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Summary. If  C is a distr ibution function on (0, oo) then the ha rmonic  
oo 

renewal function associated with C is the function G(x)=~ n-1 Cr We 
J 

l ink the asympto t ic  behav iour  of G to that  of  1 - C .  Applicat ions to the 
ladder index and the ladder  height of a r a n d o m  walk are included. 

w Notations, Introduction 

Assume C(x) to be a dis tr ibut ion function on (0, ~ )  with C ( 0 + ) = 0 ;  let c(s) be 
its Laplace-Stiel t jes t ransform (LST) i.e. for Re s > 0  

oo 

c(s) = ~ e-~dC(x). 
0 

For  convenience LST's  will be denoted  by corresponding lower case letters. 
For  s > 0 then 

1 - c (s) = exp {log 1-1 - c (s)] } 
oo 

=exp-- ~_l ![C(S)]n 

= e x p -  ~ e-*~dG(x) 
0 

1 
where G(x)= ~ n C(")(x) is non-decreasing,  r ight-cont inuous  and satisfies 

G(0 + )  = 0. Hence  for Re s > 0 

1 -c(s)=e -g(~) (1) 

since (1) holds for s$0  by m o n o t o n e  convergence.  C(x) will be non-defect ive 
iffG(oo) = oo. 
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Functions of the form ~ a,C(")(x) are often called generalized renewal 
n - - 0  

functions. If a n = 1 for all n one obtains the renewal function 

H(x)= ~ C~")(x) 
n ~ 0  

which will be extensively used in the sequel. If  a o = 0  and a,=n-1  (n> 1) we get 
the harmonic renewal function 

G(x)= ~ _1 C(,)(x ) (2) 
n = l  ~ 

to which this paper is devoted. 
Similarly for a discrete distribution {c,, neN} we define the (discrete) har- 

monic renewal sequence 

1 (.) 
g~ = - c~ 

n = l  n 

where {c~ ), meN} is the n-fold convolution of the original sequence. 
We investigate the asymptotic connection between G(x) and 1 - C ( x )  for 

x ~  oo. Basically we focus attention on so-called regular behavior. 

Definition. A measurable function R: IR + --*IR + varies regularly at infinity (r.v.) 
if there exists a pelR such that for all xelR + R(tx)/R(t)--,x ~ as t~oo .  The 
number  p is called the exponent of regular variation. If p = 0, R is called slowly 
varying (s.v.). The family of r.v. functions at infinity with exponent p is denoted 
by RVp. 

Generalized renewal functions have been studied in a number  of papers 
[11, 15, 23, 24]; for renewal functions we refer i.a. to [8, 17, 25]. For r.v. 
functions we refer to [3, 8, 21]. For  r.v. sequences see [1, 26]. 

The next paragraph contains our main theorems. Proofs are given in w 3, 4. 
In w we apply our results to random walk theory. Some concluding remarks 
are given in w 6. 

w Main Theorems 

We assume that C(oo)= 1 or G(oo)= oo. Euler's constant is denoted by 7. If the 
oo 

mean of C is finite, we write # =  ~ xdC(x); similarly if C has a finite second 
0 

moment  it is denoted by # 2 -  x2dC(x) �9 
0 

Theorem 1. Let c~e[0, 1) and L e R V  o. Then the two statements are equivalent as 
x---coo 

(i) 1 - C(x)~x-~L(x) ,  
(ii) G(x) - cr log x + log L(x)--*o:7 - log F(1 - cr 
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Theorem 2. Let  L 6  R V o. Then the two statements are equivalent as x--,  oo 

x 

(i) ~{1 - C(y)} d y ~ L ( x ) ,  
0 

(ii) G (x) - log x + log L(x)  ~ 7. 

Moreover  C has f in i te  mean # iff 

D = lim {log x - G(x)} < oo 
x ~ o o  

and t h e n / 2 = e x p  {y+D}.  

Theorem 3. Let  C be non-lattice. Le t  ~e(1, 2) and L e R V  o. Then the two state- 
ments are equivalent as x ~  oo 

(i) 1 -  C ( x ) ~ x - % ( x ) ,  
(ii) G(x) - log x + log # -  y ~ {#(c~ - 1)} - 1 x 1 - %(x ) .  

Theorem4. Let  C be non-lattice. Le t  L ~ R V  o such that L ( x ) ~ L ( o o ) < ~ .  Then 
the two statements are equivalent as x---, oo 

(i) i y 2 d C ( y ) ~ L ( x ) ,  
o 

1 
(ii) x -  o~ y d G ( y ) ~ 2 ~  L(x). 

For  the next theorem we assume { G , n ~ N }  to be such that the greatest 
comm on  divisor of those n for which c n > 0  equals 1. 

Theorem 5. Let  C be discrete as above. Le t  ~ >  1 and L ~ R V  o. Then the following 
two statements are equivalent as n ~  oo 

(i) ~ G ~ n  ~L(n), 
k . - n +  1 

1 1 
(ii) n - g . ~  ~ n - % ( n ) .  

Finally the analogue o f  Theorem 4. 

Theorem 6. Let  C be discrete. Le t  L 6 R V  o such that L(x)~L(oo)_< oo. Then the 
following two statements are equivalent as n--+ oo 

(i) ~ k 2 G ~ L ( n ) ,  
k = l  

(ii) n - , . = l  mg , .~  2 L ( ~  

w Proof for the Non-Lattice Case 

To simplify future references we list here the auxiliary functions with corre- 
sponding transforms when useful. 
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G i (x) = i ydG(y) 
0 

g~(s)= -g'(s) ,  

1 
d ( x ) = x - G ~ ( x )  ~ ( S ) = s - g l ( s  ), 

M ( x ) = i { 1 - C ( y ) } d y  m(s)=s-Z{1-c(s)} ,  
0 

x 

C l ( x ) = j y d C ( y  ) C1 (S) = - - C ' ( S ) ,  

0 

x 

c ~ (x) = S y~ d C(y) c~ (s) = c"(s), 
0 

H ( x ) -  C~"~(x) h(s) = {1 - c(s)}- ~, 
0 

x 

~7(x) =1# !{1 - C(y)} dy #(s) =#-  ira(s), 

V(x) = G (x) - log x + log # - ~. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

~ 3.1.a. Preliminaries to the Proof of Theorems 1 and 2 

The  first l e m m a  is i n t e r e s t i ng  in  its o w n  right.  

Lemma 3.1.1. (i) g x > 0 ,  Gz(x)<x; 
(ii) there exists a constant K such that for all 

+ log {max  (1, x)}. 

Proof (i) S ince  - g(s) = log [1 - c(s)], g l (s)  = - e g(s) c'(s). H e n c e  

c~ (s)  
g l  ( s )  - 1 - c ( s )  = c l  (s) . h ( s ) ,  

x 
so tha t  G l ( x ) = C l x H ( x ) = j C l ( x - y ) d H ( y ) .  

0 
= re(s)h(s) so tha t  also x = M  x H(x). 

H e n c e  

O n  the 

x>O, G(x)<K 

o the r  h a n d  s -  ~ 

X - - G l ( X  ) = M  x H ( x ) -  C 1 x H ( x ) = ( M -  Cl) x H(x). 

Obse rve  tha t  

M (x) - C 1 (x) = x { 1 - C(x)} 

to c o n c l u d e  tha t  x - G 1 (x) > 0. 
(ii) F i r s t  let  x e [ 0 ,  1]. T h e n  G(x)<G(1). Let  I11, I12 . . . .  be  i.i.d, wi th  d i s t r ibu -  

t i o n  C. By a resul t  o f  R o s 6 n  [20]  there  exists a c o n s t a n t  K o n o t  d e p e n d i n g  o n  
n for which  
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G(1)=~ n - l P  d 1 Y~[0,1] < K  o n-3/2<oo. 

Now x > 1. From the definition of G 1 then 

x 

G(x)=x-  l G l ( x ) - l i m x - l G x ( x ) +  Sy-2Gl(y)dy.  
x,LO 0 

But Gl(x)<=xG(x ). Hence by (i) above 

1 

G(x)~  l-]- S y -  2Gl(fl)dfl-l-i y 2 a l ( y ) d y  
o 1 

or 

G(x) < 1 + G(1) + log x. 

Indeed by Fubini's theorem 

1 1 

y y-2 G a (y) dy = S(1 - x) dG(x) < G(1). 
0 0 

The result follows. [] 

The key to the proof of Theorem 1 lies in the following result of de Haan 
[4, 6, 10]. 

Lemma 3.1.2. Let B: (0, oo)~(0, oo) be non-decreasing, right-continuous with 
B(0+)=0 .  Assume b(s) finite for all s>0.  Then for any c>=O and L ~ R V  o 
the following statements are equivalent 

(i) Vx>0:  lira {B( tx ) -B( t ) } /L( t )=c logx  
t~oO 

( i i )  V x ~ O :  Xim~b(tx)--b(t))/L(]~t = - - c l o g x ~  
t+o  \ t !  

Both imply lim {B(t) - b(1/t)}/L(t) = 7. 
t~oo 

w Proof of Theorems 1 and 2 

Part 1: (i)~(ii). By Karamata's theorem in case either 0 < ~ < 1  or c~=1 (i) is 
equivalent to 

1-c(s)~K~s~L(1/s)  as s$0, 

K ~ = { ~  (1-~)  ifif O_<-.<lc~=l. 

But then as s~0 

g(s) + c~ log s + log L(1/s)~ - log K s. (11) 
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This implies for any t > 0 as s+0 

g(st) - g(s)--+ - c~ log t. 

F r o m  L e m m a  3.1.2. this implies that as x--* oo 

G ( x ) - g ( 1 / x ) ~  7. 

Hence  (ii) follows from the latter relat ion and (11). 

Par t  2: ( i i)~(i) .  Obviously (ii) implies that for t > 0  as x ~  

G(x t ) -  G ( x ) ~  log t. 

By L e m m a  3.1.2, as s~0 

P. Greenwood et al. 

(12) 

G(1/s ) -g(s )~7 .  

This implies (11) by (ii). But then by (12) 

1-c(st) 
= exp - {g(t s) - g(s)} -~t ~ 

1 - e (s )  

or for some LI~RV o, 1-c(s)=s~Lx(l/s). By the first part  of the p roof  as s$0 

g(s)+~logs+logLx(1/s)--+ - l o g  K~. 

Compare  this expression with (11) to see that  La(x)~L(x) for x--+oo so that  (i) 
follows. 

Par t  3: Remaining s ta tement  in Theorem 2. 
C has finite mean  i f f L ( x ) ~ #  in (i). This is then equivalent  to 

G(x)-logx-+7-1og#. [] 

w Preliminaries to the Proofs of Theorems 3 and 4 

We first rephrase statements (i) in Theorems 3 and 4 in alternative forms. 

Lemm a  3.2.1. Let LieRVo(i= 1, 2, 3) then for X-+oo 

(i) /f 1 < ~ N 2  then 1 - C(x)~x-~Ll(x)<~l - C(s) 
(ii) /f 1 < e =< 2 then 

x 1 
c2(x)~~x2-~L2(x)~S [1 - t(y)] d y ~ ( ~  1_ 

o 1) 

(iii) 
lent; 

(iv) 

1 
xl-~'LI(x); ~(~- 1) 

X 2 ~L2( x ) ;  

/f 1<c~<2  and Ll(x)=(2-cOL2(x ) then all four statements are equiva- 

x { 1 - C(x)} 
/ f ~ = 2  then C2(x)~L3(x) implies x 

~{1  - t ( y ) }  a y  
0 

D0. 
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Proof  Most  s ta tements  are classical [8, 21]. For  (ii) and (iv) we refer to 
L e m m a 2 . 1  in M o h a n  [14]. [ ]  

Next  we restate the conclusions (ii) in terms of the function 

V(x) = G (x) - log x + log k t -  7. (13) 

L e m m a  3.3.2. Let  e~(1,2) and let L 4 s R V  o. Then the two statements are equiva- 
lent as x ~ oo 

(i) 6 (x) = x - G 1 (x) ~ (~ - 1) x z -  ~L4(x); 

(ii) V(x) ~ (2 - ~) x 1 - ~L4(x ). 

Proof  The basic connect ion  between G and V can easily be derived f rom the 
definitions of  G, V a n d  G~" for all x > 0  

x 

j V(y) ,iy = ~(x)  + x V(x). (14) 
o 

But then the impl icat ion ( i i )~( i )  is obvious.  

To  prove  ( i )~( i i )  we first show that  (i) implies that  C has a finite mean.  By 
T h e o r e m  2 this then yields V ( x ) ~ O  as x ~ o o .  N o w  (i) and the Abel ian  theorem 
for LST 's  proves  the existence of an L s ~ R V  o for which ~(s)=s~-ZLs(1/s) .  By 
(1) and (4) then s i +g , ( s )=s  ~ 2Ls(1/s). By (1) for s,~0 

1 s [ 1 - c ( s ) ] ' = s ~ - l g s ( 1 / s ) .  
1 - c ( s )  

Since ~ > 1 ,  the left side tends to zero and Lamper t i ' s  theorem [13] applies;  
there exists a L 6 e R V  o for which 1 -  c(s )=sL6(1/s  ). Substi tute back  in the above  
equa t ion  to see that  for x > 1 

L'~(x) 
= x - ~ L s ( x )  

L 6 ( x )  

or L 6 ( x ) = L 6 ( 1 ) e x p  Y ~Ls (y )dy -~L6(1 )exp  S Y - ~ L s ( y ) d y < ~ 1 7 6  since ~ > 1 .  
1 1 

1 - c ( s )  
Hence  L 6 ( x ) ~ 2 < o o  or - - - , 2 < o o  as s$0. But then C has finite mean  

s 

2 = # .  We go back  to (14). Equa t ion  (14) has the converse ( 0 < x < y )  
Y 

V (x) - V (y) = ~ t -  2 d(t)  dt - x - 1  G(x) + y - 1  d(y). 
x 

U p o n  taking y--+ oo we get 

co 

V ( x )  = j t -  2 r ,it - x -  1 d ( x ) .  
x 

But then ( i )~( i i )  follows. [ ]  
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Lemma 3.2.3. The following relations hold 

d x C(x)=iydC(y) ,  (15) 
0 

2 S { 1 - C ( y ) } d y - x { 1 - C ( x ) } = G ( x ) +  ~ { 1 -C(x - y ) } dGI (y ) .  (16) 
0 0 

Proof (15) follows from ~(s)g(s)= -U(s). For by (1) and (3) 

#s~(s) = 1 - c(s) = exp - g(s). 

Differentiate this relation to obtain 
C'(S) = - -  C(S) { S -  1 _~ g ' ( s ) }  = - -  C(S) g(S),  

The other relation (16) follows from (15) by an integration by parts and 
obvious rearrangements. [] 

Our final preliminary result is used to estimate the last integral in (16). The 
result only slightly generalizes Theorem 2.1. of Mohan [14]. 

cO 

Lemma 3.2.4. Assume Q(x)>=O, bounded, non-increasing and such that ~ Q(x)dx 
~ 0 ( 3 .  0 

Assume R(x)>=0, non-decreasing, non-lattice and such that 

lim {R(x + 1)-R(x)} =A~(0, ~). 
x ~ o c )  

X 

I f  for some be[0, 1), ~ Q(y)dy6RV~ then as x--+~ 
0 

Q x R(x),.~A i O(y) dy. 
o 

Typically R is similar to a renewal function. 

w 3.2.b. Proof of Theorem 3 

In view of Lemmas 3.2.1 and 3.2.2 it suffices 
(1 <c~< 2) 

G(x) ~ {#(2 - ~)} -1 x 2- ~ L(x) 

and 

C2(x ) ~ c~(2 - c 0-  1 X2-~L(x) 

Part 1: (17)~(18). Clearly (17) implies that as s J,0 

~(s) ~1_ r ( 2 -  ~) s ~- 2L(1/s). 
# 

to prove the 

a s  X - + O 0  

a s  X---~ o0.  

equivalence of 

(17) 

(18) 
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As in the proof of (15), ~(s)~ -~'(s)  as s+0 since ~(0)= 1. 
Or by integration as s$0 

1 - ~(s) ~ {# (~ -  1)}- 1 F ( 2 _  ~) s ~- 1L(1/s). 

This is equivalent via Karamata's Tauberian theorem to 

1 - ~ ( x ) ~  { # ( ~ -  1)}-~x ~-~L(x). 

Now apply (i) of Lemma 3.1.2. 

Part 2: (18)~(17). For convenience put 
By (16) we obtain 

x 

1 - C(x )=Q(x)  and Q(x)=~Q(y)dy .  
0 

2(~(x) - xQ(x) = G(x) + Q x G 1 (x). 

(18) together with Lemma 3.2.1 yields xQ(x)/O_(x)~2-c~. To estimate Q x Gl(x ) 
we use Lemma 3.2.4 with R = G  1. As was noted in the proof of Lemma 3.1.1 (i), 
G 1 =C1 x H  so that 

x x+l  
G I ( x + I ) - G a ( x ) = ~ { H ( x + I - y ) - H ( x - y ) } d C I ( Y ) +  ~ H ( x + I - y ) d C I ( Y ) .  

0 x 

1 
By Blackwell's theorem the first integral tends to - C a ( o o ) = l .  The second is 

# 
bounded by H ( 1 ) { C I ( x + I ) - C I ( X ) } ~ O  as x ~o o .  We conclude that (18) im- 
plies for x---, oo 

G ( x ) / Q ( x ) ~ 2 - ( 2 - c ~ ) - l = c ~ - l .  [] 

w 3.2.c. Proof  of  Theorem 4 

Observe that (i) is of the form 

C 2 ( x ) ~ L ( x  ) (19) 

while the expression for G is 

G(x) = x - G 1 (x) ~ ; L(x). (20) 

Part 1: (20)o(19). Clearly (20) implies that ~,(s)~(2#) aL(1/s). From here on 
the proof is the same as in Part 1 of w 3.2.b. 

Part 2: (19)~(20) for L(x )~oo .  
With Q and (~ as defined in w 3.2.b. Part 2 we obtain 

G(x)/Q(x) = 2 - { x Q(x)/Q(x) } - { Q x G l (x)/Q(x) }. 



400 P. Greenwood et al. 

By (iv) of Lemma 3.2.1 xQ(x)/O.(x)~O as x ~ o o .  To the remaining integral 

Lemma 3.2.4 is still applicable since Q ( x ) ~ L ( x ) ~ o o  
4 

by assumption. Hence 
(20) follows. Air 

Part 3: (19)o(20) for L(x) - -~#2< o(3. 
Since Lemma 3.2.4 is not applicable we proceed in a slightly different fashion. 
Since G 1 = C 1 x H we write 

1 
Gl(X ) - x  = C 1 • H ( X ) - u  x Cl(x ) - x { 1  - # -  1 C l ( X ) }  

An application of the renewal asymptote theorem yields that H(x) 

x ~#z/(2#2). Further C2(x)~# 2 by assumption while Cl(X)~#;  so 1 
# 

_ # - t  C l(x)=o( x -  1) since #2 < o0. Combining terms we obtain by Lebesgue's 
theorem 

Gi(x ) #2 #2_ 1 
-- X--*~-# 2 " #  # 2 #  #2. [ ]  

w 4. Proofs for the Lattice Case 

We start again with a list of auxiliary quantities. Whenever convenient we 
denote by a(z) the generating function of a discrete sequence {a,}~, i.e. for 
Izl < 1 

a(z)= ~, a,z". 
n=0 

__ oo L (m). 

gn --m~_ l m cn ' 

h,= ~ e (m)" v n 

m=0 

q , =  ~ %; 
m = n +  1 

g(z) = - log { 1 - c(z)}, (21) 

h(z) = {1 - c(z)}- 1, (23) 

q ( z )  = {1  - c ( z ) }  / ( 1  - z) .  (23) 

w 4.1.a. Preliminaries to the Proof of Theorem 5 

We start with the following result 

Lemma 4.1. Suppose # the mean of {c,}~ is finite. For any ~> 1 and any L e R V  o 
the following two statements are equivalent as n--*oo 
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(i) q, ~ n-  ~ L(n), 

(ii) n { h , - h , + l }  / { h , - 1 } - - * 7 - 1 .  

They both imply as n--,oo 

(iii) h, 1 {# 2 (~_ l )} - l n q , .  
# 

Proof  Since # =  ~ mc m is finite, q ( z ) ~ # > 0  as zT1. Now for Izl<l,  z + l ,  1 
m = l  

- c ( z )# :  0 and q ( 1 ) = # +  0; by a theorem of Wiener [2, p. 258] for Iz I __< 1 

1 _ ~ 2 ,  z" with ~ I2,l<oo. (24) 
q(z) , = o ,= o 

Since h(z) q(z) = (1 - z)- 1 we also have 

and 

Part 1" (i)~(ii); (i)~(iii) 

h, = ~ 2 k 
k = 0  

(25) 

Part 2: (ii)~(i). 
Since 

From (i), (24) and [2, p. 258] it follows that for n~oo  

.~n~ __#--2 q ~ __#--2 n-~L(n). 

Using this, (ii) and (iii) follow from (25) and (26). 

or, using (ii) we get as n--*c~ 

1 
- ( 1 - z ) h ( z ) = l  + ~ (h -h~_1)z"  

q(z) ~= 1 

another application of [2, p. 258] yields for n ~  oo 

q n  ~ - -  # 2 ( h n  - hn- ~) 

Since (ii) implies regular variation of h _ 1  [1], we get (i). [] 

w 4.1.b. Proof  of  Theorem 5 

Part 1 : (i)~(ii) 
Relations (21) and (22) yield g'(z)=h(z)c '(z)  for Iz[ < 1. Equating coefficients 

we obtain 

1 
hn - ~ 2k. (26) 

# k=n+l 
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ngn= ~ mc,.hn_,,,. 

But then 

mc,. - m% + mcm{hn_m-h.} 1 - n g ~ =  1 - ~  =1 1 ~=1 

- I . - J ~ + K .  

(a) 1.= 1 ~ mc, .=-nqn+ ~ qk �9 
m = n + l  # k = n + l  

1(,_1) By assumption then I . ~  nq~+ n% ~(ct-1) nq~. 

(b) Jn~/~ h . ~  #(c~-l) nq,, by Lemma 4.1. 

(c) It remains to show that K.  = o(n q.). To accomplish this let 0 <u  < v < 1 
and write 

A = { 1 , 2  . . . . .  n - [ n v ] } ,  B = { n - [ n v ] + l  . . . . .  n - [ n u ] } ,  

C = { n -  [nu] + 1 . . . . .  n} 

We apply Lemma 4.1. (ii) and (iii). Take n so large that for m~AuB and any 
given e~(0, 1) 

h.-m-h.= 2 {hk--hk+~}<=(~ 2 k-x hk-- ~C1 2 qk 
k = n - - m  k = n - - m  k = n - m  

where C 1 >(1 +e) {kt2(~ - 1)}- 1(~__ 1 @g). 
Now Kn=(~+~+~)mc,.(hn_, .-hn)-K 1 + K 2 + K  3. Then 

A B C 

n - 1  n - 1  

KI<=C1 2 mc,,, ~ qk<C1 2 mc,. ~ qk. 
r a E A  k = n -  rn m ~ A  k =  [nv] 

Since for large n, K 1 > 0  and by assumption (i) 

n--1 

qk/nq.~(a-1)- a {vl-~-  l }, 
k = [nv]  

O<limsup K1/(nqn) < C2{v 1 ~- 1} 
n ~  oo 

for a constant C 2. 

Similarly by the monotonicity of {qk} 

n--1 

O<=K2<=C 1 ~ mc., ~ qk<C1 ~ mcmq .... .m 
m E B  k = n - - m  m ~ B  

~Cl(n--[nu])qL~ ~ ~ mCm. 
m ~ B  
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We divide by nqn, apply (i) and note that as n--*oo, ~ mcm~O since /~<oo. 
Hence K 2 = o (n  qn). ,,~B 

For K 3, put M=suphk ;  then K3<2M ~ m%. By an argument similar to 
(a) and K 1 we find k ,,~c 

O<limsupgj(nq,)<= C3{(1 - u ) l - ~ -  1} 
11400 

for a constant C 3. Hence 

0_<limsup K,/(nq,)< C2{v 1 ~ -  1} + C3{(1 - u )  1 - ~ -  1}. 
n~oo 

Let u+0 and v]'l. This proves part 1. 

Part 2: (ii)~(i). From (21) we notice that 

oo 

q ( z , : e x p  l 

to which [2, p. 258] can again be applied. We find by ( i i ) tha t  q ,~  (~ 

- g , )  .q(1) which yields (i). [] 

The following auxiliary functions will be used together with those in- 
troduced in (21)-(23). 

Cl,n=] 2 i qn CI(Z ) = { 1  --C(Z)}/I~(1 -- Z), 

C2.n= ~ Cl.rn C2(Z)={1--Cl(Z)}/(l--z). 
re=n+ i 

gl,n -= ~ mgm gl(z)=zg'(z)/(1--z), 
m = l  

w,= ~ mc m w(z)=ze'(z)/(1-z), 
m=O 

: 1 
 tz, 

(27) 

(28) 

w 4.2.a. Preliminaries to the Proof of Theorem 6 

The next lemma brings together some elementary facts about the above de- 
fined sequences. 

Lemma 4.2. Let L~RVo, L(n)~L(oo)<_oo. Then 
the following statements: 

(i) p, ~/~ h m - ; 
m ~ 0  

• k 2ck~L(n ) implies any of 
k~l  
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n 1 

(ii) ~, {1--#-IWk }~#  1L(n); 
k=O {;1} 

(iii) k=oC2'k~ 2L(-oe) L(n); 

(iv) k=o h k - ;  - 2;2 2 L(o ) L(n). 

Proof The proofs of (i), (ii) and (iii) are easy; they follow from known facts 
about regularly varying sequences. See for example [1, 26]. To obtain (iv) first 
note that 

(h 
k=O m = 0  

as follows from the generating functions. But then standard techniques using 
(iii) yield the result. [] 

Lemma 3.1.1. (i) has an analogue for the lattice case. 

Lemma 4.3. For all n>=l, gl,,<n. 

Proof Using generating functions again it easily follows that 

n- -g l , ,=k~,  h,_k l~ ~ cl,m-- mcm �9 
= 1  m = 0  m = 0  

A summation by parts shows that the term inside the brackets is non- 
negative. [] 

w 4.2.b. Proof of Theorem 6 

Part 1: (i)~(ii). 
From (27) and (28) one derives that 

g l , ,=  ~, w, ,,h m 
r a = 0  

and hence 

n-g1, ,= - ~  k] --Pn" k = 0  --~ Wn 

Now apply Lemma 4.2. (ii), (i) and (iv). 

Part 2: (ii)~(i). Define 

--gl,n=g2,,  

then (ii) implies by Lemma 4.3 and [8, p. 447] as z T 1 

g2(z) ~(1 - z ) -  1 t{(1 - z )  1}. 
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However 
(1 - z) g2(z) Cl(Z ) = Z Ctl(Z) 

by easy algebra. Hence c'l(z)~t{(1-z)-1} as z1"1. By [8, p. 447] 

m C l , m ~ t  n, 
m = 0  

and 
n 2 C l . n = O ( t , , )  

a s  n---> oo .  

However using the definition of {c1,,} we can derive 

n + l  

m~cm=2# mcl.m+w,,+l--gn(n+l)cl,.+ 1. 
m=O m ~ l  

. + 1  

Since w,+ 1~#, ~ m s Cm~2pt ,+#~L(n ), which was to be proved. 
m = 0  

[] 

w 5. Applications to Random Walk Theory 

Let X1,X  2, ... be independent with common distribution F. Let S o = 0  a.s. and 
for n > l ,  S , = X I + . . . + X , .  Define the first (upgoing) ladder index of the 
random walk {S,}~ by 

N=inf{n :  S, >0}. 

Define the (first ascending) ladder height by S N. We recall Spitzer-Baxter 
identities 

c~ Z n 
1 - E[z u] = exp - ~ - -  P[S, > 0], 

n = l  n 

1-E[e-ZS~']=exp- ~ e-~Xdl ~ -P[O<S,<-x];. 
o+ ( , : i n  - ) 

w Ladder Index 

Choose C(x)=P{N<x}, then we can identify the discrete harmonic renewal 
measure of C with 

g,=n-  l P(S,>O) 

so that 1 - n  g, = P(S, =__ 0). We obtain the following information partly available 
in i.a. [17, 25]. 
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Theorem 5.1. (i) Let 0 < f l < l .  Then ~, P ( N > m ) ~ n  1 PL(n) where L is a s.v. 
m - 1  

; i  sequence iff Spitzer's condition holds, i.e. lira P(S m > O) = ~; 
n r n = l  

c o  

(ii) N has finite mean iff ~ m - 1 p[sm < O] < oo. Then 
1 

C O l ;  

# = EN = exp ~ - -  P[S m <= 0]. 
1 m 

(iii) 1 <fl:  P [ N > n ]  ~n-~L(n)<=~P(Sm<=O)~lnl-~L(n); 
P 

~X3 

(iv) EN 2 is finite iff ~ P(S n <0) < oo and then 
1 

N 
Example I. If for some normalizing constants Bn~OO, S , / B , ~  Y~ where Y~ is 

stable, then f i=P[Y~>0] .  If we use the canonical representation then if ~+1 
[8] 

t ~z6 
l~  )[ 2 

where A >0, ]~ ]=< l - [ l - cG  0 < ~ < 2 ,  c~=t= 1. It is easy to show that 

1 
fi=P[Y~>O] = ~ 4  2~" 

For ~ = 1 see Emery [7] or Doney [5]. 

w 5.2. Ladder Height 

oo 1 
By identifying C(x)=P(SN<x ) and G ( x ) = ~ - P { 0 < S ,  < x} we get another illus- 

i n 

tration of our theorems. The role played by Spitzer's condition for N is played 
for S u by the condition that for all t > 0 

lim ~ 1 - p { x < S , < - x t } = f l l o g t  (39) 
x ~ o ~  n =  l n 

which we call Sinai's condition in view of [22]. 
x 

Theorem 5.2. (i) Let 0_-<B_-<I. Then ~ P ( S u > u ) d u ~ x l - ~ L ( x )  where L is s.v. iff 
Sinai's conditon holds, o 
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I cOl 
(ii) S N has finite mean i f fD= lim l o g x - ~ - P [ O < S , < x ]  is finite. Then 

E[SN] = exp {7 + D}. 

It would be interesting to compare this result with the approach of Lai [12], 
especially for higher moments of S N. An alternative form for G(x) however 
seems necessary. 

Example 2. In [18, 22] it is proved that if X ~ Y ,  for all i then Sinai's 
condition holds. We provide an easier proof using Lemma 3.1.2 and an ap- 
proach of Heyde [11]. Put for a fixed t > 0  

G(x)=G(tx)-G(x). 

Then since S, = n /~ Y~ 

where 

If we write 

cO 

s ~ e- ~ Gt(x ) dx = ~ f~(y) Ply  < Y <__ y t] dy 
0 0 

1 - c t  

f~(y)=s ~ n ~ exp[-synl /~] .  
•=1  

ne[1 ,  v~]nN 

then as v---,oo, H(v)~oo and H(v)~cffv-1)  as v~oo.  

Moreover 

fs(Y) = s ~ e-s,v dH(v). 
O+ 

By an abelian theorem f,(y) ~ -  as s$0. Moreover 
Y 

IfAy)l:s ~ e - t H  t dt<=Ks e -~ t dt<=Ky_~ 
O+ 0 

for some constant K. We can apply Lebesgue's theorem to obtain that 

l i m s ~ e  SXG~(x) d x = e ~ y - l P [ y < Y  <yt]dy .  
s$O 0 0 

The latter integral equals eP[Y~ >0]  log t. 
Karamata's theorem yields for x ~  oo 

i Gt(y)dy~x c~P[Y~ > 0] log t. 
0 
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F r o m  this relation one derives as in [1 l ]  that  

Gt(x)--*o~P[Yo; > 0] log t 

so that  Sinai's condi t ion  holds for fl = o~P[Y~ > 0]. 

Example 3. Assume that the r a n d o m  walk is generated by X for which 
c o  

EIXI<CO and E X = # > 0 .  Then  [,17, p. 207] ~n-lP[S,<O]<co so that 

EN < co. By Wald 's  identity then E[SN] =,u.EN. 1 
By Theorem 5.2 (ii) 

lira {log x - G(x)} = logES N - 7. 
x ~ o ~  

Hence 

~'I-p[s"<=x]I n - l ~  1 P [ S ' < 0 ]  +G(x)-logx 

= log EN + G ( x )  - log x 

~ l o g E N  + 7 -  logESN 

= 7 - log #. 

This sharpens somewhat  a result of  Heyde  [-11] where it was shown that 

o o  

The latter result should be combined  with the consequences of  L e m m a  3.1.1. 

w 6. Concluding Remarks 

w L e m m a  4.1. links the behaviour  of  a renewal sequence to the tail be- 
haviour  of  the underlying generat ing discrete distribution. The complete result 
will be published separately [,16]. 

w 6.2. Instead of  assuming slowly varying functions in Theorems 2 and 4 we 
could have restricted ourselves to functions belonging to the subclass H of  
slowly varying functions in t roduced in [-3] by de H a a n  and essentially used in 
L e m m a  3.1.3. Results of  this type will be discussed in a for thcoming paper. 

Acknowledgment. The authors take great pleasure in thanking the referees for their comments. 
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