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Summary. If C is a distribution function on (0, o) then the harmonic

renewal function associated with C is the function G(x Zn*IC(")(x) We

link the asymptotic behaviour of G to that of 1—-C. Apphcatlons to the
ladder index and the ladder height of a random walk are included.

§1. Notations, Introduction

Assume C(x) to be a distribution function on (0, c0) with C(0+)=0; let ¢(s) be
its Laplace-Stieltjes transform (LST) ie. for Re s=0

= [ e*dC(x).
0
For convenience LST’s will be denoted by corresponding lower case letters.
For 5s>0 then
1 —c(s)=exp {log [1 —c(s)1}

=exp— Z [C(S)]”

e}

=exp—[ e ¥dG ()

where G(x)= Z —C™(x) is non-decreasing, right-continuous and satisfies
n=17

G(0+)=0. Hence for Res=0
1—c(s)=e5® (1)

since (1) holds for le by monotone convergence. C(x) will be non-defective
iff G(00)= 0.
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Functions of the form Z  C™(x) are often called generalized renewal

Sunctions. If a,=1 for all n one obtalns the renewal function

H(x)= ) C"(x)
n=0
which will be extensively used in the sequel. If a,=0 and a,=n""' (n=1) we get
the harmonic renewal function

o

1
G= Y - () @
n=1
to which this paper is devoted.
Similarly for a discrete distribution {c,, neIN} we define the (discrete) har-
monic renewal sequence

gu= Y e

P

where {c™, meN} is the n-fold convolution of the original sequence.
We investigate the asymptotic connection between G(x) and 1—C(x) for
x— o0, Basically we focus attention on so-called regular behavior.

Definition. A measurable function R: R+t —>R ™" wvaries regularly at infinity (r.v.)
if there exists a pelR such that for all xelR* R(tx)/R(t)—x” as t—oo. The
number p is called the exponent of regular variation. If p=0, R is called slowly
varying (s.v.). The family of r.v. functions at infinity with exponent p is denoted
by RV,.

Generalized renewal functions have been studied in a number of papers
[11, 15, 23, 24]; for renewal functions we refer ia. to [8, 17, 25]. For r.v.
functions we refer to [3, 8, 21]. For r.v. sequences see [ 1, 26].

The next paragraph contains our main theorems. Proofs are given in §3, 4.
In §5 we apply our results to random walk theory. Some concluding remarks
are given in §6.

§2. Main Theorems

We assume that C(co)=1 or G{c0)=co. Euler’s constant is denoted by y. If the

mean of C is finite, we write u= j xdC(x); similarly if C has a finite second
moment it is denoted by p,= f x2d C(x).

Theorem 1. Let 0e[0,1) and LeRV,,. Then the two statements are equivalent as
X— 0

(i) 1—C(x)~x"*L(x),

(i) G(x)—alogx+log L{x)—ay—logl'(1 —o).
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Theorem 2. Let LeRV,. Then the two statements are equivalent as x— oo

@ [{1-Cy)}dy~L(x),
0
(i) G(x)—logx+log L(x)—y.
Moreover C has finite mean u iff

D=lim {logx—G(x)} <0

and then u=exp{y+D}.

Theorem 3. Let C be non-lattice. Let 0(1,2) and LeRV,. Then the two state-
ments are equivalent as x— o0

(i) 1-C(x)~x"*L(x),
(i) G(x)—logx+logu—y~{u(e—1)}~*x'~*L(x).

Theorem 4. Let C be non-lattice. Let LeRV, such that L(x)— L(o0)< c0. Then
the two statements are equivalent as x— o0

(i) [y*dC(y)~L(x),
0
.. x 1
(ii) x——jde(y)~7 L(x).
. 0 U
For the next theorem we assume {c,,nelN} to be such that the greatest

common divisor of those n for which ¢, >0 equals 1.

Theorem 5. Let C be discrete as above. Let a>1 and LeRV,,. Then the following
two statements are equivalent as n— oo

@ > e~n*Ln),
k=n+1

1 1
(i) ——g,~—n"*L(n).
n Iz

Finally the analogue of Theorem 4.

Theorem 6. Let C be discrete. Let LERV, such that L(x)— L(c0)< co. Then the
Jollowing two statements are equivalent as n— oo

i) S ke~ Lin,

.. 1 1
(i) n— 21 mg, ~ (ﬂ_m) L(n).

M=

§3. Proof for the Non-Lattice Case

To simplify future references we list here the auxiliary functions with corre-
sponding transforms when useful.
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G,09=]dG0) &= —€) G)
GR=x—G,() &)=, 8,05 @
M= (1= COMdy  mis=s~ {1=c(9) 5
CL0=1ydCO) ()=~ ©
Col)=[2dC0) =) ™
H@ =3 70 )= {1—c(s) Q
Cl =, J1=COMdy 2= i) ©)
V(%)= G (x)—log x +log u— 7. (10)

§ 3.1.a. Preliminaries to the Proof of Theorems 1 and 2

The first lemma is interesting in its own right.

Lemma 3.1.1. (i) Vx =0, G, (x)<x;
(ii) there exists a constant K such that for all xz0, G(x)=K
+log {max (1, x)}.

Proof. (i) Since —g(s)=log[1—c(s)], g,(s)= —e#® ¢'(s). Hence

¢, (s)

1 —c(s)

g:1(5)= =¢y(5)- h(s),

so that G,(x)=C, xH(x)zJjECl(x—y)dH(y). On the other hand s~!
=m(s)h(s) so that also x=M ;H(x).
Hence
Xx—G,(x)=MxH(x)—C, x H(x)=(M—C,) x H(x).
Observe that
M(x)—C,(x)=x{1—C(x)}

to conclude that x—G,(x)=0.

(i) First let xe[0,1]. Then G(x)£G(1). Let ¥, Y,, ... be iid. with distribu-
tion C. By a result of Rosén [20] there exists a constant K, not depending on
n for which
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G(l)=

-8

n- IP{ i Y,e[0, 1]}§Kain‘ 32 < 0,
d=1 1
Now x> 1. From the definition of G, then
G(x)zx‘1G1(x)—lifr(}x‘1G1(x)+}y*2G1(y)dy.
x 0
But G, (x)=xG(x). Hence by (i) above

1 X
G)S1+[y 2G,(»dy+{y *G,(y)dy
0 1
or
G(x)=1+G(1)+logx.

Indeed by Fubini’s theorem
1 1
[y2G,(ndy=[(1-x)dG(x)<G(1).
0 0

The result follows. [

The key to the proof of Theorem 1 lies in the following result of de Haan
[4, 6, 10].

Lemma 3.1.2. Let B: (0,00)—(0,0) be non-decreasing, right-continuous with
B(0+)=0. Assume b(s) finite for all s>0. Then for any ¢=0 and LeRYV,
the following statements are equivalent

(1) Vx>0:lim {B(tx)—B(t)}/L(t)=clogx
(i) Vx>0:lim{b(tx)—b(t)}/L (%) = —clogx.
t|0

Both imply lim {B()—b(1/t)}/L(t)=".

t— o0

§3.1.b. Proof of Theorems 1 and 2

Part 1: (i)=(ii). By Karamata’s theorem in case either 0=<a<1 or a=1 (i) is
equivalent to

1—c(s)~K, s*L(1/s) as s[0,

{F(l—oc) if 0<a<1

K =
1 if a=1.

a

But then as s}0
g(s)+ologs+logL(1/s)— —logK,. (11)
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This implies for any t>0 as s[0
g(st)—g(s)— —alogt. (12)
From Lemma 3.1.2. this implies that as x— oo
G(x)—g(1/x)—ay.
Hence (ii) follows from the latter relation and (11).
Part 2: (ii)=>(i). Obviously (ii) implies that for >0 as x— o0
G(xt)—G(x)—alogt.
By Lemma 3.1.2, as s|0
G(1/s)—g(s)—ay.
This implies (11) by (ii). But then by (12)

1—
T —exp— (g(t9) (9}

or for some L, eRV,, 1 —c(s)=s*L,(1/s). By the first part of the proof as 5|0
g(s)+alogs+logL,(1/s)— ~log K.

Compare this expression with (11) to see that L, (x)~ L(x) for x—c0 so that (i)
follows.

Part 3: Remaining statement in Theorem 2.
C has finite mean iff L(x)—u in (i). This is then equivalent to

G(x)—logx—y—logu. [

§3.2.a. Preliminaries to the Proofs of Theorems 3 and 4

We first rephrase statements (i) in Theorems 3 and 4 in alternative forms.

Lemma 3.2.1. Let L,eRV,(i=1, 2, 3) then for x— 0

() if 1<a=2 then 1—C(x)~x‘“L1(x)©1—C(s)~ ! 1 xt=2L, (x);
Qi) if 1<a<2 then wo—1)
x ~ 1
Cz(x)NOCXZ_“Lz(X)¢>£[1 - C()] dy~u(a_1) x27*Ly(x);

(i) if 1<a<2 and L (x)=(Q2—a)L,(x) then all four statements are equiva-
lent;

(iv) if =2 then C,(x)~ L;(x) implies xx_{l;ﬂ_}

Ef){l—é(y)}aly

0.
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Proof. Most statements are classical [8,21]. For (ii) and (iv) we refer to
Lemma 2.1 in Mohan [14]. [

Next we restate the conclusions (ii) in terms of the function
V(x)=G(x)—logx+logu—y. (13)

Lemma 3.3.2. Let ae(1,2) and let L,eRV,. Then the two statements are equiva-
lent as x—co

(i) Gx)=x—G,(X)~(x—1)x**L4(x);
(i) V(x)~(Q2—o)x!~*L,(x).

Proof. The basic connection between G and V can easily be derived from the
definitions of G, Vand G,: for all x>0

EV(y) dy=G(x)+xV(x). (14)

But then the implication (ii)=>(i) is obvious.

To prove (i)=-(ii) we first show that (i) implies that C has a finite mean. By
Theorem 2 this then yields V(x)—0 as x— 0. Now (i) and the Abelian theorem
for LST’s proves the existence of an L eRV, for which g(s)=s*"2L(1/s). By
(1) and (4) then s~ +g'(s)=s*"2L4(1/s). By (1) for s/0

_s[l —c(s)]

L 1—c(s)

=s*"1L.(1/s).

Since «>1, the left side tends to zero and Lamperti’s theorem [13] applies;
there exists a L,eRV, for which 1—c¢(s)=sL,(1/s). Substitute back in the above
equation to sece that for x=1

Ly(x)
L,

=x""Ls(x)

or Ly(x)=Le(l)exp [y *Ls(y)dy—Ls(l)exp [ y *Ly(y)dy<oco since a>1.

1—c(s)
Hence Ly(x)—A<o0 or

—J<o as s|0. But then C has finite mean

A=pu. We go back to (14). Equation (14) has the converse (0 <x <y)

V(x)—V(y):ft—ZG(t) dt—x"'G(x)+y 'G(y).
Upon taking y—o0 we get
V(x)zoft‘zG(t)dt—x‘l(;(x).

But then (i)=-(ii) follows. [
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Lemma 3.2.3. The following relations hold
GxC(x ch (15)
2§ {1-C}dy~x{1—C(x)} =6(x) +f {1—C(x—y)} dG,(y). (16)

Proof. (15) follows from g(s) &(s)= —&'(s). For by (1) and (3)

usé(s)=1-—c(s)=exp—g(s).

Differentiate this relation to obtain

F(s)=— &) {s~ 1 +g'(s)} = —~2(5)&().

The other relation (16) follows from (15) by an integration by parts and
obvious rearrangements. []

Our final preliminary result is used to estimate the last integral in (16). The
result only slightly generalizes Theorem 2.1. of Mohan [14].

Lemma 3.2.4. Assume Q(x)=0, bounded, non-increasing and such that j"Q (x)dx
= 0.
Assume R(x)=0, non-decreasing, non-lattice and such that

lim {R(x+1)—R(x)} =A4€(0, o).

X0

If for some 6€[0,1), {Q(y)dyeRV; then as x— o
o

0 xR(x)~A | Q()dy.
0

Typically R is similar to a renewal function.

$3.2.b. Proof of Theorem 3

In view of Lemmas3.2.1 and 3.2.2 it suffices to prove the equivalence of
(I<a<?)

G)~{u2—-)} " 1x2"%L(x) as x—>o© (17)
and
C,(x)~a2 —o)~'x*"*L(x) as x—oo0. (18)

Part 1: (17)=(18). Clearly (17) implies that as s|0

gN(s)~% T2—a)s* 2L(1/s).
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As in the proof of (15), g(s)~ —&'(s) as s]0 since ¢(0)=1.
Or by integration as s}0
1—&(s)~{u(e—1)} "' r2—a)s TL(1/s).
This is equivalent via Karamata’s Tauberian theorem to
1= C0)~{pula—1)}~1x* ~*L(x).

Now apply (i) of Lemma 3.1.2.

Part 2: (18)=(17). For convenience put 1—C(x)=0(x) and Q(x)z?Q(y) dy.
By (16) we obtain 0

20(0)~xQ(x)=G(x)+Q x G, (x).

(18) together with Lemma 3.2.1 yields xQ(x)/Q(x)—>2—a. To estimate Q X G (x)
we use Lemma 3.2.4 with R=G,. As was noted in the proof of Lemma 3.1.1 (i),
G,=C, xH so that

x+1

Gl(x+1)—G1(x)=;jf{H(X+1—y)—H(x—y)}dcl(y)+ § H(x+1-y)dC,(y).

1
By Blackwell’s theorem the first integral tends to EC (c0)=1. The second is

bounded by H(1){C,(x+1)— C,(x)} -0 as x—»>o0. We conclude that (18) im-
plies for x— oo

G(x)/0(x)>2—(2—0)—1=a—1. [J

§ 3.2.c. Proof of Theorem 4

Observe that (i) is of the form
C,(x)~ L(x) (19)
while the expression for G is

G(x)=x—G,(x) ~217L(x). (20)

Part 1: (20)=(19). Clearly (20) implies that g(s)~(2u)~ ' L(1/s). From here on
the proof is the same as in Part 1 of § 3.2.b.

Part 2: (19)=>(20) for L(x)—>c0.

With Q and Q as defined in § 3.2.b. Part 2 we obtain

G(x)/0(x) =2~ {xQ(x)/0()} —{Q x G,(x)/Q(x)}.
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By (iv) of Lemma 3.2.1 xQ(x)/Q(x)—0 as x—o0. To the remaining integral

. . . ~ 1
Lemma 3.2.4 is still applicable since Q(x)~——L(x)— oo by assumption. Hence
(20) follows. 2u

Part 3: (19)=(20) for L(x)—u, < .
Since Lemma 3.2.4 is not applicable we proceed in a slightly different fashion.
Since G, =C, x H we write

G, == C, X Hix) = Xy —x{1 = C,(x)

{H(x—y)—x—;—y}dcl(m—icz<x)—x{1—ulcl(xn.

(=R ]

An application of the renewal asymptote theorem yields that H(x)
X
—;—»,uz/(z,uz). Further C,(x)—u, by assumption while C,(x)—u; so 1

—u~rC (x)=0(x"") since u,<oco. Combining terms we obtain by Lebesgue’s
theorem
Ha Ha 1

Gy ()= x>t G p—E2

2“2 I L ‘5/::“2' ]

§ 4. Proofs for the Lattice Case
We start again with a list of auxiliary quantities. Whenever convenient we

denote by a(z) the generating function of a discrete sequence {a,}g, ie. for
lz| <1

0
a(z)=Y. a,z"
n=0

|

g,= ZIEC,‘:’”; g(z)= —log{l—c(2)}, (21)

h,= i M ) ={1—c(2)} . (23)
m=0

4= 3 e g@={1=c@}1-2) 23)

§4.1.a. Preliminaries to the Proof of Theorem 5

We start with the following result

Lemma 4.1. Suppose u the mean of {c,}¥ is finite. For any a>1 and any LeRV,
the following two statements are equivalent as n— o



Harmonic Renewal Measures 401
(i) g,~n"*L(n),

(i) n{h,~h,_ .} /{hn—l}w—l.
U

They both imply as n— o
1
(iil) h,—=~{p*(@—=1)} "nq,.
I

Proof. Since u= ) mc,, is finite, g(z)>p>0 as z11. Now for |z|<1, z#1, 1
m=1

—c(2)£0 and g(1)=p=0; by a theorem of Wiener [2, p. 258] for |z|£1
1 o0 [eo]
—=> A,z" with |4,| < 0. 24
q(z) ngo ng() @9

Since h(z) g(z)=(1—2z)~! we also have

hn: Z /lk (25)
k=0
and
1 o0
h,——=— Z Ay (26)
U k=n+1

Part 1: (i)=(ii); (1)=-(iii)
From (i), (24) and [2, p. 258] it follows that for n— o0

2

Iy~ =2 gy~ — " n Ln).
Using this, (ii) and (iii) follow from (25) and (26).

Part 2: (ii)=(i).
Since

1 o
;]-(7)=(1—Z)h(2)=1+n;1 (h,—h, )z

another application of [2, p. 258] yields for n— w0

G~ — 2 (h,—h, 1)
or, using (i) we get as n— o

Gy~ (o~ 1){hn—l}~
U

oo o 1 .
Since (ii) implies regular variation of hn_ﬁ [17, we get (). O

§4.1.b. Proof of Theorem 5
Part 1: (i)=(ii)

Relajtions (21) and (22) yield g'(z)=h(z) ¢(2) for |z|<1. Equating coefficients
we obtain
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n
ng,= > me,h,_ .
m=1

But then

n n

1 2 1
l—ngnz{l—; Zlmcm}—(hn—;) Zlmcm—}— Y me,{h, ,—h}
m= 1

m= me=

=l -J, +K,

@ L= ¥ me,=(na,+ 3 a).

,LL m=n+1 k=n+1
o
mlo—1

1 1
By assumption then I ~—( )~ .
y P en f, u ”‘Lﬁ‘a_l”qn )”qn

R e e

(c) It remains to show that K,=o(ngq,). To accomplish this let 0 <u<v<1
and write

ng, by Lemma 4.1.

A={1,2,....,n—[nv]}, B={n—[nv]+l,...,n—[nul},
C={n—[nul+1,....n}

We apply Lemma 4.1. (ii) and (iii). Take n so large that for meAUB and any
given ¢€(0,1)

n—1 n—1 1 n—1
by w—hy= Z {h—h, yS(@—1+e) ) kﬁl{hk__}écl Z d
k=n—m k=n—m U k=n—-m
where C, >(1+¢) {p*(a—1)} " '(a—1+e).
Now K, =+ +Y)mc,(h, ,,—h)=K,+K,+K;. Then
A B C

n—1 n—1
K, 2C, Y me,, > q=Cy) mc, Y 4.

meAd k=n—m meAd k=[nv]

Since for large n, K, =0 and by assumption (i)

n—1

Y q/ng,~—1)"Hu T =13,
k=Tl
0<ZlimsupK,/(ng, )< C,{v**—1}

n— oo

for a constant C,.
Similarly by the monotonicity of {g,}

n—1
0=K,=C, chm Y @=C, ) mc,q, , m

meB k=n—m meB

é Cl{n"'[nu]} Q[nu] Z mcm.
meB
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We divide by ngq,, apply (i) and note that as n—c0, ) mc,—0 since u<oo.

Hence K,=0(ng,). meB
For K, put M=suph,; then K;<2M ) mc,,. By an argument similar to
(a) and K, we find ¥ meC

0<limsupK,/(nq,)< C,{(1—uw)'*—1}

n— o

for a constant C,. Hence

0<limsupK,/ng,)<C,{v' =1} +C{(1—uw)'*~1}.

Let u|0 and v11. This proves part 1.
Part 2: (ii)=-(i). From (21) we notice that
o0 1 N
q(z)=exp }, (f—g,,>z
n=1 \H

1
to which [2, p. 258] can again be applied. We find by (ii) that qu(E
—g,,) -q(1) which yields (i). [

The following auxiliary functions will be used together with those in-
troduced in (21)~(23).

Camn ) =1 =@} /(1 ~2)
= 3 20 ={1-c, (1 -2
f1.m Y me, B(0=28 )1 2), @)
Wy = Z mc, w(z)=zc'(z){(1—2), (28)
n 1 1
pnzmgown—m(hm_ﬁ> p(Z):W(Z){h(Z)_,u(I*Z)}

s 4.2.a. Preliminaries to the Proof of Theorem 6

The next lemma brings together some elementary facts about the above de-
fined sequences.

Lemma 4.2. Let LeRV,, L(n)—L(w)< 0. Then Y k*c,~L(n) implies any of
the following statements: k=1

(i) p,~ z (1, —;) :
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n—1

(ii) kzo{l—u*lwk}w*lL(n);
1

ST 1
(iii) kgo Cz,k’”{zu'_zL(oo)}L(”);

. z 1 1 1
@ 2 (=) ”{ﬁ"zuuoo)}””)'

P. Greenwood et al.

Proof. The proofs of (i), (ii) and (iii) are easy; they follow from known facts
about regularly varying sequences. See for example [1, 26]. To obtain (iv) first

note that

n

k=0

Z (hk_l): Z hn——mCZ,m
,u m=0

as follows from the generating functions. But then standard techniques using

(iii) yield the result. [

Lemma 3.1.1. (i) has an analogue for the lattice case.

Lemma 4.3. For all n>1, g, ,<n.

Proof. Using generating functions again it easily follows that

n k—1 k
n_gl,n: Z hn—k{lu Z Cl.m— Z mcm}'
k=1 ) m=0 m=0

A summation by parts shows that the term inside the brackets is non-

negative. [

§4.2.b. Proof of Theorem 6

Part 1: (i)=(ii).
From (27) and (28) one derives that

n
gl.n: Z anmhm
m=0

and hence

n—1 1
”"gl.n:kz,o (1 _;Wk

Now apply Lemma 4.2. (ii), (i) and (iv).
Part 2: (i1)=>(i). Define

1 1
o= )L~n-sg, =g,

2u 2L(w)

then (ii) implies by Lemma 4.3 and [8, p. 447] as zT1

g~ -2 1t{(l-2" 1}

) 1
—_Wn_pn‘
u
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However
(1-2)g,(2) c1(2) =2 ¢1(2)

by easy algebra. Hence ¢}(z)~t{(1—2z)~'} as z71. By [8, p. 447]

n
Y me, ,~t,
m—0

and
n2 Cl.nzo(tn)
as n—oo.

However using the definition of {c, ,} we can derive

n+1 n
Z mzcm=2y Z mcl.m+wn+1—:un(n—i_l)cl,n-%—l‘
m=0 m=1
n+ 1
Since w,_ , — 4, Z m? ¢, ~2ut,+u~ L(n), which was to be proved. []
m=0

§5. Applications to Random Walk Theory

Let X,,X,,... be independent with common distribution F. Let S,=0 a.s. and
for nz1, §,=X,+...+X,. Define the first (upgoing) ladder index of the
random walk {S,}2 by

N=inf{n: S,>0}.
Define the (first ascending) ladder height by S,. We recall Spitzer-Baxter
identities

1 —E[z"]=exp— Y %P[sn>0],
n=1

1—E[e~»"]=exp— | e‘“d{ Y 1P|:O<Sn§x]}.
0+ n=17

§5.1. Ladder Index

Choose C(x)=P{N =x}, then we can identify the discrete harmonic renewal
measure of C with

g,=n"'P(S,>0)

so that 1 —ng,=P(S,=<0). We obtain the following information partly available
inia. [17,25].
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Theorem 5.1. (i) Let 0<B=<1. Then ) P(N>m)~n'"PL(n) where L is a s.v.

m=1

sequence iff Spitzer's condition holds, i.e. lim1 Y P(S,>0)=6;
n m=1

(i) N has finite mean it Y m=1 P[S,, <0] < oo. Then
1

ee) 1=
quN=epo%P[Sm§0].
1

(iii) 1<pB: P[N>n] ~n‘ﬂL(n)©P(Sm§0)~£n1‘ﬁL(n);

(iv) EN? is finite iff Y P(S,<0)< o and then
1

Eszu{l +2 i P(S,éO)}.

n=1

Example 1. If for some normalizing constants B,— co, Sn/Bn—i Y, where Y, is
stable, then f=P[Y >0]. If we use the canonical representation then if a1

(8]

. t mo
log E[e"Y*] = — A|t]* exp—iT| %

where A>0, |0|S1—[1—«f, 0<a=2, a=1. It is easy to show that

1 6
ﬁ—P[Yu>0:| =§+2—OC‘

For =1 see Emery [7] or Doney [5].

§5.2. Ladder Height

[ee] 1 .
By identifying C(x)=P(Sy=<x) and G(x)=Z;P{0<Sn§x} we get another illus-
1
tration of our theorems. The role played by Spitzer’s condition for N is played
for Sy by the condition that for all >0
I\
lim Z P{x <S, <xt}=plogt (39)
X—= 0 p= 1

which we call Sinai’s condition in view of [22].

Theorem 5.2. (i) Let 0<B<1. Then jP N> du~x'"#L(x) where L is s.v. iff
Sinai’s conditon holds.
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®1
(if) Sy has finite mean iff D= lim {10gx—Z;P[O<Sn§x]} is finite. Then
1

E[Syl=exp{y+D}.

It would be interesting to compare this result with the approach of Lai [12],
especially for higher moments of S,. An alternative form for G(x) however
seems necessary.

Example 2. In [18, 22] it is proved that if X,2Y, for all i then Sinai’s
condition holds. We provide an easier proof using Lemma 3.1.2 and an ap-
proach of Heyde [11]. Put for a fixed ¢t >0

G,(x)=G{t x) — G(x).
Then since S, =n'/* Y,

[oe]

s e *G(x)dx= | f(y) Ply<Y,<yt]dy
[} 0
where

1-a

f)=s 3 n* exp[—syn'/"].
n=1
If we write

Hw= Y n*

nell, v*]nN

then as v— o0, H(v)— o0 and H(v)~a(v—1) as v— co.
Moreover

fy)=s O}O e~ dH(v).

By an abelian theorem fs(y)~% as s} 0. Moreover

] t @ ¢
| £y =s e‘tH(-—>dt§Ks e*t(—) dt<Ky !
A A AT
for some constant K. We can apply Lebesgue’s theorem to obtain that

lims { e **G,(x)dx=0o | y~'P[y<Y,<yr]dy.

sl0 0 0

The latter integral equals aP[Y,>0]logt.
Karamata’s theorem yields for x— 0

G,(y)dy~xoP[Y,>0]logt.

Oty ®
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From this relation one derives as in [11] that
G, (x)—aP[Y, >0]logt
so that Sinai’s condition holds for f=«P[Y,>0].
Example 3. Assume that the random walk is generated by X for which

E|X|<o and EX=u>0. Then [17, p.207] Zn*lP[Sn§O] <o so that
EN < co. By Wald’s identity then E[Sy]=pu-EN. !
By Theorem 5.2 (ii)

lim {logx —G(x)} =logESy—7.

Hence
ZHP[Sngx] ——logxzzﬁP[Sn§0] +G(x)—logx
1 1

=log EN +G(x)—logx
—logEN +vy—logES,
=y—logp.

This sharpens somewhat a result of Heyde [11] where it was shown that
1
ZEP[S;« <x]~logx.
1

The latter result should be combined with the consequences of Lemma 3.1.1.

§ 6. Concluding Remarks

§6.1. Lemma 4.1. links the behaviour of a renewal sequence to the tail be-
haviour of the underlying generating discrete distribution. The complete result
will be published separately [16].

§6.2. Instead of assuming slowly varying functions in Theorems 2 and 4 we
could have restricted ourselves to functions belonging to the subclass II of
slowly varying functions introduced in [3] by de Haan and essentially used in
Lemma 3.1.3. Results of this type will be discussed in a forthcoming paper.

Acknowledgment. The authors take great pleasure in thanking the referees for their comments.
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