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Summary. In a decreasing sequence of intervals centered on the true mode 
the normalized kernel estimate of the density converges weakly to a non- 
stationary Gaussian random process. The expected value of this process is a 
parabola  through the origin. The covariance function of this process de- 
pends on the smoothness of the kernel. When the kernel is mean-square 
differentiable the location of the maximum of this process has a normal 
distribution. When the kernel is discontinuous the location of the maxi- 
mum has a distribution related to a solution of the heat equation. 

1. Introduction 

A mode of the probability density f(t) is a value of t which maximizes f. To 
make this precise define the functional 

M(g) =inf{ t  [ g ( t )=sup  g(s)}. (1.1) 
s 

The mode 0 of a density f is O=M(f). Let X 1 . . . . .  X,  be independent obser- 
vations with common unknown density f The kernel estimate o f f ( t )  (Rosen- 
blatt (1956)) is 

( T )  na. i= 
(1.2) 

where the kernel K is a bounded measurable function and the bandwidth a, is 
a positive constant. 

The kernel estimate of the mode proposed by Parzen (1962) is O,=M(f,). 
Parzen gives conditions under which {0N} is a consistent estimator of 0 and 
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also gives conditions under which 0 n has an asymptotic normal distribution. 
He shows that 

3 • ;, (nan)~(O_O) w J(O,f(O). V/[f(2~(O)l 2) 

where f(2~(0) is the second derivative of f evaluated at the mode and V 
=S[K(l)(x)]2dx (all integrals unless specified otherwise are taken over the 
whole real line); the symbol w, stands for weak convergence (see, e.g., 
Billingsley (1968)). 

Chernoff (1964) defines the naive estimator of the mode 0* as "the center of 
that interval of length 2a, which contains the most observations". This is 
nearly the kernel estimate 0 n with the kernel 

K(x) =�89 [xl < 1 

= 0, otherwise. (1.3) 

The distinction between 0* and 0 n is due to the nonuniqueness of the location 
of the maximum of f ,  for this kernel. Chernoff chooses the midpoint of an 
interval where fn is maximized; here, for simplicity, the left-hand end point of 
the leftmost interval is chosen (1.1). This difference does not affect the local 
asymptotic behavior. 

Since the kernel (1.3) is not continuous Parzen's regularity conditions are 
not satisfied. Chernoff (Sect. 5, Theorem 2) shows that {0"} is a consistent 
estimator of 0. Wegman (1971) gives a stronger consistency result. Chernoff 
derives the asymptotic distribution of 

ha# [f(21(0)]2"~(0" - 0). 
2 .f(O) ] 

He shows that the asymptotic distribution is the same as the distribution of the 
location of the maximum of the process W(t)- t  2 where W(t) is a two-sided 
standard Brownian motion (i.e., W(t), t > 0  and W ( - t ) ,  t < 0  are each an 
independent standard Brownian motion). 

Recently, Eddy (1980), using the techniques of weak convergence in the 
space of continuous functions, derived a stronger form of Parzen's distri- 
butional result under generally weaker conditions. Eddy shows that an approp- 
riately normalized version of the kernel estimate of the density converges 
weakly to a randomly located parabola through the origin with fixed second 
derivative. This result, together with the continuous mapping theorem (Billings- 
ley (1968), Theorem 5.1), allows a proof that the location of the maximum of 
the normalized kernel estimator converges weakly to the Gaussian distribution 

j f ( ( _ l , p  d'f(P+l)(O)'Bp f(O).V 
) " ~ i  ' [ f~2~(0)]2! 

(1.4) 

where Bp=SxPK(x)dx and d 2= lim na~ +2p. The non-zero mean of the asymp- 
n ~ m o  

totic distribution occurs because {a,} may converge to zero at a slower rate 
under Eddy's conditions than it may under Parzen's conditions. 

The objective of this work is to derive a more general form of the result in 
Eddy (1980). As special cases the result will include the work of Parzen (1962) 
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and Chernoff (1964). The essential idea is that the density estimator f ,  in a 
decreasing interval near the mode, under very general conditions, converges 
weakly to a particular Gaussian process. The mean function of the process is a 
parabola  through the origin which depends on the moments  of the kernel and 
on the unknown density and its derivatives at the mode. The covariance 
function depends on the cross product-moment  of the divided differences of the 
kernel. 

The asymptotic distribution of the kernel estimate of the mode is the same 
as the distribution of the location of the maximum of this process. When the 
kernel is mean-square differentiable a functional limit theorem shows that the 
location of the maximum has a normal distribution; when the kernel is 
discontinuous an argument given by Chernoff (1964) relates the distribution of 
the location of the maximum to the heat equation. 

2. Weak Convergence of the Density Estimator 

Let b,, be a positive constant and define the random process 

Zn(t) =b 2 2[fn(O+b . t ) -  s t e [  - T, T] (2.1) 

for some T <  oo. The process Zn is a normalized version of the density estimate 
in an interval centered at the mode. Also define the Gaussian random process 

d Z(t)= Y~(t) +(-- 1) p + I - .  c.p! f(P+I)(O)'BP" t 

+�89 t 2, t e ( -  Go, o9) (2.2) 

where c < oo is a positive constant, d < m is a non-negative constant, p > 2 is a 
fixed integer, Bp = ~xVK(x)dx, and Y~ is a mean-zero Gaussian random process 
with covariance function 

R (s, t ) -  f(O) . V~(s/t). s. t I ~, 0_<, ~ 1, Isl < It I, (2.3) 
- - C 2 + ~  - -  - -  

where 

The purpose of this section is to prove Theorem 2.1 which gives conditions 
under which {Zn} converges weakly to Z. 

When the kernel used to estimate fn is the uniform kernel (1.3) the con- 
ditions of Theorem 2.1 will require ~ =  1. In this case the covariance function 
(2.3) will reduce to 

R(s, t) =J2~ ) . Isl-a(s, t) 

where a(s, t) = 1, s. t=>0, 

=0, s . t < 0 .  
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This is the covariance function of the two-sided Brownian motion defined 
above. For  this special case, Chernoff (1964, Sect. 3) outlines a proof of the 
theorem. When the kernel has a bounded square-integrable derivative the 
conditions will allow c~ = 0. In this case the covariance function reduces to 

R(s, t)= f(O~'.) V.s.  t 
c 2 

where V=~[K~ The Gaussian process Yo(t) with this covariance 
function can be represented as t. g where Y is a single Gaussian random 
variable. This process has also occurred in other contexts (see, e.g. Antille 
(1976)). Theorem 2.1 is proved in this case by Eddy (1980, Theorem 2.1). 

In order that the theorem may include the uniform kernel it is necessary to 
consider convergence of a sequence of processes whose sample functions may 
be discontinuous. For  this reason assume henceforth that the kernel K is 
continuous from the right and has limits from the left; this is equivalent to the 
assumption that the sample functions of the process Z,  lie (w.p.1) in the 
function space ~ = ~ [ - T ,  T]. For the properties of the equivalent space 
@ [0, 1] refer to Billingsley (1968, Chap. 3). 

Theorem 2.1. Let p> 2 be a fixed integer. Suppose that K is a bounded measur- 
able function which is continuous from the right, has limits from the left, has a 
finite number of discontinuities, and satisfies 

S K ( x ) = B o = l ,  

yx iK(x )dx=Bi=O,  l <=i<=p-1, 

y x i K ( x ) d x = B i < o o ,  i = p , p + l ,  

and suppose there is an c~, 0 <= ~ < 1, so that 

[ K ( 7 6 - x ) - K ( - x )  0 < l i m  6~ S [ 76  [ K ( c ~ - x ) - K ( - x ) ]  dx=V~(7) 

for every 7, 171 < 1, and 
\ 

dx < oo. 

Let {an} be a sequence of positive constants which satisfies 

lim na~ = oo, 
. 7 1 4 0 0  

1 

lim [na3n +2p+a(p 1)]2~+~=d< 00, 
n ~ o o  

for d a non-negative constant, and let {b,} be a sequence of positive constants 
which satisfies 

lim a~ _ d 
b ' ? t ~ c O  n C 
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for c a positive constant. I f  the density f has an absolutely continuous (p+ 1) st 

derivative and satisfies 

sup I f  (p+ 2)(01 < oo 
t 

then 
Z . ( t ) ~  Z(t), t 6 ( -  oo, ~).  

Proof (The dependence of a=a,  and b = b  n on n will be suppressed henceforth.) 
The first step is to show that EZ,(t) converges to a parabola. Following a 

a p 

step in the proof  of Theorem 2.1 in Eddy (1980) and noting that here lira 

= -  it is immediate that 
C 

lim sup E Z , ( t ) - ( - 1 )  v+ l f(p+ a)(O) d f(2)(O) t 2 =0. 
,~oo p! B p ' c t  2 " 

The second step in the proof  of the theorem is to determine the asymptotic 
-behavior of the covariance function. Since Z,(t) is an average of independent 
random variables identically distributed as 

Coy [z.(s), z.(t)3 =1 Cov V U.(s), u.(t)3 
n 

1 
=�88 E [ v.(s) v.(t)3 -~  EU.(s) Ery.(t). 

Because E U, (t) = EZ,  (t) and lim EZ,  (t) < oo, lira 1 E U, (s) E U, (t) = 0. Now 

1 
- E[U.(s) U.(t)] 
n 

(7 
a 

- 

-~ na3-~b z+~ bs 
a 

- x )  -K(-x) -  

bt 
a 

dx 

1 b t dx 
a 

(2.4) 
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lies between 0 and O+ax. Setting 6 =--bt and 7= s, the second term in where 
(2.4) is smaller in absolute value than a 

a . s . t l - ~  
n a  3 _  ~b2+ ~ - sup  [f(1)(t)l 

t 

c5 - x ) ]  dx 

which converges to zero by assumption. The first term in (2.4) converges to 

f(O) t ~-~ V~(s/t) (2.5) 
C2+C ~ " S -  

as required. 
The next step in the proof is to show that the finite-dimensional distri- 

butions of the process Z,  converge to those of a Gaussian process; for each set 
(t 1 . . . . .  tr) it must be shown that the set 

{ Z n ( t l )  - -  E Z n ( t l )  . . . . .  Zn(tr)-- EZ,(tr) } 

has an asymptotic joint Gaussian distribution. Since, for each fixed t, Z,(t) is 
the average of n independent random variables with the same distribution as 

application of the multivariate central limit theorem for triangular arrays will 
complete the proof. 

Let V,= ~ cj[U,(tj)-EU~(t~)] and let C =  ~ [cj[ for any constants 
j = l  j = l  

- ~ cjZ,(tj) c 1 . . . . .  % Lindeberg's condition for asymptotic normality of Z ,* -  
j = l  

(Billingsley, Theorem 7.2) is that 

n . FV.12 
~ 0!,., [ n-J f ( x )dx - -O  (2.6) 

as n-~oo for every ~>0  where 

2 2 has a finite limit, say cr 2. Since K and s, =-l va r  (V,). From the proof of (2.5), s, 
Y/ 

is bounded, sup [K(x)l <A, 
x 
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IV, I= ~--~aa j~lcj[K (O- +bt a -  X )_  K ( 0 @ ~ ) ]  

4AC 4AC - = n . - -  = b2a nbZa" 

As n~oo nb2a~oo. Thus there is an n(e) so that if n>n(e), IV, l<~.n. Con- 
sequently, there is a b(~) so that for n>n(e)(a+6(e)) the region (2.7) is vacuous 
and (2.6) is trivially satisfied. This is true for any constants c 1 . . . . .  c r and hence 
{Z,(tl)-EZn(tl) ..... Zn(tr)-EZn(t)} have an asymptotic joint Gaussian distri- 
bution. 

To complete the proof of the theorem all that remains is to show that {Zn 
-EZ~} is a tight sequence (Billingsley, Theorem 15.6). From Billingsley (Theo- 
rem 15.7) a sufficient condition that {Z~} be tight is that there exist 7>0, fi>�89 
and a continuous nondecreasing function H so that for t~ <s<=t 2 and n>  1, 

E {IZ.(s)- Z.(tl)- E[Z (s)- Z.(tl)]]' 
�9 IZ.(tz)-Z.(s)-EEZ.(t:)-Z,,(s)]V} < [H( t2) -  H(tl)] 2~. (2.8) 

There are two cases: 0< e < 1 and ~ = 1. 
First consider 0 < a < l  and choose 7=1. For convenience suppose t l>0 .  

By the Cauchy-Schwarz inequality the left-hand side of (2.8) is smaller than 

{Var [Z. (s) - Z . ( t 0 ] .  Var [Z . ( t2) -  Z.(s)] } {. (2.9) 

Now 

Var [Z . ( s ) -  Z.(t)] =-1 Var E U.(s)- U.(t)] 
tl 

1 
=<- e [ v . ( s ) -  v.(t)] 2 

tz 

1 E[K(O+bs (O+bt -na2b 4 - X ) _ K  a-X)]  2 

(0+b,- 
na2b4S - ) - K  x ) ] f (x )dx  

1 2 
-nab4S[K(b(Sat) x ) -K( -x ) ]  f(O+bt+ax)dx 

( s - t )  2 - ~  . . . .  

letting 6 = b ( s  - t ) /a .  

This last expression is smaller than 

C ( s -  t) 2-~ 

for some positive constant C. Thus (2.9) is smaller than 
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[ C ( s -  q)  2-~. c(t2 - s)2-~]~ __< c(t~ -tO ~-~. 

1 

Letting fl = ( 2 - , ) / 2  and H(s)= C ~ .  s (2.8) is satisfied for 0 <  c~ < 1. 
The case c~= 1 will be handled in a different way. First, note that if {An} 

and {B.} are tight sequences then {An+B,, } is a tight sequence. To see this, 
recall there are compact sets K A and K B so that 

P r { A ~ K A } < e ,  Pr {B~K~} <e. 

and define 

S= {An +B n [A,~KA, B~KB}.  

The set S is compact and 

Pr {An + Bn eS } > Pr {An eK  A, Bn ~KB} 

= I - P r { A ~ K  A or B ~ K B }  

> 1 - [Pr {An~KA} + Pr {Bn q~KB} ] > 1 -- 2~. 

Thus {An+Bn} is tight. 
Second, note that since K has a finite number of discontinuities Z n can be 

written as 

Z,, = C n + D n 

where C n is continuous and D, is a step function. Tightness of {C~} has 
already been demonstrated. Since D~ is a linear combination of indicators of 
intervals, by repeated use of the argument above, tightness of {Dn} (and hence 
{Zn} ) will follow from tightness when K is the uniform kernel (1.3). 

Let 

I11 = ~  I{Xie(O+bt l  +a, O+bs+a]}, 
i 

Y 2 = ~  I {X i e (O+bt l -a ,  O+ bs -a]} ,  
i 

I13 = ~  I {X~e(O+bs+a, O+bta +a]}" 
i 

Y~= 2 l {X~e(O + bs-a, O + bt2-a]}. 
i 

and 

p~ =F(O+bs+a) -F(O+bt~  +a)=b(s- tOf (O+a)+O(b2) ,  

P2 = F(O + b s -  a ) -  F(O + b t~ - a) = b ( s -  t O f (O- a) + O(b2), 

P3=F(O+bt2 + a ) - F ( O + b s + a ) = b ( t  2 - s ) f ( O + a ) + O ( b 2 ) ,  

p4 = F(O + bt 2 - a ) -  F(O + b s -  a) = b(t 2 -  s) f ( O -  a) + O(b2). 
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Choose 7=2, fi=l, and H(t)= Ct in (2.8). Since I11 is independent of Y2 and II3 
is independent of Y4 for n > n o it is enough to show that 

1 
(2nab2)r E[(Y~ - E Y~)2 (Yj -EY2) z] < C2(t2 - tO 2 

for n > n o and i = 1, 2 and j = 3, 4. 
Condition on Yj=k: 

E[(Y~- E y~)2(yj- E Yj) z] = E {(k-npj)= E[(Y~- E yO21yj=k]}. 

When Yj=k, Y~ is binomial with parameters n - k  and p/(1-pj)  and thus has 
expectation 

(n - k) pi 
Eik - -  

1 - p ~  

So 

But 

E[-(Y~-Ey~)21Yj=/c] <2E[(Y,.-Eik) 2 Yj=k3 +2(Eik--nPi) 2. 

E[(Yi-  EYi)Z(Yj- EYj) 2] < 2Pl 
= 1 --pj 

Hence 

E[(Y/-Eik)21Yj=k] = 2 ( n - k ) ~ ( 1 -  Pi ~<2n Pi 
1 - p j ]  - 1 - p j  

and thus 

E E(Y, - EY,)2, = kl < npj)2 + npj)4. 

Since the fourth central moment of a binomial random variable is O(n2), 
integration yields 

2p~ 
n 2 p j(1 - p ?  + c;l~)~-vj n2pj 

< CPi P1 1 E[(Yi_EYi)2(yy_Ey~)21 =n2a4bS (2nab2) 4 

<= C(s -  tl) (t z-s)<= C2(tz-  tl) 2, 

as required. When c~= 1, { Z , - E Z , }  is tight. 
Thus it has been shown that Z,  w >Z for t s [ - T ,  T]. By virtue of Theo- 

rem 3 of Lindvall (1973) the proof extends immediately from tE[--T, T] to 
t ~ ( -  o0, oo). 

3. Asymptotic Distribution of the Mode Estimator 

When ~ = 0 the continuous mapping theorem (Billingsley, Theorem 5.2.(i)) leads 
to the asymptotic distribution (1.4) for M(Zn) (Eddy, 1980)). This method of 
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proof  was possible because the sample functions of Z have an analytic repre- 
sentation. 

When K is the uniform kernel (1.3) (Chernoff (1964), Theorem 1, Sect. 4) 
derived the distribution of M(Z); actually, he derived the distribution of M(Z*) 
where Z * ( t ) = W ( t ) - t  2 and W(t) is a two-sided standard Brownian motion. 
Except for location and scale changes this distribution is the same as the 
distribution of M(Z). He showed that the probability density of M(Z*) can be 
written as 

f(t) =�89 Ux(t 2. t) Ux(t 2, - t )  (3.1) 

where 

U(x, y) = Vr {Z(0 > t 2, t > y ] Z(y) = x} 

is a solution of the heat equation 

�89 
subject to the boundary conditions 

(i) U(x,y)=l,x>y 2 

(ii) lim U(x,y)=O 
x ~  - - o O  

and Ux is the partial derivative of U(x,y) with respect to x. This result was 
possible because the process I11 (t) has independent increments. 

Since every discontinuous kernel requires ~= 1, Chernoffs argument yields 
the same distribution (3.1), up to location and scale changes, for the location of 
the maximum; that is, the asymptotic distribution of the kernel estimator of 
the mode for any kernel satisfying the conditions of Theorem 2.1 with c~= 1 has 
density (3.1). Prakasa Rao (1969) obtained (3.1) as the asymptotic distribution 
of the maximum likelihood estimator of a unimodal density at a fixed point. 

When a 4 0 ,  1 little is known about the distribution of M(Z). The sample 
functions of Z are continuous with probability one. This follows immediately 
from a corollary of Cramer and Leadbetter (1967. p. 65). Measurability of M ( . )  
on the space of continuous functions was established in Eddy (1980). Proving 
continuity of M ( . )  seems quite difficult. It is possible however to compute the 
expected value of M(Z). The process Y~ is symmetric around zero in the sense 
that for each t and y 

Pr { Y~(t)> y}= Pr { Y~(-t)> y}. 

Thus, if M(Z) has an expected value then 

EM(Z) =M(EZ): ( -  1)Pf(P+ I)(O)'BP" d 
f(2)(0) .p! .  c 

The tail behavior of the density of M(Z) for c~>0 can be determined from 
the following argument. Define 



Distributions of Mode Estimates 289 

and 
2 

2~(t) [, t ~ - ~ ( t ) - t 2  t>=O 
-'~ 2 - ~  [_ l t l~-  ~- (O_t2 t<O 

so that M(2~) has the same distribution as M(Z) (up to location and scale 
changes). Notice that the covariance function of ~'~(t) is 

(s/t) ~/2 0 <_s <_ t. 

Consequently there is a standard Gaussian random variable X satisfying 

lira IY~(t)-XI =0  w.p.1. 

and thus 
2 c~ 

lim 12~(t) - ( t T X  - t2)l : 0 w.p.1. 
t ~ o o  

Therefore, if M(2~)>0  it will be approximately equal to M(t~-X- t2 ) .  But 
this last random variable is simply 

2 

which has the density function 

This density has the same tail behavior as the density of M(Z). 

4. Concluding Remarks 

If both the kernel K and the density f are symmetric then there is no 
asymptotic bias effect. In this case other methods may be more appropriate 
(see, for example, Stone (1975)). It should be noted however that if 

then T,, the value of t which minimizes 

gn(t)= - ~ o(t-xl), 
i = 1  

is equal to 0 n. The estimate T, is Huber's (1964) M-estimator of 0. For any 
fixed sample size Huber's M-estimate and Parzen's kernel estimate are identi- 
cal. With some effort Theorem 2.1 can be modified to cover this case. 
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The case when K is symmetr ic  and  f is no t  is also interesting. The variance 
of 0,, is 

2 
O((na3-~)-T~g+~) 

and  the bias is O(aP). Since K is symmetric,  its odd mome n t s  are zero and  
hence p is even, say p=2q. The opt imal  rate for {a} to converge to zero under  

these condi t ions  is 
1 

a ~,.,~ n 3+  4 q + ~ ( 2 q -  1) 

and  this leads to a mean-square  error  of order 

4.q 
t'/ 3+4q+~(2q- 1), 

W h e n  K is a symmetr ic  probabi l i ty  density q = 1. If  K also has a b o u n d e d  
square integrable  derivative then a - -0 ,  a ~ n - 1 / 7  and  the mean-square  error is 
of order  n -~/7. If K is the un i fo rm kernel  (1.3) then  q = L  e = l ,  the opt imal  
rate for {a} is a ~ n  -1/8 and  the mean-square  error  is of order  n -1/2. These two 

special cases were noted  by Chernoff  (1964). 
The condi t ions  of Theorem 2.1 do not  guaran tee  that  the global m a x i m u m  

o f £  is near  0. Add i t iona l  condi t ions  on  the tail o f f  would  be required. 

Acknowledgement. The possibility of achieving the unification of these results using weak con- 
vergence was first suggested to the author by Leo Breiman. I am indebted to Andr6 Antille for the 
tightness proof when ~ = 1. 
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