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Summary. Let X: ~2~qf(R+;R")  be the Ornstein-Uhlenbeck velocity pro- 
cess in equilibrium and denote by ~A=~A(X) the first hitting time of A_~IR", 
If A, BsN" and IP(X(O)eA)=IP(X.(O)<=a), IP(X(O)~B)=IP(X.(O)>=b) we 
prove that 

and 
IP(z A =< t) >-lP(z(x.<a3 < t) 

1E ll~(X(s)ds <IE (X(s))ds 
\ 0 

Here X. denotes the n-th component of X. 

1. Introduction 

In a recent paper [5] Ehrhard proves some very interesting inequalities for 
Gaussian Dirichlet integrals using symmetrization in Gauss space (Ehrhard 
[6]). Here we shall give further attention to this new subject by also inserting 
time. 

Let N = - A  + x .  V (be the number operator) and consider the following 
Cauchy problem 

(~?t+lg+c(t,x))u=g(t,x), t>0 ,  x~lR" 
u =f  on t = 0  (1.1) 

where c, f, g > 0 (we will specify exact conditions on sure functions from Sect. 2 
on). The standard solution of (1.1) is written u s. Among other things we are 
going to show that if h: R" ~ [0, + oo [ is given and p__> 1, then the average 

S ufs(t, x) h(x) e-Ixl2/2 dx/(2n) "/2 (1.2) 
N~ 

increases under appropriate Gauss symmetrizations of c, f, g, and h (Theo- 
rem 3.1). 
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The bound so obtained may be expressed in terms of the Ornstein-Uhlen- 
beck velocity process U in ~",  normalized so that 

d U ( t ) = - � 8 9  t>O. 

Here W is the Wiener process (IE[W(t)[2= nt). Indeed, the function 
t 

-j" ~(t-,~ v(~))a~] 
u},,(t, x )=lE,[ f (U(t ) )  e o ' 

s 

+IE~ g(t--s, U(s))e o 
kO 

agrees with Us(t, x). In particular, choosing h = p =  1 in (1.2) we get estimates on 
certain hitting probabilities of the Ornstein-Uhlenbeck velocity process in 
equilibrium. Denoting the latter process by X, 

IP(Xe .)= ~ lPx(Ue .) e-1~12/2 dx/(2~z) "/2 

so that X is mean zero Gaussian and 

IEXi(s ) X i(t ) = 6ij e-~1~-ft. 

Corollaries 3.1 and 3.2 are the main contributions of this paper. 
A reader who wants more background material on X may consult the very 

charming books by Nelson [11] and Simon [13]. 

2. Some Notation 

Throughout, Q=]O, + oo[ x ~".  For M = 0 Q ( = N " ) ,  Q, or (2, we introduce 

and 

N(M) = {f:  M--,IR; f Borel measurable} 

Cg(M) = {f: M--.IR; f continuous} 

5e(M) = {f: M- - ,~ ;  sup If(~) -f01)L/l~ -tlL< + oo} 
~ , q e M  

:YFb(M)={fe~V(M); sup I f ( t ,x) l< +0% O < T <  +oo}, 
( t ,  x ) ~ M  

t < T  

9f fb+(M)={fe~(M);  f=>0}, 9ff = cd, ~L,e. 

Moreover, we will often make use of the following notation 

V = (~x,, ..., ~x~ = (V', 3x,) 

and 

A=O z + . . . + U  =A '+~  2 
x l  n Xn" 

~f f=~ ,  ~g, ~ 
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3. The Main Results 

Suppose G is a k-dimensional linear subspace of R", k >  1, and let OsG be a 
fixed unit vector. The generic point in R" is written x=(x', x"), x'~G • x"~G. 
Furthermore, 7~ denotes the canonical Gaussian measure in G, 

y~(dx") = e-1~"1~/2 dx"/(2 n)k/2. 

Then, by [5], for each f~cg(N,) there exists a unique f~ ) possess- 
ing the following properties for every xeN.": 

(i) f~176 (0, x") O) 
(ii) 2&f~ ', 20), 2elR, increases 

and 

(iii) yG(f~ ', .)> 2)=7~(f(x', ")>2), 2eP,.. 

Moreover, 

and 
s ~~ ~(r .")  ~_ ~e(r.  .) (3.1) G, 0 

II Vfll2, ~,>= l[ Vf~ fs~(IR"). (3.2) 

For short, let us write 

fo=S~,of, if f ~ ( G )  
and 

fo= {(t, x)~[S~,of(t, .)] (x)}, if fe~(Q)w~(O_.). 

Our main result may then be stated as follows 

Theorem 3.1. Suppose c, g~e~- (Q), f sSf~ (~Q), and let @, g be as in (1.3). 
If he~-(G) and p: [0, + o o [ ~ .  is increasing and convex, then 

c t C - 0  r h 0 (P(Ue, g(t'x"))'h)7~<(P(Uy~176 , ) rG,  t>O, x'eG j-. 

Fromu~ it follows that 

t N t 

t -1 ( f - e - ~  f , f ) ~ t > t - 1  ( f ~ 1 7 6 1 7 6  

Thus by letting t ~ 0  + we have Ehrhard's basic inequality (3.2) (some details 
are excluded here). 

We next discuss some other corollaries. 
Let ~ " =  {Borel sets in IR"} and set z a=~a ( X) = i n f { t > 0 ;  X(t)~A}. 

Corollary 3.1. Suppose A eY?". If  IP(X (O)eA)=IP(X,(0) < a), then 

IP(za < t) > IP(z~. =<,~ < t), t>O. (3.3) 

Proof. Suppose first that A is open and choose compacts K~_A with 
7R,(A\KI)$O. Moreover, let s + ~ 1A and ei>ilr.  Now by dominat- 
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ed convergence 

and 

r lP(VA>=t): lim (Ul,o(t, "), 1)~ . ,  t>_0 
i ~  -t- oo 

IP(v( . . . .  } ~ t) = lim ~- ~" i~+~ (u l '~  (t, "), 1)Txa,, t>0 ,  

where e, =(0 . . . .  ,0, 1)elR". Hence, from Theorem 3.1 

lP(zA <t)>lP(r~x.<_.~ <t), t >O. 

Since 1Px(%=t)=0, t>0 ,  BeN" (compare Port and Stone [12, Theorem 4.7]) 
we have proved (3.3) for A open. 

The general case requires some caution. 
Let A e ~ "  be fixed and introduce A"={IP.(ZA=0)=I}. As in [12, 

Theorem3.7] one verifies that 7~.(A\A~)=0. Therefore, by Blumenthal and 
Getoor [3, Chapter 1, Theorem tl.2], there exist open AI~A  satisfying ZA'fZ A 
a.s. IP x. The inequality (3.3) is now obvious. [] 

Corollary 3.2. Let A, Be~"  and suppose 1P(X(O)eA)=IP(X,(O)<=a) and 
IP(X (0) eB) = IP(X, (0) >= b). Then 

�9 ! 1,(X(s))ds <=E ! t>__o. 

Corollary 3.2 follows as Corollary 3.1 does and the proof is omitted. 

The main ideas in our proof of Theorem 3.1 were initiated by Baernstein 
[1]. Actually, Baernstein treats A-subharmonic functions and Steiner (radial) 
symmetrization but, as will be seen, his elegant method fits very well in the 
present situation, too. 

4. Preparations 

This section collects various theorems which are needed for the proof of 
Theorem 3.1. Most of them are well-known or have appeared previously. 

Theorem 4.1. Suppose c, gs~CPb+(Q ) and f~-q~-(~Q). 
a) The function u=U),g is the unique classical solution of (1.1) with uecgb(Q). 
b) I f  c, g are real analytic, then U),g(t, .) is real analytic for each t>0.  

By a classical solution is here meant a solution which is cg~, z in the interior 
of its domain of definition. 

Proof. a) Let Br={[x[<r } and Q r = ] 0 , + o o [ x B ,  ( 0 < r < + o o ) .  The Cauchy 
problem 

(at+�89 in Q~ 
v=4, on aQ~, w~(03 (~e~(~Qr)) 
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has a unique classical solution v = v(., r g). Introducing a~ = zm(U)/x t, we have 

- ~ c(t =,t, u(~)) d~ 
v(t, x)=IE~ [l~(U(t)) e o ; o-,=t] 

-~" c(t-,L u(~)) d;~ 
+ l E ~ [ O ( t - a , ,  U(a,)) e o ; a~<t] 

- i  c(t-2, 
+IE~ g ( t - s ,  U(s)) e o ds , (t, x)eO, 

(see Friedman [8, Theorem 5.2, p. 147]). 
It is obvious that u},g is continuous. Set VR=V (" U c , f, gleO~, g)" Then 

VR(t ,x)=v(t ,X,  VRleOr, g), ( t , x ) 6 ~ ,  r<R.  

We next let R tend to + ~ and use dominated convergence to obtain 

u~, g(t, x )=  ~(t, x, ~,,,0Q~, g), (t, ~ ) ~ .  

Accordingly, u},g is a classical solution of (1, 1). Uniqueness now results 
from Friedman [9, Theorem 10, p. 44]. 
b) For  a proof, see Friedman [10]. 

In what follows, we write 

M =  - A + x ' .  V ' - x ,  8 ~ =  - A  + x  i o x , + . . . + x . _ t  O . . . .  - x , 0 ~ ,  

and denote by V a solution of 

dV(t)= - �89 . . . . .  V,_,(t), -V , ( t ) )d t+dW( t ) ,  t>O. 

Note that 

and 

re-' /2 xi' (4.1) iExVi(t)=~et/2x, ' i<n  
i=n 

2 ( 1 - e  -t, i<n  
IEx(V~(t) -IE~, V~(t)) = l d _ l ,  i=n.  

Theorem 4.2. Suppose ceS f  + (Q). I f  

(4.2) 

(3 ,+ �89  u>=0 in Q (weak sense) 
u>O on OQ, ue%(~) 

then u > O. 

Here the members of cg~ (Q) serve as test functions. Recall from distribution 
theory that a positive distribution is a positive Radon measure. Although 
Theorem 4.2 should be regarded as folklore, we submit a detailed proof of it. 

Proof. Set 

a(x)=e  (-Ix'12+x~)/*, b (x )=([x lZ -2n+4) /8 ,  x6lR". 
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Let  0 < K e c ~ ~  S ~c d t d x =  1, and supp tc_~]0, 1[ • R". Next  suppose 
0 < e < l  is fixed and set x~=e- ( l+" )x ( . / e ) ,  ~c~=~c,(-(.)), and Q(e)=(e,  0 . . . .  ,0) 
+Q.  

Now consider the following linear t ransformat ion 

~A~. ~ (Q) ~ (Q(~)) 
( ( A ~ f ,  q ~ ) = ( a  f ,  k,.(q~/a)). 

If feC~(Q), then 

(t ,x)= 1 S a ( x _ y ) f ( t _ s , x _ y ) t c ~ ( s , y ) d s  (A~f) dy. 
(2 

Moreover ,  as (0, - �89 A) (a ~o) = a (Or + �89 M - b) O, q~ e cg~ (Q), we have 

Hence  

where 

A~(Ot+ �89  =(~?t+�89 feN'(Q).  

(Ot+�89189 u+h,,  

h~ =bA,  u - A , ( b u )  + cA, u-A~(c  u). 

In what  follows, let 6>e .  Then,  for all (t, x)~Qr, 

- i  r c(~+t-2, V(2)) d2 
(A~ u) (6 + t, x) _-> IE x [(A~ u) (6, V(t)) e o ; a, = t] 

--S~ c(6 + t --4, V(2)) d2 
+ IEx [(A, u) (~ + t - at,  V(~r~)) e o ; a,  < t] 

-i ar c(6 + t --2, V(2)) d2 

+ IE x [!  h~(b+t-s ,  V(s))e o ds] (Gr~'TB.(V) A t). 

As IA~ul + Ih,[ is uniformly bounded  in each ~ c ~  {t < T} (0< r ,  T <  + oe) we get 
by first letting e ~ 0  + and then 6--*0% 

-~ c(t -4, V(a))dz 
u(t, x)> IE~ [u ( t -a , ,  V(a,)) e 0 ; a, < t ] .  

Finally, if r ~ + 0% the last inequali ty reduces to u(t, x) > O. [] 

Below we write 7m= 7, for simplicity�9 

Theorem 4.3. Let ce~q'~-(Q) be such that Ox, c >0. Suppose ue•(O_.) and set 

xrt 
v(t, x) = S u(t, x', 2) d7(2), (t, x)e(~. 

- o o  

If 
xn { (3t+�89 v(t ,x)> S v(t ,x ' ,2)de(t ,x ' ,2)  

v>O on OQ - ~  
in Q (weak sense) 

then v >>= O. 
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Proof. We first extend c to (~ by continuity and introduce 
operators on Nb((2): 

and 

Xn 

( A f ) ( t , x ) =  ~ f ( t , x ' ,2 )dc( t , x ' ,2 )  
- oo 

(B f )  (t, x) = IE~ f ( t - s ,  V(s)) e o ds . 

Of course, A v~Cgb((2) as being clear from 

x~ 

(Av)(t, x)=v(t,  x) c(t, x ) -  ~ u(t, x', 2) c(t, x', 2) dy(2). 
- o o  

In addition, 

7 

the following 

(O t + �89 M + c) BAv = A v in Q (weak sense). 

Thus v > BAy from Theorem 4.2 and the premise for v of the theorem and by 
iteration 

v >= (BA) g v, k = 1, 2 . . . . .  

But now assuming Clio, To] x ~n 5~ C To (0 < T O < + ~ ), 

sup [[BAf](t,x)I<=TCTo sup If(t ,x)l,  T<=T o, 
O<_t<_T O<_t<_T 

and it follows that Vl[o, T] • ~- >= 0 if T CTo < 1. By repetition, v__> O. 

We next discuss some geometrical points. 

Theorem 4.4. Suppose G is a k-dimensional linear subspace of ~", k > l, and let 
OeG be a fixed unit vector. 
a) I f  k=2,  there exists a sequence OieG , [0i]=1 , i~N, such that 

P." S ~ 1R" [So, o f  ] (x)= lim [( s p a n 0 o , 0 o  o . . .  o Ssp,,01, oi)f] (x), x~R",  
i ~ + o ~  

for each fe~q~(~"), where span 0 denotes the 1-dimensional subspace spanned by O. 
b) I f  k >= 3, there exist k -  1 2-dimensional linear subspaces Gi~O of ~n such that 

S R~ R" R- 
O , o  = S o x , O  ~ . . .  ~ S G u _  l ,  0 

Theorem 4.4 is a simple consequence of [5] and [6] and we do not go into 
details. 

Before stating the next theorem we discuss some simple estimates, which 
will be useful throughout the paper. 

Suppose fiecg~- (~.) and set f~~ i=0,  1. Then for all s, t>0 ,  

y(fo>__s, f l  ~t)<=y(f~>=s) A 7(f~ >=t)=y(f~ >=S,f~ >=t ). (4.3) 

By integrating this inequality with respect to the measure ds dt over the region 
0__s, t <  + ~ ,  we have 

( f o , f l ) , < = ( f ~ 1 7 6  
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Since ( a - f O ~  -~ aeI( ,  it also follows that 

(fo, f t) ,>= ( fo~176 

Below I]'ILI,~(II II ~) means Ll(7)-norm (supremum norm). 

Theorem4.5. Let 0 = - 1 .  Suppose f~ecg+(lR) and set f~~ ~ and f~ 

o d = ~ f~ y,i=O, 1. Then 
- o o  

a) llf ~ 0 - f~  lll,,<=llfo-fllll,,. 

In particular, 

lifo - f~  II oo < lifo - f~  II,, ,. 

b) I f  p: [0, + o o [ ~  is increasing and convex, then 

fo < f~ ~ (p(fo) ,h)7<(p(f~176 hECg;(N). 

Proof. a) Writing 

I f o - f l l  = fo  + f 1 - 2  ~ 1[0, fo] (S) 1Eo, y,l(s) ds 
0 

the result follows from (4.3). 
b) Let 

p(fO) _p(fol ) = a(fO, TO) (TO _ fo) 

where a_>0 increases in each variable separately. But then noting that the 
function a(f~ fo) h o decreases, 

@(fo) _p(fO), hO) , NO. 

Now using 

(P(fo), h ) ~ <_ (p(fO), hO) ~ 

Part b) follows at once. [] 

Theorem 4.6. Suppose e: R- - ,N,  e(0)=0, x e ~ ,  and a o < b o < . . .  <am<b m. Set 
=7(] - o% -]). The equation 

m b~+e(r )  

S 
v = O  a . -  e(r) 

implies 0 <= e'(O) < 1. 

See Borell [-4]. 
If fecg + (1t) is real analytic and non-constant and 0 = -1 ,  the reader should 

note the following relations between f ,  fo, f ,  and ~: 

f ( x ) =  ~ f d ~ = s u p { ~ f d T ;  A e ~ ,  7(A)=~(x)}, xeN.  
{ f  >_ fO (x)} A 
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5. Proof  of  Theorem 1.1 

By Theorem4.4 it is enough to treat the special case G=span{e,} ,  where 
e o . . . . .  e, is the standard basis in R x l R ' .  Choose 0 = - %  To simplify the 
notation let 

_ C 

U - - U f ,  g 

and 
Xn 

~(t, x )=  ~ u~ x', 2) d7(2), (t, x)e(~. 
- -cO 

c - O  Moreover, we set v =uso ,go and introduce v ~ and ~ as above with u replaced by 
v. In view of Theorem 4.5 b), Theorem 1.1 now follows from 

fi<~ and v~ (5.1) 

The proof of (5.1) occupies the rest of this paper; the reasoning below stems 
from Baernstein [1]. However, we choose a form more close to Ess6n [-7, 
Theorem 9.3] (compare also Bandle [-2, Theorem 4.17]). 

Lemma 5.1 
:gn x n  

(~t+�89176 ~ ~(t ,x ' ,2)dc-~ ~ g~ dT(2) in Q. 
- - c o  --CO 

Here and from now on all derivatives are in the weak sense and we do not 
explicitly mention this each time. 

Proof. First note that 

x n  x n 

u~ x', 2) c-~ x', 2) dT(2)=c-~ x) fi(t, x ) -  ~ fi(t, x', 2) dc-~ x', 2). (5.2) 
--OO --OO 

By approximation and use of Theorem 4.5 we may without loss of generali- 
ty assume that (i) c, geSa~-(Q) are real analytic (ii) g(t,x)__<const.+ e x p ( - x  2) 
and that (iii) 0~g fs~q~-(0Q) has compact support. In view of these assumptions 
and (4.1) and (4.2), sup {u(t, x', x,); 0 < t <  T, x ' sR"-1}  ~ 0  as Ix.I--' + oo for all 
T <  + oo. Moreover, by Theorem 4.1b), u(t, x', .) is real analytic so that 

~(t, x) = ~. u(t, x', ,~) d~(,~) 
c(t,  x) 

where C(t,x)={u(t ,x ' ,  .)>=u~ is compact. The reader should note that 
u~ x', .) is strictly decreasing. From the continuity of u ~ we now also con- 
clude that the set 

U c(t, x) 
( t ,  x ) e K  

is compact for all compacts K _  Q. 
We next compute or estimate derivatives. For  i < n and r > - t  

fi((t, x)+rei)> ~ u((t,x', 2)+rel)dT(2 ) 
C(t, x) 
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and, consequently, 

O~(t,x)= S 8~,u(t,x',)Ody(2), i = 0  .. . . .  n - 1  (Xo=t). (5.3) 
C(t, x) 

Using 

8~z ~/,(t, x )= l im r -  z(~((t, x)+rei)+~((t , x)-rel)-2 ~(t, x)), ~pe~(Q) 
r---~ O 

we also have 

0 2 ~( t ,x)> S O~,u(t,x',2)dT(2), i=1 .... n - 1 .  (5.4) 
C(t, x) 

In order to handle derivatives containing x~, we write 

C(t,x)= 0 [a~,b~] (-oo<ao<bo<...<am<bm< +Oo). 
v=O 

Remember that ~\C(t, x) only has finitely many connected components be- 
cause u(t, x', .) is real analytic and C(t, x) compact. 

For each fixed r sN ,  let e(r) satisfy 

m b,,+ e(v) 

~ d~(~)=~(x~+r). 
v=O a v - e ( r )  

Then, setting ~o = ~', 

e'(r) ~ (q~ (b~ + e(r)) + q~ (a~ - e(r))) = ~o (x, + r) 
v = 0  

and, from this, 

and 

e'(o) ~ (~o(b~)+~(a~))=~(x~ (5.5) 
v = 0  

-e'(O) 2 ~ (b~q~(b~)-avq~(a~))+~"(O) ~ (q~(bv)+q~(a~))=-x,,q~(x,). (5.6) 
V= 0 V= 0 

N o w  let Uo=U(t, x', % ) =  ...---u(t, x', bin). We claim that 

Ox,, a(t, x)=Uo ~o(x,,). (5.7) 

Indeed, 

( S - S ) u(t, x',,~)dy(,~) 
C( ( t , x )+ren )  C( t , x )  

>__ ~ - u(t, x', 4) d~()O 
v=O a~-~(r )  

and (5.7) follows from (5.5). 
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82/~(t, x)=e'(0) 2 

To this end, we use 

We next show that 

(u'..(t, x', b~) q~(b~) -u'x.(t, x', a.) (p(a.)) - u  o xn (p (x.). 
v = O  

( ~ + ~ - 2  ~ )u(t,x',2)d?,(2) 
C((t, x) + r e.) C((t, x) - r en) C(t, x) 

>~=o ~' - ~ a o  + _ _ - 2  u(t ,x ' ,2)d7(2) 

and have 

02 fi(t, x) > e' (0) 2 ~. (Oa(u(t, x', 4) q~ (4)11 x= b. - 8z(u(t, x', 4) q~ (2))la=.~) 
V ~  0 

+ e"(O) ~ (u(t, x', bv) q~(b~) + u(t, x', a,) q~(a,)). 
v=O 

Now (5.8) results from (5.6). 
Since u'~.(t, x', bv)<=O and u'~.(t, x', a~)>O, Theorem 4.6 and (5.8) give 

81 fi(t, x)>= ~ (u'~.(t, x', b v) q)(b~) - u ' ( t ,  x', av) q~(av)) - u  o x.  rp (x.). 
v=O 

It is now simple to complete the proof of Lemma 5.1. First from (5.4) 

(5.8) 

(5.9) 

�89 j �89 
C(t, x) 

= j ( - � 8 9 1 8 9  '. V 'u ( t , x ' ,2 )+�89  
C(t, x) 

+ Ot u(t, x, 2) + c(t, x', 4) u(t, x', 4) -g ( t ,  x', 4)) d7(2) 

and then using (5.3) 

1A'C,(t,x)>=-~ j a (u'x.(t,x',2)~o(2l)d2+~x'.V'C,(t, xl+a,r,(t,x) 
C (t, x) 

+ ~ (c(t,x' ,2) u( t ,x ' ,2)-g( t ,x ' ,2))d~(2) .  
C(t, x) 

Accordingly, 

� 89189  ~ (ux,(t,x,b~)q~(b~) ' ' 1 , V' , , -ux . ( t ,x ,av)q~(av))+~x �9 f i ( t ,x)+Stf i ( t ,x  ) 
v=O 
X n  Xn 

+ ~ c-~ x', 4) u~ x', 4) dy(2) - ~ g~ x', 4) dy(2). 
- o o  - o o  

Finally, using (5.7) and (5.9), Lemma 5.1 follows from (5.2). [] 
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Lemma 5.2. v~ v in Q and 

x n  

( '~ t+�89176 = S 
- - o 0  

X n  

~(t,x' ,2)dc-~ ~ g~ in Q. 

(5.10) 

Actually, for the proof of (5.1) we only need (5.10) with " = "  replaced by 

Proof. From 

t 

U(t) = (e-t/2, ..., e -~/2, e -t/z). U(O) + ~ (e -,-~)/2,..., e -"  -~)/2, e -(t- ~)/2). dW(s) 
o 

it is plain that ~ ,  v <0. Hence v~ v. 
Set 

X n  

~o(t, x)=  S v(t, x', ~) d~(~.). 
a 

Certainly, ~ a ~  in the distribution sense as a ~ - o e .  Furthermore, a 
straightforward calculation yields 

Xn x n  

(c3 t + �89 M) ~, (t, x)= - I c-~ x, 2) v(t, x', 2) d7(2)+ I gO(t, x', 2) d y(2) 
a 

-v;~ x', a) ~o(a). 

In view of (3.1) we may now apply Lemma 5.1 to complete the proof of 
Lemma 5.2. [] 

We finally prove that fi =< ~. 
Let w = ~ - f i .  Then from Lemmas 5.1 and 5.2 

X n  

{ (~t+�89176 ~ w(t,x' ,2)dc-~ in Q 

w = 0  on 0Q. -~  

By applying Theorem 4.3 we now conclude that w>0. The statements in (5.1) 
are thereby completely proved. [] 

References 

1. Baernstein II, A.: Integral means, univalent functions and circular symmetrization. Acta Math. 
133, 139-169 (1974) 

2. Bandle, C.: Isoperimetric Inequalities and Applications. Boston, London, Melbourne: Pitman 
Advanced Publishing Program 1980 

3. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York, Lon- 
don: Academic Press 1968 

4. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30, 207-216 (1975) 



Geometric Bounds on the Ornstein-Uhlenbeck Velocity Process 13 

5. Ehrhard, A.: In6galit6s isop6rim6triques et int6grales de Dirichlet Gaussiennes. Ann. Sci. l~c. 
Norm. Sup. 17, 317-332 (1984) 

6. Ehrhard, A.: Sym6trisation dans l'espace de Gauss. Math. Scand. 53, 281-301 (1983) 
7. Ess6n, M.: The cosn2 Theorem. Lecture Notes in Math. 467. Berlin-Heidelberg-New York: 

Springer 1975 
8. Friedman, A.: Stochastic Differential Equations and Applications. Vol 1. New York-San Fran- 

cisco-London: Academic Press 1975 
9. Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs: Prentice 

Hall, N.J. 1964 
10. Friedman, A.: Classes of solutions of linear systems of partial differential equations of para- 

bolic type. Duke Math. J. 24, 433-442 (1957) 
11. Nelson, E.: Dynamical Theories of Brownian Motion. Math. Notes, Princeton: Princeton 

University Press 1967 
12. Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. New York, San 

Francisco, London: Academic Press 1978 
13. Simon, B.: Functional Integration and Quantum Physics. New York, San Francisco, London: 

Academic Press 1979 

Received November 14, 1983; in revised form February 28, 1984 


