Z. Wahrscheinlichkeitstheorie verw. Gebiete 59, 391-409 (1982)

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1982

Harmonic Renewal Measures

P. Greenwood¹, E. Omey², and J.L. Teugels

¹ University of British Columbia, Vancouver, Canada

² Catholic University of Louvain, Dept. of Mathematics, Celestijnenlaan 200B, B-3030 Leuven, Belgium

Summary. If C is a distribution function on $(0, \infty)$ then the harmonic renewal function associated with C is the function $G(x) = \sum_{1}^{\infty} n^{-1} C^{(n)}(x)$. We link the asymptotic behaviour of G to that of 1-C. Applications to the ladder index and the ladder height of a random walk are included.

§1. Notations, Introduction

Assume C(x) to be a distribution function on $(0, \infty)$ with C(0+)=0; let c(s) be its Laplace-Stieltjes transform (LST) i.e. for Re $s \ge 0$

$$c(s) = \int_{0}^{\infty} e^{-sx} dC(x).$$

For convenience LST's will be denoted by corresponding lower case letters. For s > 0 then

$$1 - c(s) = \exp \{ \log [1 - c(s)] \}$$
$$= \exp - \sum_{n=1}^{\infty} \frac{1}{n} [c(s)]^n$$
$$= \exp - \int_0^{\infty} e^{-sx} dG(x)$$

where $G(x) = \sum_{n=1}^{\infty} \frac{1}{n} C^{(n)}(x)$ is non-decreasing, right-continuous and satisfies G(0+)=0. Hence for $\operatorname{Re} s \ge 0$

$$1 - c(s) = e^{-g(s)}$$
(1)

since (1) holds for $s \downarrow 0$ by monotone convergence. C(x) will be non-defective iff $G(\infty) = \infty$.

Functions of the form $\sum_{n=0}^{\infty} a_n C^{(n)}(x)$ are often called generalized renewal functions. If $a_n = 1$ for all n one obtains the renewal function

$$H(x) = \sum_{n=0}^{\infty} C^{(n)}(x)$$

which will be extensively used in the sequel. If $a_0 = 0$ and $a_n = n^{-1}$ $(n \ge 1)$ we get the harmonic renewal function

$$G(x) = \sum_{n=1}^{\infty} \frac{1}{n} C^{(n)}(x)$$
(2)

to which this paper is devoted.

Similarly for a discrete distribution $\{c_n, n \in \mathbb{N}\}$ we define the (discrete) harmonic renewal sequence

$$g_m = \sum_{n=1}^{\infty} \frac{1}{n} c_m^{(n)}$$

where $\{c_m^{(n)}, m \in \mathbb{N}\}\$ is the *n*-fold convolution of the original sequence.

We investigate the asymptotic connection between G(x) and 1-C(x) for $x \to \infty$. Basically we focus attention on so-called regular behavior.

Definition. A measurable function $R: \mathbb{R}^+ \to \mathbb{R}^+$ varies regularly at infinity (r.v.) if there exists a $\rho \in \mathbb{R}$ such that for all $x \in \mathbb{R}^+$ $R(tx)/R(t) \to x^{\rho}$ as $t \to \infty$. The number ρ is called the *exponent* of regular variation. If $\rho = 0$, R is called *slowly varying* (s.v.). The family of r.v. functions at infinity with exponent ρ is denoted by RV_{ρ} .

Generalized renewal functions have been studied in a number of papers [11, 15, 23, 24]; for renewal functions we refer i.a. to [8, 17, 25]. For r.v. functions we refer to [3, 8, 21]. For r.v. sequences see [1, 26].

The next paragraph contains our main theorems. Proofs are given in $\S3$, 4. In $\S5$ we apply our results to random walk theory. Some concluding remarks are given in $\S6$.

§2. Main Theorems

We assume that $C(\infty) = 1$ or $G(\infty) = \infty$. Euler's constant is denoted by γ . If the mean of C is finite, we write $\mu = \int_{0}^{\infty} x \, dC(x)$; similarly if C has a finite second moment it is denoted by $\mu_2 = \int_{0}^{\infty} x^2 \, dC(x)$.

Theorem 1. Let $\alpha \in [0, 1)$ and $L \in RV_0$. Then the two statements are equivalent as $x \to \infty$

(i)
$$1 - C(x) \sim x^{-\alpha} L(x)$$
,

(ii) $G(x) - \alpha \log x + \log L(x) \rightarrow \alpha \gamma - \log \Gamma(1-\alpha)$.

Theorem 2. Let $L \in RV_0$. Then the two statements are equivalent as $x \to \infty$

(i) $\int_{0}^{x} \{1 - C(y)\} dy \sim L(x),$ (ii) $G(x) - \log x + \log L(x) \to y.$

Moreover C has finite mean μ iff

$$D \equiv \lim_{x \to \infty} \left\{ \log x - G(x) \right\} < \infty$$

and then $\mu = \exp{\{\gamma + D\}}$.

Theorem 3. Let C be non-lattice. Let $\alpha \in (1, 2)$ and $L \in RV_0$. Then the two statements are equivalent as $x \to \infty$

- (i) $1 C(x) \sim x^{-\alpha} L(x)$,
- (ii) $G(x) \log x + \log \mu \gamma \sim {\{\mu(\alpha 1)\}}^{-1} x^{1-\alpha} L(x).$

Theorem 4. Let C be non-lattice. Let $L \in RV_0$ such that $L(x) \rightarrow L(\infty) \leq \infty$. Then the two statements are equivalent as $x \rightarrow \infty$

(i)
$$\int_{0}^{x} y^2 dC(y) \sim L(x),$$

(ii) $x - \int_{0}^{x} y dG(y) \sim \frac{1}{2\mu} L(x).$

For the next theorem we assume $\{c_n, n \in \mathbb{N}\}$ to be such that the greatest common divisor of those *n* for which $c_n > 0$ equals 1.

Theorem 5. Let C be discrete as above. Let $\alpha > 1$ and $L \in RV_0$. Then the following two statements are equivalent as $n \rightarrow \infty$

(i)
$$\sum_{k=n+1}^{\infty} c_k \sim n^{-\alpha} L(n),$$

(ii)
$$\frac{1}{n} - g_n \sim \frac{1}{\mu} n^{-\alpha} L(n).$$

Finally the analogue of Theorem 4.

Theorem 6. Let C be discrete. Let $L \in RV_0$ such that $L(x) \rightarrow L(\infty) \leq \infty$. Then the following two statements are equivalent as $n \rightarrow \infty$

(i)
$$\sum_{k=1}^{n} k^2 c_k \sim L(n)$$
,
(ii) $n - \sum_{m=1}^{n} m g_m \sim \left(\frac{1}{2\mu} - \frac{1}{2L(\infty)}\right) L(n)$.

§3. Proof for the Non-Lattice Case

To simplify future references we list here the auxiliary functions with corresponding transforms when useful.

$$G_1(x) = \int_0^x y \, dG(y) \qquad g_1(s) = -g'(s), \tag{3}$$

$$\tilde{G}(x) = x - G_1(x)$$
 $\tilde{g}(s) = \frac{1}{s} - g_1(s),$ (4)

$$M(x) = \int_{0}^{x} \{1 - C(y)\} \, dy \qquad m(s) = s^{-1} \{1 - c(s)\},\tag{5}$$

$$C_{1}(x) = \int_{0}^{x} y \, dC(y) \qquad c_{1}(s) = -c'(s), \tag{6}$$

$$C_{2}(x) = \int_{0}^{x} y^{2} dC(y) \qquad c_{2}(s) = c''(s),$$
(7)

$$H(x) = \sum_{0}^{\infty} C^{(n)}(x) \qquad h(s) = \{1 - c(s)\}^{-1},$$
(8)

$$\tilde{C}(x) = \frac{1}{\mu} \int_{0}^{x} \{1 - C(y)\} \, dy \qquad \tilde{c}(s) = \mu^{-1} m(s), \tag{9}$$

$$V(x) = G(x) - \log x + \log \mu - \gamma.$$
(10)

\S 3.1.a. Preliminaries to the Proof of Theorems 1 and 2

The first lemma is interesting in its own right.

Lemma 3.1.1. (i) $\forall x \ge 0, G_1(x) \le x$; (ii) there exists a constant K such that for all $x \ge 0, G(x) \le K$ $+ \log \{\max(1, x)\}.$

Proof. (i) Since $-g(s) = \log [1 - c(s)], g_1(s) = -e^{g(s)} c'(s)$. Hence

$$g_1(s) = \frac{c_1(s)}{1 - c(s)} = c_1(s) \cdot h(s),$$

so that $G_1(x) = C_1 \times H(x) = \int_0^x C_1(x-y) dH(y)$. On the other hand $s^{-1} = m(s) h(s)$ so that also $x = M \times H(x)$.

Hence

$$x - G_1(x) = M \times H(x) - C_1 \times H(x) = (M - C_1) \times H(x)$$

Observe that

$$M(x) - C_1(x) = x \{1 - C(x)\}$$

to conclude that $x - G_1(x) \ge 0$.

(ii) First let $x \in [0, 1]$. Then $G(x) \leq G(1)$. Let $Y_1, Y_2, ...$ be i.i.d. with distribution C. By a result of Rosén [20] there exists a constant K_o not depending on n for which

$$G(1) = \sum_{1}^{\infty} n^{-1} P\left\{\sum_{d=1}^{n} Y_{d} \in [0, 1]\right\} \leq K_{o} \sum_{1}^{\infty} n^{-3/2} < \infty.$$

Now x > 1. From the definition of G_1 then

$$G(x) = x^{-1}G_1(x) - \lim_{x \downarrow 0} x^{-1}G_1(x) + \int_0^x y^{-2}G_1(y) \, dy.$$

But $G_1(x) \leq x G(x)$. Hence by (i) above

$$G(x) \leq 1 + \int_{0}^{1} y^{-2} G_{1}(y) \, dy + \int_{1}^{x} y^{-2} G_{1}(y) \, dy$$

or

$$G(x) \leq 1 + G(1) + \log x.$$

Indeed by Fubini's theorem

$$\int_{0}^{1} y^{-2} G_{1}(y) \, dy = \int_{0}^{1} (1-x) \, dG(x) \leq G(1).$$

The result follows. \Box

The key to the proof of Theorem 1 lies in the following result of de Haan [4, 6, 10].

Lemma 3.1.2. Let $B: (0, \infty) \to (0, \infty)$ be non-decreasing, right-continuous with B(0+)=0. Assume b(s) finite for all s>0. Then for any $c \ge 0$ and $L \in RV_0$ the following statements are equivalent

(i)
$$\forall x > 0: \lim_{t \to \infty} \{B(tx) - B(t)\}/L(t) = c \log x$$

(ii) $\forall x > 0: \lim_{t \downarrow 0} \{b(tx) - b(t)\}/L\left(\frac{1}{t}\right) = -c \log x.$

Both imply $\lim_{t\to\infty} \{B(t) - b(1/t)\}/L(t) = \gamma$.

§3.1.b. Proof of Theorems 1 and 2

Part 1: (i) \Rightarrow (ii). By Karamata's theorem in case either $0 \le \alpha < 1$ or $\alpha = 1$ (i) is equivalent to

$$1 - c(s) \sim K_{\alpha} s^{\alpha} L(1/s) \quad \text{as } s \downarrow 0,$$
$$K_{\alpha} = \begin{cases} \Gamma(1-\alpha) & \text{if } 0 \leq \alpha < 1\\ 1 & \text{if } \alpha = 1. \end{cases}$$

But then as $s \downarrow 0$

$$g(s) + \alpha \log s + \log L(1/s) \to -\log K_{\alpha}.$$
 (11)

This implies for any t > 0 as $s \downarrow 0$

$$g(st) - g(s) \to -\alpha \log t. \tag{12}$$

From Lemma 3.1.2. this implies that as $x \rightarrow \infty$

 $G(x) - g(1/x) \rightarrow \alpha \gamma$.

Hence (ii) follows from the latter relation and (11).

Part 2: (ii) \Rightarrow (i). Obviously (ii) implies that for t > 0 as $x \rightarrow \infty$

 $G(xt) - G(x) \rightarrow \alpha \log t$.

By Lemma 3.1.2, as $s \downarrow 0$

$$G(1/s) - g(s) \rightarrow \alpha \gamma$$
.

This implies (11) by (ii). But then by (12)

$$\frac{1-c(st)}{1-c(s)} = \exp - \{g(ts) - g(s)\} \rightarrow t^{\alpha}$$

or for some $L_1 \in RV_0$, $1 - c(s) = s^{\alpha}L_1(1/s)$. By the first part of the proof as $s \downarrow 0$

 $g(s) + \alpha \log s + \log L_1(1/s) \rightarrow -\log K_{\alpha}$.

Compare this expression with (11) to see that $L_1(x) \sim L(x)$ for $x \to \infty$ so that (i) follows.

Part 3: Remaining statement in Theorem 2.

C has finite mean iff $L(x) \rightarrow \mu$ in (i). This is then equivalent to

 $G(x) - \log x \rightarrow \gamma - \log \mu$.

§3.2.a. Preliminaries to the Proofs of Theorems 3 and 4

We first rephrase statements (i) in Theorems 3 and 4 in alternative forms.

Lemma 3.2.1. Let $L_i \in RV_0$ (i = 1, 2, 3) then for $x \rightarrow \infty$

(i) if
$$1 < \alpha \leq 2$$
 then $1 - C(x) \sim x^{-\alpha} L_1(x) \Leftrightarrow 1 - \tilde{C}(s) \sim \frac{1}{\mu(\alpha - 1)} x^{1 - \alpha} L_1(x);$
(ii) if $1 < \alpha \leq 2$ then

1

$$C_2(x) \sim \alpha x^{2-\alpha} L_2(x) \Leftrightarrow \int_0^x [1 - \tilde{C}(y)] dy \sim \frac{1}{\mu(\alpha - 1)} x^{2-\alpha} L_2(x);$$

(iii) if $1 < \alpha < 2$ and $L_1(x) = (2 - \alpha)L_2(x)$ then all four statements are equivalent;

(iv) if
$$\alpha = 2$$
 then $C_2(x) \sim L_3(x)$ implies $\frac{x\{1 - \tilde{C}(x)\}}{\int\limits_0^x \{1 - \tilde{C}(y)\} dy} \rightarrow 0.$

Proof. Most statements are classical [8, 21]. For (ii) and (iv) we refer to Lemma 2.1 in Mohan [14]. \Box

Next we restate the conclusions (ii) in terms of the function

$$V(x) = G(x) - \log x + \log \mu - \gamma.$$
(13)

Lemma 3.3.2. Let $\alpha \in (1,2)$ and let $L_4 \in RV_0$. Then the two statements are equivalent as $x \to \infty$

- (i) $\tilde{G}(x) = x G_1(x) \sim (\alpha 1) x^{2-\alpha} L_4(x);$
- (ii) $V(x) \sim (2-\alpha) x^{1-\alpha} L_4(x)$.

Proof. The basic connection between \tilde{G} and V can easily be derived from the definitions of \tilde{G} , V and G_1 : for all $x \ge 0$

$$\int_{0}^{x} V(y) \, dy = \tilde{G}(x) + x \, V(x). \tag{14}$$

But then the implication (ii) \Rightarrow (i) is obvious.

To prove (i) \Rightarrow (ii) we first show that (i) implies that C has a finite mean. By Theorem 2 this then yields $V(x) \rightarrow 0$ as $x \rightarrow \infty$. Now (i) and the Abelian theorem for LST's proves the existence of an $L_5 \in RV_0$ for which $\tilde{g}(s) = s^{\alpha-2}L_5(1/s)$. By (1) and (4) then $s^{-1} + g'(s) = s^{\alpha-2}L_5(1/s)$. By (1) for $s \downarrow 0$

$$1 - \frac{s[1 - c(s)]'}{1 - c(s)} = s^{\alpha - 1} L_5(1/s).$$

Since $\alpha > 1$, the left side tends to zero and Lamperti's theorem [13] applies; there exists a $L_6 \in RV_0$ for which $1 - c(s) = sL_6(1/s)$. Substitute back in the above equation to see that for $x \ge 1$

$$\frac{L_{6}(x)}{L_{6}(x)} = x^{-\alpha} L_{5}(x)$$

or $L_6(x) = L_6(1) \exp \int_1^x y^{-\alpha} L_5(y) \, dy \to L_6(1) \exp \int_1^\infty y^{-\alpha} L_5(y) \, dy < \infty$ since $\alpha > 1$. Hence $L_6(x) \to \lambda < \infty$ or $\frac{1-c(s)}{s} \to \lambda < \infty$ as $s \downarrow 0$. But then C has finite mean $\lambda = \mu$. We go back to (14). Equation (14) has the converse (0 < x < y)

$$V(x) - V(y) = \int_{x}^{y} t^{-2} \tilde{G}(t) dt - x^{-1} \tilde{G}(x) + y^{-1} \tilde{G}(y).$$

Upon taking $y \rightarrow \infty$ we get

$$V(x) = \int_{x}^{\infty} t^{-2} \tilde{G}(t) dt - x^{-1} \tilde{G}(x).$$

But then (i) \Rightarrow (ii) follows.

Lemma 3.2.3. The following relations hold

$$\tilde{G} \times \tilde{C}(x) = \int_{0}^{x} y \, d\tilde{C}(y), \tag{15}$$

$$2\int_{0}^{x} \{1 - \tilde{C}(y)\} dy - x\{1 - \tilde{C}(x)\} = \tilde{G}(x) + \int_{0}^{x} \{1 - \tilde{C}(x - y)\} dG_{1}(y).$$
(16)

Proof. (15) follows from $\tilde{g}(s)\tilde{c}(s) = -\tilde{c}'(s)$. For by (1) and (3)

$$\mu s \tilde{c}(s) = 1 - c(s) = \exp(-g(s)).$$

Differentiate this relation to obtain

$$\tilde{c}'(s) = -\tilde{c}(s) \{s^{-1} + g'(s)\} = -\tilde{c}(s) \tilde{g}(s).$$

The other relation (16) follows from (15) by an integration by parts and obvious rearrangements. \Box

Our final preliminary result is used to estimate the last integral in (16). The result only slightly generalizes Theorem 2.1. of Mohan [14].

Lemma 3.2.4. Assume $Q(x) \ge 0$, bounded, non-increasing and such that $\int_{0}^{\infty} Q(x) dx = \infty$.

Assume $R(x) \ge 0$, non-decreasing, non-lattice and such that

$$\lim_{x\to\infty} \{R(x+1) - R(x)\} = A \in (0,\infty).$$

If for some $\delta \in [0, 1)$, $\int_{0}^{x} Q(y) dy \in RV_{\delta}$ then as $x \to \infty$

$$Q \times R(x) \sim A \int_{0}^{x} Q(y) \, dy.$$

Typically R is similar to a renewal function.

§ 3.2.b. Proof of Theorem 3

In view of Lemmas 3.2.1 and 3.2.2 it suffices to prove the equivalence of $(1 < \alpha < 2)$

$$\tilde{G}(x) \sim \{\mu(2-\alpha)\}^{-1} x^{2-\alpha} L(x) \quad \text{as } x \to \infty$$
(17)

and

$$C_2(x) \sim \alpha (2-\alpha)^{-1} x^{2-\alpha} L(x) \quad \text{as } x \to \infty.$$
(18)

Part 1: (17) \Rightarrow (18). Clearly (17) implies that as $s\downarrow 0$

$$\tilde{g}(s) \sim \frac{1}{\mu} \Gamma(2-\alpha) s^{\alpha-2} L(1/s).$$

As in the proof of (15), $\tilde{g}(s) \sim -\tilde{c}'(s)$ as $s \downarrow 0$ since $\tilde{c}(0) = 1$. Or by integration as $s \downarrow 0$

$$1 - \tilde{c}(s) \sim \{\mu(\alpha - 1)\}^{-1} \Gamma(2 - \alpha) s^{\alpha - 1} L(1/s).$$

This is equivalent via Karamata's Tauberian theorem to

$$1 - \tilde{C}(x) \sim \{\mu(\alpha - 1)\}^{-1} x^{1 - \alpha} L(x).$$

Now apply (i) of Lemma 3.1.2.

Part 2: (18) \Rightarrow (17). For convenience put $1 - \tilde{C}(x) = Q(x)$ and $\bar{Q}(x) = \int_{0}^{x} Q(y) dy$. By (16) we obtain

$$2\bar{Q}(x) - xQ(x) = \tilde{G}(x) + Q \times G_1(x).$$

(18) together with Lemma 3.2.1 yields $xQ(x)/\overline{Q}(x) \rightarrow 2-\alpha$. To estimate $Q \times G_1(x)$ we use Lemma 3.2.4 with $R = G_1$. As was noted in the proof of Lemma 3.1.1 (i), $G_1 = C_1 \times H$ so that

$$G_1(x+1) - G_1(x) = \int_0^x \{H(x+1-y) - H(x-y)\} \, dC_1(y) + \int_x^{x+1} H(x+1-y) \, dC_1(y).$$

By Blackwell's theorem the first integral tends to $\frac{1}{\mu}C_1(\infty)=1$. The second is bounded by $H(1)\{C_1(x+1)-C_1(x)\}\rightarrow 0$ as $x\rightarrow\infty$. We conclude that (18) implies for $x\rightarrow\infty$

$$\tilde{G}(x)/\bar{Q}(x) \rightarrow 2 - (2 - \alpha) - 1 = \alpha - 1.$$

§ 3.2.c. Proof of Theorem 4

Observe that (i) is of the form

$$C_2(x) \sim L(x) \tag{19}$$

while the expression for G is

$$\tilde{G}(x) = x - G_1(x) \sim \frac{1}{2\mu} L(x).$$
(20)

Part 1: (20) \Rightarrow (19). Clearly (20) implies that $\tilde{g}(s) \sim (2\mu)^{-1} L(1/s)$. From here on the proof is the same as in Part 1 of § 3.2.b.

Part 2: (19) \Rightarrow (20) for $L(x) \rightarrow \infty$. With Q and \overline{Q} as defined in § 3.2.b. Part 2 we obtain

$$\tilde{G}(x)/\bar{Q}(x) = 2 - \{xQ(x)/\bar{Q}(x)\} - \{Q \times G_1(x)/\bar{Q}(x)\}.$$

By (iv) of Lemma 3.2.1 $xQ(x)/\overline{Q}(x) \rightarrow 0$ as $x \rightarrow \infty$. To the remaining integral Lemma 3.2.4 is still applicable since $\overline{Q}(x) \sim \frac{1}{2\mu} L(x) \rightarrow \infty$ by assumption. Hence (20) follows.

Part 3: (19) \Rightarrow (20) for $L(x) \rightarrow \mu_2 < \infty$.

Since Lemma 3.2.4 is not applicable we proceed in a slightly different fashion. Since $G_1 = C_1 \times H$ we write

$$G_{1}(x) - x = C_{1} \times H(x) - \frac{1}{\mu} x C_{1}(x) - x\{1 - \mu^{-1} C_{1}(x)\}$$

=
$$\int_{0}^{x} \left\{ H(x - y) - \frac{x - y}{\mu} \right\} dC_{1}(x) - \frac{1}{\mu} C_{2}(x) - x\{1 - \mu^{-1} C_{1}(x)\}.$$

An application of the renewal asymptote theorem yields that $H(x) - \frac{x}{\mu} \rightarrow \mu_2/(2\mu^2)$. Further $C_2(x) \rightarrow \mu_2$ by assumption while $C_1(x) \rightarrow \mu$; so $1 - \mu^{-1}C_1(x) = o(x^{-1})$ since $\mu_2 < \infty$. Combining terms we obtain by Lebesgue's theorem

$$G_1(x) - x \rightarrow \frac{\mu_2}{2\mu^2} \cdot \mu - \frac{\mu_2}{\mu} = -\frac{1}{2\mu}\mu_2.$$

§4. Proofs for the Lattice Case

We start again with a list of auxiliary quantities. Whenever convenient we denote by a(z) the generating function of a discrete sequence $\{a_n\}_0^\infty$, i.e. for |z| < 1

$$a(z) = \sum_{n=0}^{\infty} a_n z^n.$$

$$g_n = \sum_{m=1}^{\infty} \frac{1}{m} c_n^{(m)}; \quad g(z) = -\log\{1 - c(z)\},$$
(21)

$$h_n = \sum_{m=0}^{\infty} c_n^{(m)}; \qquad h(z) = \{1 - c(z)\}^{-1},$$
(23)

$$q_n = \sum_{m=n+1}^{\infty} c_m; \qquad q(z) = \{1 - c(z)\}/(1 - z).$$
(23)

§ 4.1.a. Preliminaries to the Proof of Theorem 5

We start with the following result

Lemma 4.1. Suppose μ the mean of $\{c_n\}_0^\infty$ is finite. For any $\alpha > 1$ and any $L \in RV_0$ the following two statements are equivalent as $n \to \infty$

(i)
$$q_n \sim n^{-\alpha} L(n)$$
,
(ii) $n\{h_n - h_{n+1}\} / \left\{h_n - \frac{1}{\mu}\right\} \rightarrow \alpha - 1$.

They both imply as $n \rightarrow \infty$

(iii)
$$h_n - \frac{1}{\mu} \sim \{\mu^2(\alpha - 1)\}^{-1} n q_n$$

Proof. Since $\mu = \sum_{m=1}^{\infty} mc_m$ is finite, $q(z) \rightarrow \mu > 0$ as $z \uparrow 1$. Now for $|z| \leq 1$, $z \neq 1$, $1 - c(z) \neq 0$ and $q(1) = \mu \neq 0$; by a theorem of Wiener [2, p. 258] for $|z| \leq 1$

$$\frac{1}{q(z)} = \sum_{n=0}^{\infty} \lambda_n z^n \quad \text{with } \sum_{n=0}^{\infty} |\lambda_n| < \infty.$$
(24)

Since $h(z)q(z) = (1-z)^{-1}$ we also have

$$h_n = \sum_{k=0}^n \lambda_k \tag{25}$$

and

$$h_n - \frac{1}{\mu} = -\sum_{k=n+1}^{\infty} \lambda_k.$$
(26)

Part 1: (i) \Rightarrow (ii); (i) \Rightarrow (iii)

From (i), (24) and [2, p. 258] it follows that for $n \rightarrow \infty$

$$\lambda_n \sim -\mu^{-2} q_n \sim -\mu^{-2} n^{-\alpha} L(n).$$

Using this, (ii) and (iii) follow from (25) and (26).

Part 2: (ii) \Rightarrow (i).

Since

$$\frac{1}{q(z)} = (1-z) h(z) = 1 + \sum_{n=1}^{\infty} (h_n - h_{n-1}) z^n$$

another application of [2, p. 258] yields for $n \rightarrow \infty$

$$q_n \sim -\mu^2 (h_n - h_{n-1})$$

or, using (ii) we get as $n \rightarrow \infty$

$$q_n \sim \mu^2(\alpha - 1) \left\{ h_n - \frac{1}{\mu} \right\}.$$

Since (ii) implies regular variation of $h_n - \frac{1}{\mu}$ [1], we get (i).

§ 4.1.b. Proof of Theorem 5

Part 1: (i) \Rightarrow (ii)

Relations (21) and (22) yield g'(z) = h(z) c'(z) for |z| < 1. Equating coefficients we obtain

$$ng_n = \sum_{m=1}^n mc_m h_{n-m}.$$

But then

$$1 - n g_n = \left\{ 1 - \frac{1}{\mu} \sum_{m=1}^n m c_m \right\} - \left(h_n - \frac{1}{\mu} \right) \sum_{m=1}^n m c_m + \sum_{m=1}^n m c_m \{ h_{n-m} - h_n \}$$

$$\equiv I_n - J_n + K_n$$

(a)
$$I_n = \frac{1}{\mu} \sum_{m=n+1}^{\infty} mc_m = \frac{1}{\mu} \left(nq_n + \sum_{k=n+1}^{\infty} q_k \right)$$

By assumption then $I_n \sim \frac{1}{\mu} \left(n q_n + \frac{1}{\alpha - 1} n q_n \right) \sim \frac{\alpha}{\mu(\alpha - 1)} n q_n.$

(b)
$$J_n \sim \mu \left(h_n \sim \frac{1}{\mu} \right) \sim \frac{1}{\mu(\alpha - 1)} n q_n$$
 by Lemma 4.1.

(c) It remains to show that $K_n = o(nq_n)$. To accomplish this let 0 < u < v < 1 and write

$$A = \{1, 2, \dots, n - \lfloor n v \rfloor\}, \quad B = \{n - \lfloor n v \rfloor + 1, \dots, n - \lfloor n u \rfloor\}, \\C = \{n - \lfloor n u \rfloor + 1, \dots, n\}$$

We apply Lemma 4.1. (ii) and (iii). Take n so large that for $m \in A \cup B$ and any given $\varepsilon \in (0, 1)$

$$h_{n-m} - h_n = \sum_{k=n-m}^{n-1} \{h_k - h_{k+1}\} \leq (\alpha - 1 + \varepsilon) \sum_{k=n-m}^{n-1} k^{-1} \left\{h_k - \frac{1}{\mu}\right\} \leq C_1 \sum_{k=n-m}^{n-1} q_k$$

where $C_1 > (1+\varepsilon) \{ \mu^2(\alpha-1) \}^{-1} (\alpha-1+\varepsilon).$ Now $K_n = (\sum_A + \sum_B + \sum_C) m c_m (h_{n-m} - h_n) \equiv K_1 + K_2 + K_3.$ Then

$$K_{1} \leq C_{1} \sum_{m \in A} m c_{m} \sum_{k=n-m}^{n-1} q_{k} \leq C_{1} \sum_{m \in A} m c_{m} \sum_{k=[nv]}^{n-1} q_{k}$$

Since for large *n*, $K_1 \ge 0$ and by assumption (i)

$$\sum_{k=[nv]}^{n-1} q_k / n q_n \to (\alpha - 1)^{-1} \{ v^{1-\alpha} - 1 \},$$

$$0 \le \limsup_{n \to \infty} K_1 / (n q_n) \le C_2 \{ v^{1-\alpha} - 1 \}$$

for a constant C_2 .

Similarly by the monotonicity of $\{q_k\}$

$$0 \leq K_2 \leq C_1 \sum_{m \in B} m c_m \sum_{k=n-m}^{n-1} q_k \leq C_1 \sum_{m \in B} m c_m q_{n-m} \cdot m$$
$$\leq C_1 \{n - [nu]\} q_{[nu]} \sum_{m \in B} m c_m.$$

We divide by nq_n , apply (i) and note that as $n \to \infty$, $\sum_{m \in B} mc_m \to 0$ since $\mu < \infty$. Hence $K_2 = o(nq_n)$.

For K_3 , put $M = \sup_k h_k$; then $K_3 \leq 2M \sum_{m \in C} m c_m$. By an argument similar to (a) and K_1 we find

$$0 \leq \limsup_{n \to \infty} K_3 / (n q_n) \leq C_3 \{ (1-u)^{1-\alpha} - 1 \}$$

for a constant C_3 . Hence

$$0 \leq \limsup_{n \to \infty} K_n / (n q_n) \leq C_2 \{ v^{1-\alpha} - 1 \} + C_3 \{ (1-u)^{1-\alpha} - 1 \}.$$

Let $u \downarrow 0$ and $v \uparrow 1$. This proves part 1.

Part 2: (ii) \Rightarrow (i). From (21) we notice that

$$q(z) = \exp \sum_{n=1}^{\infty} \left(\frac{1}{n} - g_n\right) z^n$$

to which [2, p. 258] can again be applied. We find by (ii) that $q_n \sim \left(\frac{1}{n} - g_n\right) \cdot q(1)$ which yields (i). \Box

The following auxiliary functions will be used together with those introduced in (21)-(23).

$$c_{1,n} = \mu^{-1} q_n \qquad c_1(z) = \{1 - c(z)\}/\mu(1 - z),$$

$$c_{2,n} = \sum_{m=n+1}^{\infty} c_{1,m} \qquad c_2(z) = \{1 - c_1(z)\}/(1 - z).$$

$$g_{1,n} = \sum_{m=1}^{n} m g_m \qquad g_1(z) = z g'(z)/(1 - z), \qquad (27)$$

$$w_n = \sum_{m=0}^{n} m c_m \qquad w(z) = z c'(z)/(1 - z), \qquad (28)$$

$$p_n = \sum_{m=0}^{n} w_{n-m} \left(h_m - \frac{1}{\mu}\right) \qquad p(z) = w(z) \left\{h(z) - \frac{1}{\mu(1 - z)}\right\}.$$

§ 4.2.a. Preliminaries to the Proof of Theorem 6

The next lemma brings together some elementary facts about the above defined sequences.

Lemma 4.2. Let $L \in RV_0$, $L(n) \rightarrow L(\infty) \leq \infty$. Then $\sum_{k=1}^{n} k^2 c_k \sim L(n)$ implies any of the following statements:

(i)
$$p_n \sim \mu \sum_{m=0}^n \left(h_m - \frac{1}{\mu}\right);$$

(ii)
$$\sum_{k=0}^{n-1} \{1 - \mu^{-1} w_k\} \sim \mu^{-1} L(n);$$

(iii) $\sum_{k=0}^{n} c_{2,k} \sim \left\{\frac{1}{2\mu} - \frac{1}{2L(\infty)}\right\} L(n);$
(iv) $\sum_{k=0}^{n} \left(h_k - \frac{1}{\mu}\right) \sim \left\{\frac{1}{2\mu^2} - \frac{1}{2\mu L(\infty)}\right\} L(n)$

Proof. The proofs of (i), (ii) and (iii) are easy; they follow from known facts about regularly varying sequences. See for example [1, 26]. To obtain (iv) first note that

$$\sum_{k=0}^{n} \left(h_{k} - \frac{1}{\mu} \right) = \sum_{m=0}^{n} h_{n-m} c_{2,m}$$

as follows from the generating functions. But then standard techniques using (iii) yield the result. $\hfill\square$

Lemma 3.1.1. (i) has an analogue for the lattice case.

Lemma 4.3. For all $n \ge 1$, $g_{1,n} \le n$.

Proof. Using generating functions again it easily follows that

$$n-g_{1,n}=\sum_{k=1}^{n}h_{n-k}\left\{\mu\sum_{m=0}^{k-1}c_{1,m}-\sum_{m=0}^{k}m\,c_{m}\right\}.$$

A summation by parts shows that the term inside the brackets is non-negative. \Box

§4.2.b. Proof of Theorem 6

Part 1: (i) \Rightarrow (ii).

From (27) and (28) one derives that

$$g_{1,n} = \sum_{m=0}^{n} w_{n-m} h_m$$

and hence

$$n - g_{1,n} = \sum_{k=0}^{n-1} \left(1 - \frac{1}{\mu} w_k \right) - \frac{1}{\mu} w_n - p_n.$$

Now apply Lemma 4.2. (ii), (i) and (iv).

Part 2: (ii) \Rightarrow (i). Define

$$t_{n} \equiv \left(\frac{1}{2\mu} - \frac{1}{2L(\infty)}\right) L(n) \sim n - g_{1,n} \equiv g_{2,n}$$

then (ii) implies by Lemma 4.3 and [8, p. 447] as $z \uparrow 1$

$$g_2(z) \sim (1-z)^{-1} t \{(1-z)^{-1}\}$$

However

$$(1-z)g_2(z)c_1(z) = zc'_1(z)$$

by easy algebra. Hence $c'_1(z) \sim t\{(1-z)^{-1}\}$ as $z \uparrow 1$. By [8, p. 447]

$$\sum_{m=0}^{n} m c_{1,m} \sim t_n,$$

and

$$n^2 c_{1,n} = o(t_n)$$

as $n \rightarrow \infty$.

However using the definition of $\{c_{1,n}\}$ we can derive

$$\sum_{m=0}^{n+1} m^2 c_m = 2\mu \sum_{m=1}^n m c_{1,m} + w_{n+1} - \mu n(n+1) c_{1,n+1}.$$

Since $w_{n+1} \to \mu$, $\sum_{m=0}^{n+1} m^2 c_m \sim 2\mu t_n + \mu \sim L(n)$, which was to be proved. \Box

§5. Applications to Random Walk Theory

Let $X_1, X_2, ...$ be independent with common distribution F. Let $S_0 = 0$ a.s. and for $n \ge 1$, $S_n = X_1 + ... + X_n$. Define the *first (upgoing) ladder index* of the random walk $\{S_n\}_0^\infty$ by

$$N = \inf\{n: S_n > 0\}.$$

Define the (first ascending) ladder height by S_N . We recall Spitzer-Baxter identities

$$1 - E[z^{N}] = \exp - \sum_{n=1}^{\infty} \frac{z^{n}}{n} P[S_{n} > 0],$$

$$1 - E[e^{-\lambda S_{N}}] = \exp - \int_{0+}^{\infty} e^{-\lambda x} d\left\{ \sum_{n=1}^{\infty} \frac{1}{n} P[0 < S_{n} \le x] \right\}.$$

§ 5.1. Ladder Index

Choose $C(x) = P\{N \leq x\}$, then we can identify the discrete harmonic renewal measure of C with

$$g_n = n^{-1} P(S_n > 0)$$

so that $1 - ng_n = P(S_n \le 0)$. We obtain the following information partly available in i.a. [17, 25].

Theorem 5.1. (i) Let $0 \leq \beta \leq 1$. Then $\sum_{m=1}^{n} P(N > m) \sim n^{1-\beta} L(n)$ where L is a s.v. sequence iff Spitzer's condition holds, i.e. $\lim_{m \to \infty} \frac{1}{n} \sum_{m=1}^{n} P(S_m > 0) = \beta;$

(ii) N has finite mean iff $\sum_{1}^{\infty} m^{-1} P[S_m \leq 0] < \infty$. Then

$$\mu = EN = \exp\sum_{1}^{\infty} \frac{1}{m} P[S_m \leq 0].$$

(iii) $1 < \beta$: $P[N > n] \sim n^{-\beta} L(n) \Leftrightarrow P(S_m \le 0) \sim \frac{1}{\mu} n^{1-\beta} L(n);$ (iv) EN^2 is finite iff $\sum_{n=1}^{\infty} P(S_n \le 0) < \infty$ and then $EN^2 = \mu \left\{ 1 + 2 \sum_{n=1}^{\infty} P(S_n \le 0) \right\}.$

Example 1. If for some normalizing constants $B_n \to \infty$, $S_n/B_n \xrightarrow{\mathscr{D}} Y_{\alpha}$ where Y_{α} is stable, then $\beta = P[Y_{\alpha} > 0]$. If we use the canonical representation then if $\alpha \neq 1$ [8]

$$\log E[e^{itY_{\alpha}}] = -\Delta |t|^{\alpha} \exp -i\frac{t}{|t|} \frac{\pi \,\delta}{2}$$

where $\Delta > 0$, $|\delta| \le 1 - |1 - \alpha|$, $0 < \alpha \le 2$, $\alpha \ne 1$. It is easy to show that

$$\beta = P[Y_{\alpha} > 0] = \frac{1}{2} + \frac{\delta}{2\alpha}$$

For $\alpha = 1$ see Emery [7] or Doney [5].

§ 5.2. Ladder Height

By identifying $C(x) = P(S_N \le x)$ and $G(x) = \sum_{1}^{\infty} \frac{1}{n} P\{0 < S_n \le x\}$ we get another illustration of our theorems. The role played by Spitzer's condition for N is played for S_N by the condition that for all t > 0

$$\lim_{x \to \infty} \sum_{n=1}^{\infty} \frac{1}{n} P\{x < S_n \leq x t\} = \beta \log t$$
(39)

which we call Sinai's condition in view of [22].

Theorem 5.2. (i) Let $0 \le \beta \le 1$. Then $\int_{0}^{x} P(S_N > u) du \sim x^{1-\beta} L(x)$ where L is s.v. iff Sinai's conditon holds.

(ii)
$$S_N$$
 has finite mean iff $D = \lim_{x \to \infty} \left\{ \log x - \sum_{1}^{\infty} \frac{1}{n} P[0 < S_n \le x] \right\}$ is finite. Then
 $E[S_N] = \exp\{\gamma + D\}.$

It would be interesting to compare this result with the approach of Lai [12], especially for higher moments of S_N . An alternative form for G(x) however seems necessary.

Example 2. In [18, 22] it is proved that if $X_i \stackrel{a}{=} Y_a$ for all *i* then Sinai's condition holds. We provide an easier proof using Lemma 3.1.2 and an approach of Heyde [11]. Put for a fixed t > 0

$$G_t(x) = G(t x) - G(x).$$

Then since $S_n \stackrel{\mathscr{D}}{=} n^{1/\alpha} Y_{\alpha}$

$$s\int_{0}^{\infty} e^{-sx}G_t(x) dx = \int_{0}^{\infty} f_s(y) P[y < Y_{\alpha} \le y t] dy$$

where

$$f_s(y) = s \sum_{n=1}^{\infty} n^{\frac{1-\alpha}{\alpha}} \exp[-syn^{1/\alpha}].$$

If we write

$$H(v) = \sum_{n \in [1, v^{\alpha}] \cap \mathbb{N}} n^{\frac{1-\alpha}{\alpha}}$$

then as $v \to \infty$, $H(v) \to \infty$ and $H(v) \sim \alpha(v-1)$ as $v \to \infty$.

Moreover

$$f_s(y) = s \int_{0+}^{\infty} e^{-syv} \, dH(v).$$

By an abelian theorem $f_s(y) \sim \frac{\alpha}{y}$ as $s \downarrow 0$. Moreover

$$|f_s(y)| = s \int_{0+}^{\infty} e^{-t} H\left(\frac{t}{sy}\right) dt \leq K s \int_{0}^{\infty} e^{-t} \left(\frac{t}{sy}\right) dt \leq K y^{-1}$$

for some constant K. We can apply Lebesgue's theorem to obtain that

$$\lim_{s \downarrow 0} s \int_{0}^{\infty} e^{-sx} G_t(x) dx = \alpha \int_{0}^{\infty} y^{-1} P[y < Y_{\alpha} \leq y t] dy.$$

The latter integral equals $\alpha P[Y_{\alpha} > 0] \log t$.

Karamata's theorem yields for $x \rightarrow \infty$

$$\int_{0}^{x} G_t(y) \, dy \sim x \, \alpha P[Y_{\alpha} > 0] \log t.$$

From this relation one derives as in [11] that

$$G_t(x) \rightarrow \alpha P[Y_{\alpha} > 0] \log t$$

so that Sinai's condition holds for $\beta = \alpha P[Y_{\alpha} > 0]$.

Example 3. Assume that the random walk is generated by X for which $E|X| < \infty$ and $EX = \mu > 0$. Then [17, p. 207] $\sum_{n=1}^{\infty} n^{-1} P[S_n \le 0] < \infty$ so that $EN < \infty$. By Wald's identity then $E[S_N] = \mu \cdot EN$.

By Theorem 5.2 (ii)

$$\lim_{x\to\infty} \{\log x - G(x)\} = \log ES_N - \gamma.$$

Hence

$$\sum_{n=1}^{\infty} \frac{1}{n} P[S_n \leq x] - \log x = \sum_{n=1}^{\infty} \frac{1}{n} P[S_n \leq 0] + G(x) - \log x$$
$$= \log EN + G(x) - \log x$$
$$\to \log EN + \gamma - \log ES_N$$
$$= \gamma - \log \mu.$$

This sharpens somewhat a result of Heyde [11] where it was shown that

$$\sum_{1}^{\infty} \frac{1}{n} P[S_n \leq x] \sim \log x.$$

The latter result should be combined with the consequences of Lemma 3.1.1.

§6. Concluding Remarks

§6.1. Lemma 4.1. links the behaviour of a renewal sequence to the tail behaviour of the underlying generating discrete distribution. The complete result will be published separately [16].

§6.2. Instead of assuming slowly varying functions in Theorems 2 and 4 we could have restricted ourselves to functions belonging to the subclass Π of slowly varying functions introduced in [3] by de Haan and essentially used in Lemma 3.1.3. Results of this type will be discussed in a forthcoming paper.

Acknowledgment. The authors take great pleasure in thanking the referees for their comments.

References

- 1. Bojanic, R., Seneta, E.: A unified theory of regularly varying sequences. Math. Z. 134, 91-106 (1973)
- 2. Borovkov, A.A.: Stochastic Processes in Queueing Theory. Berlin-Heidelberg-New York: Springer 1976
- 3. De Haan, L.: On regular variation and its applications to the weak convergence of sample extremes. Math. Centre Tracts. Amsterdam 1970

- De Haan, L.: An Abel-Tauber theorem for Laplace transforms. J. London Math. Soc. 13, 537– 542 (1976)
- 5. Doney, R.A.: A note on a condition satisfied by certain random walks. J. Appl. Probab. 14, 843-849 (1977)
- Embrechts, P.: A second order theorem for Laplace transforms, J. London Math. Soc. 17, 102-106 (1978)
- 7. Emery, D.J.: On a condition satisfied by certain random walks. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 125-139 (1975)
- 8. Feller, W.: An introduction to probability theory and its applications, Volume II, 2nd ed. New York: Wiley 1971
- 9. Feller, W.: Fluctuation theory of recurrent events. Trans. Amer. Math. Soc. 67, 98-119 (1949)
- 10. Geluk, J.L., De Haan, L.: On functions with small differences. Preliminary report (1980)
- 11. Heyde, C.C.: Some renewal theorems with application to a first passage problem. Ann. Math. Statist. 37, 699-710 (1966)
- 12. Lai, T.L.: Asymptotic moments of random walks with applications to ladder variables and renewal theory. Ann. Probab. 4, 51-66 (1976)
- Lamperti, J.: An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc., 88, 380-387 (1958)
- 14. Mohan, N.R.: Teugels' renewal theorem and stable laws. Ann. Probab. 4, 863-868 (1976)
- 15. Nagaev, S.V.: Some renewal theorems. Theory Prob., 13, 547-563 (1968)
- 16. Omey, E.: A note on discrete renewal sequences. Forthcoming.
- 17. Prabhu, N.V.: Stochastic Processes. New York: MacMillan 1965
- 18. Rogosin, B.A.: On the distribution of the first jump. Theory Prob., 9, 450-465 (1964)
- 19. Rogosin, B.A.: The distribution of the first ladder moment and height and fluctuations of a random walk. Theory Prob., 16, 575-595 (1971)
- 20. Rosén, B.: On the asymptotic distribution of sums of random variables. Ark. Math., 4, 323-332 (1960)
- 21. Seneta, E.: Regularly varying functions. Lecture Notes Math., 508, Berlin-Heidelberg-New York: Springer 1974
- 22. Sinai, Ya.G.: On the distribution of the first positive sum for a sequence of independent random variables. Theory Prob., 2, 122-129 (1957)
- Smith, W.L.: On the weak law of large numbers and the generalized elementary renewal theorem. Pacific J. Math., 22, 171-188 (1967)
- 24. Stam, A.J.: Regular variation of the tail of a subordinated probability distribution. Adv. in Appl. Prob., 5, 308-327 (1973)
- 25. Spitzer, F.: Principles of random walk. New York: Van Nostrand 1964
- Weissman, I.: A note on Bojanic-Seneta Theory of regularly varying sequences. Math. Z., 151, 29-30 (1976)

Received January 22, 1981; in revised form December 7, 1981