1/2, and put 

~2LogN'~  in  . . . . .  f 2 L o g N ]  tn  r f 2 L o g N ]  i n ]  
A(N)=(-Log;J ' l 

Then, for any C >�89 we have, almost surely as N ~ ~ ,  

[ [ A ( N ) ] - I  or [A(N)J if B(N)__<e~, 

Z N = ~ [A (N)l if e N < B(N) < 1 - eN, 
[[A(N)]  or [ A ( N ) ] + I  if B(N)>I-eN,  



On the Erd6s-R6nyi Theorem for Random Fields and Sequences 109 

where 
c Log 2 N 

/ 1\)1/2" {2 (Log N) ILog )  
It can be seen without great difficulty that RSv6sz's proof enables to handle 

the general case where pe]0,  1[ is arbitrary. The corresponding result is stated 
in the Theorem. 

The rather complicate form of Theorem F does not enable to get a clear 
view of the meaning of the constant A ( N )  and of the definition of the upper 
and lower class. In fact, a close look to Theorem F enables to give the 
following equivalent version: 

Theorem F* (R6v~sz). For any pe]0,  1[ and e>0,  almost surely as N ~ 0 0 ,  

2 L~ N2 +(1 +e) L~ N2 
_-__zN <_- 

- L o g p  

where YN is the largest integer such that 

y2  <= Log N 2 - (1 + ~) Log 2 N 2 

- L o g p  

From there, the extension in higher dimensions is straightforward. 
Let { X  i ...... id, i~>l  . . . .  , i a > l  } be a d-indexed array of i.i.d, random vari- 

ables with a Bernoulli B(p) distribution. Let 

n l+K na+K 

s % , . . . , n , , K ) =  ... 2 x j ,  ..... 
j l = n l + l  j d ~ n a + l  

I (N ,  K)=  Max S(n 1 . . . .  , n d, K). 
O<nl,. . . ,na<=N-K 

Let Z N be defined as the largest integer for which 

I(N, ZN)= Z~. 

It follows, under these assumptions, that: 

Theorem 9. For any d---_ 1, pe]0,  1[, and e>0,  we have, almost surely as N ~ o e ,  

a a L o g N  a + ( l + e )  Log  2N a 
Y~--<_ZN< 

- L o g p  

where YN is the largest integer such that 

y~__< Log N e - (1 + e) Log 2 N a 

- L o g p  

Proof. As it is, the proof of Theorem 9 can be made by the same statements as 
given in R6v6sz (1981) for d = 2, p = 1/2. Hence, details will be omitted. 
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It is of some interest to know if the similarity between the asymptotic 
behavior of Z ,  (runs), G(T) (gaps in a Poisson process), and A, (spacings) 
which has been described for d - - i  in w 5 holds again in higher dimensions 
(d > 2). It is indeed the case as we shall now see. 

In the first place, consider an i.i.d, sequence 1.71, U 2 . . . .  of random vectors, 
uniformly distributed in (0, 1) d. Then, the maximal spacing A, will be defined as 
the maximal value of 8 such that there exists a hypercube of side ~ in (0, 1) e 
which has no interior point among (21 . . . .  , U,. 

It has been proved in Deheuvels (1983), that: 

Theorem G (Deheuvels). For any d> l, r> 5, and ~>0, almost surely as n~oo ,  
we have 

L o g n - L o g  3 n - L o g 2 - e < n A ~ < L o g n + ( d +  1) Log e n 

+ Log 3 n + . . .  + (1 + e) Log r n. 

A similar (but weaker) result is given for the Poisson process in: 

Theorem 10. Let N( . )  be a standard Poisson process in (0, + co) d. For any T > 0, 
let G(T) be the maximal value of 6 such that there exists a hypercube of side 
in (0, T) a which has no interior points among the points of the process N(.) .  

Then, we have, almost surely as T~oo ,  

G(T) a = Log T a + O(Log T) ~a- ~)/a. 

Proof Note that one could obtain in the above evaluation O(Log 2 T) instead 
of O(LogT) (d-1)/a, by using similar methods as in Deheuvels, 1983. Since the 
corresponding proofs are somewhat lengthy, they will be given elsewhere (see 
the sequel for an upper bound) and we shall limit ourselves to this weaker 
result. 

We shall deduce Theorem 10 from Theorem9,  by using the Poisson ap- 
proximation technique of w 5. For  this, define X i ...... ~ as 

Xi ...... id=l{N(l~ I (~i,,~ij+~))=0}' where c~={-Logp}  t/a. 
j = l  

It follows that {X i ...... ia, i~ >1 . . . .  , ia> 1} is an array of i.i.d. Bernoulli B(p) 
random variables. Further, we have 

G(N ~) G(N ~x) 
2<_r~ ~ .  

It follows evidently that, as N ~ o o ,  G(Na)a=aay~+O(Y~-I).  This, jointly 
with Theorem 9, proves Theorem 10. 

In order to make precise the result of Theorem 10, we can use the following 
argument. Let 6 > 0  be given, and consider T >  f, and an arbitrary integer 

M > 2 T / 6 ,  For any d-uple I = { i  1 . . . . .  id} of integers such that 0 < i i < M -  [~W [ 
l I . l  
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--1, j =  1, ..., d, put 

]Tij ~5 + ~ [ ,  
6 = j M  , 

~ + ~ - ,  T 

Next, if AI(b,M) stands for the event that there is no point of arrival of 
d 

N(. )  inside the hypercube l~I L~, we have evidently 
j = l  

{G(T)>__b}c U AI(b,M), or equivalently, { G ( T ) < b } ~ A I ( b , M ) .  
I I 

By Theorem 7, it follows that 

< 1 -  1 - e x p  - 3 -  

( ( 2Td~a-1)) Md. 
< 1 -  1 - e x p  -~a-t M 

Put now 

and 
3a=d Log T + ( d -  1) Log 2 T+x, 

d - 1  

M =  [2T(Log T) a ], 

where 2 is a constant. We get then 

1 

{ ( )} 2d a 
P(G(T)>6)__<l-exp - e x p  - x + d L o g 2 + - ~ + o ( 1 )  , as T ~ o o .  

d - 1  

We now specify 2 = 2d a . We obtain the following limiting results: 

Proposition 3. For any x, we have 

lim infP(Ga(T) <d Log T +  ( d -  1) Log 2 r+x)>  exp ( - e  x+C)), 
r ~  oo 

d - - 1  

where C=dLog(2ed a ). 

Proposition 4. For any e > 0 and r> 5, we have, almost surely as T- ,  oo 

Ga(T)<=Log Ta +(d + 1) Log 2 Ta + Log3 Ta + ... +(1 +~) Log r T a. 

Proof. It suffices to prove the result for T =  e k, k = 1, 2 . . . . .  and for an arbitrary 
>0.  This follows from Borel-Cantelli (see Deheuvels (1983)). 
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Proposition 4 makes precise the upper bound of Theorem 10. The deriva- 
tion of lower bounds will not be treated here. 

Following our discussion of w 5, it can be seen that the similarities between 
runs, spacings, and gaps in a Poisson process, exist  in the d-dimensional space for  
any d > 1. 

From there, one is tempted to extend this to the Erd6s-R6nyi theorem. 
Unfortunately, there is no such result up to now for  d > 2  (not to mention 
Steinebach's (1983) paper, which cannot be used to cover the case we discuss 
here). 

This remark gives the origin of Theorem 0, whose detailed proof  is to be 
found in the next paragraph. 

8. Multidimensional Erdiis-R6nyi Theorems 

Let X i ...... id, il-->1 . . . . .  id__>l be a d-indexed array of i.i.d, r andom variables. 
Assume that the hypotheses of Theorem 0 are satisfied, with the notations of 
w We shall prove in the sequel Theorem0,  by using the same methods as 
Cs6rg~ and Steinebach, 1981. 

nl nd 

Lemma7. Put, for  nl_>l . . . . .  n a = l ,  S ........ d= ~ .-. ~ Xi ...... i~. Then, there 
i i=l id=l 

there exists a 6 > 0 such that, for  any K >= 1 and u, we have 

P1 = P (  max S,1 ...... >Kdc~+u)<Kapr~(a)e-a" .  
O<nj<K,  1 <j<-d 

Proof  We follow Cs6rg~ and Steinebach, 1981, L e m m a l .  Let t = t * ( a ) > 0  be 
such that d/(t)/dp(t)= c~. Then 

P~ <= ~ P(S  . . . . . . . . .  > K d a + u )  
O<nj<K,  1 <j<-_d 

< ~ e (exp (t (S,, ...... ~ - K e ~ - u))) 
O<=nj<=K, 1 <j<=d 

<= Ka ~)K~ (t ) e -K~ ,~- . t=  Kd pKd (oOe--Ut, 
hence result. 

Proof  o f  Theorem 0 (i). We chose now K = [{cd LogN}l /d] ,  and remark that 

P2 (N) = P (I (N, K)  > K a ~ + u) < N a K a exp ( - Ka/c) e -  "~ 

< N a{cd Log N} exp ( -  {d Log N} {1 - d(ed Log N) -  i/a} _ u6) 

= c d exp (Log2 N + c -  1 d (c d Log N) (a- 1)/a _ u 6). 

Let us take now take u = c - l d ( c d  Log Nff-1)/d(1 +e) if d > 2 .  If we take N 
=Nj  to be the greatest integer such that [Log Ni] =j .  We get then that, for any 

e > 0, ~ P2 (Nj) < 0% proving: 
J 

Proposition 5. Under the assumptions o f  Theorem O, we have, for  any d > 2, 

Lim Sup I (N ,  [{ed Log N}~/d])-- c~ [{cd Log N}l/a] a < c -  1 d 
N~ oo (cd Log N) (a- 1)/d - - _  a.s. 
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For the lower bound, we shall need the following result of Cs6rg/5 and 
Steinebach, 1981 (Lemma 1, (16)), which we adapt in d dimensions: 

Lemma 8. For any e>0,  there exists constants (5 = 6(0 and A = A(e)>0 such that 

P (SK ..... K > Ka C~ -- K a/2 ~) >= A pKa(ooe~Ka/2 , 

for K sufficiently large. 

Proof Let t = t * ( c 0 > 0  be such that O'(t)/O(t)=cc Consider the probability 
measure Pt, K defined by Pt, L(E)= ~ e'SK/(or~(t)dP, where S K is distributed as the 

E 

sum of K i.i.d, random variables with the distribution of X 1 ..... 1. 
We have 

P(SK> Ka-eK1/2)=~bK(t) ~ e-tS~dPt, K 
{ S K  - Ko~  > - e K 1 / 2 }  

q) toe 2 rt, t c ~ - e <  -K~?~ < -  . 

The result follows from the central limit theorem applied to the probability 
above. The lemma is obtained by replacing K by K d in the preceding ex- 
pressions, and by letting K--, oo. 

Proof of Theorem 0 (ii). We have, as in Cs6rg6 and Steinebach, 1981, p. 993, 

P3 (N) = P(I (N, K) <= Ka ~ - e K a/2) ~ (1 -- A pKa (oOe~'Ka/2)[N/K]a 

<exp ( - A [ N / K ] d  exp ( - K ~  +~SKa/2) ). 

Put now K =  [{cd LogN}l/a]. We have then 

P3 (N) < exp ( - A  {c d Log N}- I  { 1 + o(1)} exp (6 [{cd Log N}l/d]a/2)). 

From there, it follows that ~ P 3 ( N ) < ~ .  We have proved the following 
result: N 

Proposition 6. Under the assumptions of Theorem 0, we have, for any d >= 1, 

Lim Inf I(N' [{cdL~176 a.s. 
N~ o~ (cd Log N )  1/2 - 

d - 1  
The proof of Theorem 0 is now complete, since, for d>2 ,  1/2< d 

Remarks. 1 ~ The upper bound in Proposition 5 follows from the inequalities 

ua--dua-I<=(U--1)d<=[u]d<=u a, u>O, 

applied with u = { c d L o g N }  1/a. It appears in fact that the total number of 
random variables taken in the "moving average" S(n  I . . . . .  n a, [u]) may differ 
from [u a] by a number as high as d ( 1 - e ) u  a 1, with O < e < l .  
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This may be improved by changing the definition of I (N,  [u]). If, for 
instance, we define 

nl + K na+ Ka 

S*(n 1 . . . .  ,ha, U)= ~ ... ~ Xj ...... jd (see also Steinebach (1983)), 
j l = n l + l  ja=na+l 

where K l = K l ( u  ) . . . . .  Ka=Kd(u ) are chosen in such a way that Ka . . . K  a is 
closer of [u a] than [u] a, it seems then possible to improve the upper bound 
corresponding to the associated maximum I*(N,u)  in the corresponding ver- 
sion of Proposition 5. 

2 ~ It seems that the most general form of Erd/Ss-R6nyi problem in the d- 
dimensional space can be stated in the following terms. Assume that Xj~,..4 ~ 
= R (Jl' ..., Ja), and consider the random function R (x 1 . . . .  , Xa) 
= R ( [ x j ]  . . . . .  [-Xa] ). Next, consider a kernel K( . )  and the associated moving 
average 

A(x, 2)= J R ( u ) K ( 2 - 1 ( x - u ) ) d u .  
Ra 

Finally, consider a sequence of increasing sets S 1 c S 2 c  .... 
The general Erd6s-R6nyi problem is then to find the asymptotic behavior 

as n ~ o e  of 
Max A(x, 2n), 
x~Sn 

when )J, ~ (Constant) x Log (Volume of S,). 
We have discussed here the particular case where S, is an increasing 

sequence of hypercubes, and where K( . )  is the indicator function of a hyper- 
cube. 

This problem is very much related to the question of finding the asymptotic 
behavior as n ~ oe of 

Minf , (x )  and Maxf , (x) ,  
x x 

where 

f,(x)=(n6d,) -1 ~ K ( 6 2 1 ( X i - x ) )  
i = l  

is a Parzen-Rosenblatt  density estimator in R a, and where n6,e~ C Log n. 

3 ~ The estimations given in Theorem 0 and Proposition 5-6 are probably 
not the best available, due to the crude method of evaluation which has proved 
their validity. 

4 ~ There are many other Erd6s-R~nyi type theorems which could be given 
on the same lines as Theorem 0. Most of them appear as direct generalizations 
of the corresponding results in one dimension, with the appropriate definition 
of maximum given above. Details on this will be given elsewhere. 

5 ~ Theorem0 has obvious applications in strong approximation theory. 
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