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1. Introduction 

Recently, several authors have shown that it is possible to derive random set 
analogues of some of the classical convergence theorems in probability theory. 
The first paper in this direction is apparently due to Artstein and Vitale [5] 
who proved a strong law of large numbers for independent and identically 
distributed random compact subsets of a Euclidean space. This result has been 
reproved b y  Cressie [-7] for certain special types of random sets (e.g. those 
having an atmost countable number of realizations) by utilizing a different 
approach which yields explicit expressions for the limit sets. A random set 
analogue of Kolmogorov's three series theorem is proved in Lyagenko [-20]. An 
extension of the results in [-5] is due to Hess [12] who studied e.g. stationary 
sequences of random compact subsets of certain infinite-dimensional spaces. In 
[4] it is shown that the strong law of large numbers of [-5] remains true if the 
random sets are merely supposed to be closed (but not necessarily bounded). 
Finally, central limit theorems for random sets were derived in [8] and [20]. 

One might hope to derive pointwise ergodic theorems for certain families of 
random sets satisfying rather weak conditions by looking at generalizations of 
Birkhoffs pointwise ergodic theorem. A complete generalization of that theo- 
rem has been developed by Kingman [-16] (see also [,17], [18J) who considered 
stationary subadditive stochastic processes. An extension of Kingman's results 
to the Banach valued case has been achieved by Ghoussoub and Steele [10]. 
Another striking generalization of Birkhoffs pointwise ergodic theorem is due 
to Krengel [-19] who derived a pointwise ergodic theorem for superstationary 
processes. Finally, Abid [1] arrived at a pointwise ergodic theorem generaliz- 
ing the ergodic theorems of Kingman and Krengel. Based on Abid's results, we 
derive pointwise as well as mean ergodic theorems for certain families of 
random convex compact subsets of a Euclidean space, which are subadditive 
and superstationary (see Sect. 3 for definitions). 

Section 4 contains the desired pointwise and mean ergodic theorems (see 
Theorems (4.1), (4.16), (4.32) and (4.35)). Theorems (4.16) and (4.35) give con- 
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ditions which ensure that the limits in our ergodic theorems are constant. 
Theorem (4.1) extends corresponding results of [5] and [12] in that it shows 
that a pointwise ergodic theorem holds for families of random sets which are 
merely supposed to be subadditive and superstationary (see Sect. 3 for de- 
finitions). On the other hand, it turns out that, in general, Theorem (4.1) does 
not hold for random compact sets which are not convex (see Sect. 5). We 
should like to point out that there is also a connection between Theorem (4.1) 
and a subadditive ergodic theorem in the Banach valued case (see [10]). It is 
easy to see that, in general, the pointwise ergodic theorem of [10] is not valid 
in the C(K)-valued case (C(K) denoting the Banach space of all continuous 
real-valued functions defined on a compact set K, the norm being the su- 
premum norm) provided K is not "trivial". Theorem (4.1) implies, however, that 
the pointwise ergodic theorem of [10] does hold even for superstationary 
C(S~)-valued processes (S~ denoting the unit sphere in R d) provided the values 
of the random variables involved are support functions of nonvoid convex 
compact sets (compare, however, Remark (4.10) as well as the remark following 
(2.4)). Section 2 collects some basic concepts (Hausdorff metric, support func- 
tions, random sets) and results which are used in subsequent sections. 

2. The Space (~ ,  p); Random Sets 

Let ~ denote the family of all nonvoid compact subsets of R d (d> 1), and let 
co c~ be the family of all convex sets in c& On ~, the Hausdorff metric p is 
defined by 

(2.1) p(C,D)=inf{~>O: C~D+sB1,DcC+~B1}, C, DeC~, 

where B I is the closed unit ball in R ~ with respect to the Euclidean norm]]-II. 
Furthermore, we put c~A = {~a: aeA}, ~eR, A cR  d, and 

Al+...+An={al+...+an: aiEAi, l<=i<=n}, AIcR ~, l<_i<_n. 

One can show that (~,p) is a Polish space (see [6] or [21]). It is well-known 
that co c~ is a closed subset of cg. For  any C e ~  put 

(2.2) l[ c II = sup {l[c I1: c E c} 

(there will be no danger to confuse this with the Euclidean norm). It can be 
easily seen that, for all Ceg ,  IlCl[=p(C,{0}). Furthermore, ]l/Cll 
-IIDIII<p(C,D), C, De'g, which shows that the mapping C~--~ II Cll from ~ into 
R is continuous. Let the support function s(., C) of a set C e Z  be defined by 

(2.3) s(p, C)=sup{pc: cEC}, p~S 1 

(S 1 denoting the unit sphere {xcRe: IIx[I =1}). It is easily seen that s(-, C) is 
continuous on $1, and that 

(2.4) sup Is(p, C)-s(p,9)l =p(C,D), C, Deco~ 
p~S1 
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(see [6]). It follows from (2.4) that the map C~-~s(., C) defines an isometric 
embedding of the space (co(g,p) into the Banach space C(S1) of continuous 
functions f :  S~-,R,  the norm of f being the supremum norm. Note that (2.4) 
also implies that, for each p~S1, the map ap: (g-,R, defined by 

(2.5) ap C = s(p, C) = s(p, co C) 

(co C denoting the convex hull of C) is continuous. 
In [20], it has been shown that 

(2.6) Is(p~, C)-s(p2, C)l ~l~llCll Ilp~-pzll, C~co(g, p~,P2~S~. 

It follows from (2.6), (2.4) and the proof of Theorem 11 of [20] that the 
map C~--~s(.,C) defines an embedding of the space (co(g,p) into LI(s1) (the 
measure being the uniform distribution on S1). 

In this paper, we are interested in random sets taking their values in (g. 
More precisely, let (O, ~', P) be a probability space. A random set Y is a 
mapping Y:f2-,(g such that Y is measurable with respect to the a-algebra 
N((g) generated by the open sets in ((g,p). It can be shown (see [9]) that 
Y:f2-,(g is a random set iff {co~f2: Y(co)c~ C4=0}sd,  C~(g. If Y, Y1, .--, Y, are 
random sets, so are a Y(c~R)  and YI+...+Y,,,  while [IY[I and apY (peS1) are 
(real) random variables. 

3. Subadditive and Superstationary Families of Random Sets 

In this section, we introduce the concepts of subadditivity and supersta- 
tionarity for certain families X=(Xs, , )  of (g-valued random sets defined on a 
common probability space ((2, d ,  P). Throughout, the index set of families like 
(Xsa) equals I = {(s, t)~N o x No: s < t}, where N o = {0, 1, 2,...}. 

(3.1) Definition. A family (Xs,t) of (g-valued random sets is called subadditive if 

(3.2) Xs, t c Xs,, + X~, t whenever (s, u), (u, t) el. 

In order to introduce the concept of superstationarity for families (Xs,t) of 
(g-valued random sets, we first remark that the set-theoretical inclusion " c "  is 
a closed partial order relation on the Polish space (g. Hence, ((g, c )  is a 
partially ordered Polish space (p.o. Polish space) in the sense of Kamae, 
Krengel and O'Brien [14] (see also Kamae and Krengel [131). Consider the 
p.o. Polish space 9=((gN) N (N={1,2, ...}) being the product of the p.o. Polish 
spaces ((g, c),  endowed with the product topology and the coordinate-wise 
partial ordering which will be denoted by " < " .  If C~9,  then C=(C1, C2, ...) 
where Ci=(Cil , Ci2 , ...)~(~N, i~N. Define the projections Hij: 9 - , ( g  by FIij(C) 
= Cis , i, j eN ,  C~9 .  For C, D e 9  we then have C < D  iff H~j(C)cH~s(D), i, j eN .  
We shall conceive a family X=(Xs, t )  of (g-valued random sets as a random 
element of 9 ,  where H~(X)=Xj_I , i+j_~,  i, j~N.  Let the shift T: 9 - , 9  be 
given by Hij(T(C)) = C~,j+ ~, i, j~N,  CEg.  

Let /r denote the family of probability measures defined on the family 
'~(9) of Borelian subsets of 9.  A probability measure P ~ J d ( 9 )  is called 
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stochastically smaller than P 2 e ~ ( ~ )  (notation: P~ %P2) if ~ fdP~ < ~ f d P  2 for all 

bounded measurable functions f : ~  ~ R  which are increasing, i.e., for which C 
< D  implies f (C)<f (O) ,  C, D e ~  (see [14] as well as [13]). Kamae and 
Krengel [13] have shown that the relation " ~ "  on M//(~) is a closed partial 
order relation with respect to the topology of weak convergence. 
(3.3) Definition. Let X=(X,, t )  be a family of off-valued random sets defined on 
a common probability space (t?, s~', P). Let Q~ denote the probability distribu- 
tion of TIX, i.e., QI(A)=P{TIXeA} ,  AeN(~) ,  i eN  o. The family X is called 
superstationary if QI <~Qo. (Note that QIMQ0 entails Qi+ l <Qi, ieN.) 

4. Ergodie Theorems 

In this section, we consider subadditive superstationary families X=(X~.~) of 
co c g-valued random sets. We first show that under additional assumptions on 
X, a pointwise ergodic theorem holds for X. 

(4.1) Theorem. Let X=(Xs,t) be a subadditive superstationary family of coCg- 
valued random sets defined on a common probability space (f2, d ,  P). Assume 
that there exists a constant Is >0 such that 

(4.2) g(liXs,~+lll)SR, seNo. 

Then lim 1-Xot exists a.e. in (co cg, p). 
t ~ o o  t " 

In [5], the proof of a strong law of large numbers for independent and 
identically distributed coC~-valued random sets was based on a strong law of 
large numbers for Banach valued random variables (due to Mourier [22], [23]) 
by embedding the space (coCg, p) into C(S1) (compare the remark following 
(2.4)). Theorem (4.1) cannot be proved in this way since, in general, a pointwise 
ergodic theorem is not available for superstationary subadditive families of 
C(S0-valued random variables (see [10]). A proof of Theorem (4.1) can, 
however, be based on Abid's pointwise ergodic theorem (see [1]) together with 
the following simple result. 

(4.3) Lemma. Let ( C . ) c c o ~  and (p . )cS 1 be sequences such that (p.) is dense 
in SI and, for all keN,  lira apk(Cn) exists and is finite. Then lira C. exists in 

n ~ o o  1 1 4 0 0  

(co ~, p). 

Proof. First note that the assumptions imply that sup ILc, II <oo. In fact, if 
1 n~N 

0 < e < ~  and if, for i=1  .... ,d, vectors ql, rie(P,) are chosen in such a way that 

ILq~-e~ll <e and IIr~+e~[I <~ (e~ denoting the i-th unit vector in Re), we have for 
all CacoCg and m e n  

d m r 1 d 

(4.4) ] l C l l m ~  - j ~ max(]a,,(C)[m, Icrr,(C)l "~) 
l - - s a i ~  1 

(l/Ell given by (2.2)). Now apply Blaschke's selection theorem (see, e.g., [27]). 
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Proof of Theorem (4.1). First note that the assumptions of Theorem (4.1) imply 

( 4 . 5 )  P{ap(Xs,~)>u}>P{ap(Xs+l, ,+O>u}, peS  1, ueR, (s,t)eI. 

Utilizing (4.5) and (4.4) it is not difficult to verify that Condition (4.2) can 
(equivalently) be replaced by the following conditions: 

(4.6) E(rTp(Xo,t) ) < o% peS1, t e n  

(ap given by (2.5)), and there exists a constant K > 0  such that 

(4.7) inf E(crp(X~,s+t))> - K t  , pES1, teN.  
s > O  

Now consider, for each peS~, the family X(V)-(X(P)~-tcr t v  ~ It is not 
- -  \ S , I ]  - -  \ p \ ' ~ S , t / / "  

difficult to check that each X (p) is a subadditive superstationary process in the 
sense of Abid [1]. Hence it follows from Abid's [1] pointwise ergodic theorem 
that 

1 
(4.8) lim-X(oV{ a.e. exists and is finite, peS I. 

t ~ o o  t ' 

Utilizing Lemma (4.3), we deduce from (4.8) that o,t is a.e. convergent in 
(co ~g, p). 

We note that it follows from the proof of Theorem (4.1) and Abid's [1] 
mean ergodic theorem that, under the assumptions of Theorem (4.1), 

(4.9) lim 1-ap(Xo t) converges in L 1, peSp  
t ~ O O  t 

(4.10) Remark. Let X=(Xs,t) satisfy the assumptions of Theorem (4.1) and 
assume that X is even stationary (in the obvious sense). In this case, the 
assertion of Theorem (4.1) can be also deduced from Theorem 3 of [10] in view 
of the remark following (2.6). 

Call a sequence (C,) of nonvoid sets C, ~ R  d subadditive if 

(4.11) Cm+nC:ZCm-~-Cn, m, neN. 

Then we have the following set analogue of a classical result on subadditive 
sequences of real numbers (see [24], p. 17). 

Corollary. Let (C , ) c  co C~ be subadditive. Then we have (4.12) 

(4.13) (1-C,] converges in (coCg, p) 
\n ! 

and 

(4.14) l i m - C . =  (~ 
n ~ o o  K/ n =  1 

Proof. Define the random sets Xs, t on some probability space (t~, d , P )  by 

(4.15) Xs,t(a)= Ct_s, oaet], (s, t)eI. 
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Clearly (3.2) and (4.2) hold. Hence (4.13) is a consequence of Theorem (4.1). 
(Here, we could also apply Remark (4.10).) Finally, (4.14) can be proved by 
utilizing Theorem 1.4.1 of [21]. 

The following result gives conditions which ensure that the almost sure 
limit occurring in Theorem (4.1) is constant a.e. It should be noted that 
conditions like (4.18) and (4.19) given below (suggested by [15] and [11]) have 
been recently applied to show that certain types of interacting particle systems 
have an asymptotic shape (see [25], [26]). 

(4.16) Theorem. Let X =(Xs,,) be a family or random sets satisfying the assump- 
tions of Theorem (4.1). Furthermore assume that Conditions (4.17), (4.18) and 
(4.19) given below are satisfied for all peS  1 (" Var" denoting variance). 

(4.17) E(a2(Xo,,)) < oo, t eN;  

(4.18) lira 1E(r exists and is finite; 
t ~O0 t 

( 4 . 1 9 )  Var(ap(Xo, 2 t)) -1- E 2 @ r p ( X o ,  2t)) 

=< 2(1 + 6p)Var(%(Xo,,) ) + 4E2(crp(Xo,,)), t e N  

(0<ap<l being a constant depending on peS1). Then there exists a set CecoCg 

such that l i m - l x o t = C  a.e. in (cog,  p) and fi(p)=@(C), peS~. Putting a(p) 
t ~ o o  t ' 

=%(C),  peS1, we have 

(4.20) l imlap(X0,)=cffp) in L 2, peS, .  
t~oo  t 

Proof Let X(P)=(o-p(Xs,,)) be defined for all peS  1 as in the proof of Theorem 
(4.1). It follows from (4.9) that, for all peS, ,  

(4.21) lim _1 E(%(Xo ,)) = ~(P) 
t~OO t 

exists and is finite. Following the proof in [11], p. 675, it is not difficult to see 
that (4.21), (4.17), (4.18) and (4.19) together imply 

1 
lim ~d~m~p(Xo,2~m)=~(p) a.e., peS1, meN,  

n ~ o o  
(4.22) 

and, finally, 

(4.23) lim.1o-p(Xo,)=~(p ) in L 2, peS  1. 

1 
Since, by Theorem (4.1), lim • exists a.e. for all peS1, it follows from 

t~00  t 1 
(4.22) and Lemma (4.3) that there exists a set C e c o g  a such that l i m k X o , t = C  

t ~ o o  t 
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a.e. in (co cg, p). By (4.22), this implies ~(p)=ap(C)=~(p), peS  1, which, together 
with (4.23), yields (4.20). 

We will conclude this section by proving two mean ergodic theorems for 
certain families of subadditive superstationary families of random sets (see 
Theorems (4.32) and (4.35) below). Hess [12] derived a mean ergodic theorem 
for stationary sequences of co%valued  random sets by embedding (coCg, p) 
into C(S1) (compare the remark following (2.4)) and utilizing an idea of 
Ahmad [2]. Since it does not seem possible to argue along these lines in the 
case of subadditive families of random sets, we proceed differently and base the 
proofs of the desired mean ergodic theorems on the following result being an 
analogue of Lemma (4.3) with respect to convergence in the mean. 

(4.24) Lemma. Let (Y,) be a sequence of coC~-valued random sets on some 
probability space (Y2,~r let (p,)=S 1 be a sequence which is dense in S 1. 
Assume that, for some meN,  

(4.25) lira ap~ (Y.) exists in L ~, keN.  

Then there exists a co c(-valued random set Y having the following properties: 

(4.26) ~ ]] rHmdp< ~ ;  
s 

(Yn) converges to Y in the m-th mean, i.e., 

(4.27) lira y pm(y,, y) dP = O. 
n ~ o o  K2 

The proof of Lemma (4.24) will be based on the following auxiliary result 
depending on certain geometrical properties of convex sets. 

(4.28) Lemma. Let C, DecoCg and let 0 < e <  1 be fixed. Let M ( e ) c S  I denote a 
finite set with the property that, for any peS1, there exists some p~eM(e) such 

that ]]p-p~[] < ] ~ .  Then we have 

(4.29) p ( C , D ) < l ~ ( 2 ] ~ m a x ( ] ] C ] ] ,  ]rD][)+ max ]ap(C)-a;(D)[). 
p~M (e) 

It would be possible to deduce inequalities similar to (4.29) by utilizing 
Theorem 6 of [20]. A short direct proof of (4.29) can, however, be obtained as 
follows. Fix 0 < e < l .  Pick Po~Sa, xoeC and yoeD such that S(po, C)=poxo, 
s(Po,O)=poy o and p(C,D)=]po(Xo-Yo)[=I[Xo-YoH (this is possible by (2.4)). 
Then choose p~eM(e) such that ]]Po-P~]] < ] / ~ -  Let x~eC, y~eD be such that 
aw(C)=p~x~, apo(D)=p~y~. Now, (4.29) can be easily obtained by considering 
the case in which ]pe(x~ - y~)] is bigger (smaller) than �89 - e) p (C, D). 

Proof of Lemma (4.24). Applying Cantor's diagonal method, we easily get 
from (4.25) and Lemma (4.3) that there exists a subsequence (Y,) and a coCg - 
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valued random set Y such that lim p(Y,,, Y )=0  a.e. implying 
i ~ O c  

(4.30) lim ~ ]apk(Yn)--apk(Y)lmdP=O, k e N  
n ~ o o  5~ 

(meN occurring in (4.25)). From (4.30) we get apk(Y)eg m, kEN, which, in view 
of (4.4), proves (4.26). On the other hand, it follows from (4.25) and (4.4) 
applied to (Y~) that 

(4.31) sup S II g, II m dP < oo. 
n e N  

Now let M(e)c(p~), for each 0<  ~ < 1, be a finite set having the approximation 
property mentioned in Lemma (4.28). In order to derive (4.27), first note that, 
by (4.29), we have, for all coe~, 0 < e < l  and heN, 

p~(Y~(co), Y(co)) < (81~2~)m max(ll Y.(co)II ~, I[ Y(m)[I ~) 

+ max ]ap(Y,(co))-rTv(Y(co))] m. 
p e M ( e )  

Taking into account (4.30), we therefore get, for 0<  e < 1, 

lim sup S pm(Y,, Y)dP< ( ~ ) m  sup S max(l] Yn[] m, ]lYllm)dP. 
n ~ oo s n ~ N .q 

Hence, (4.27) follows from (4.26) and (4.31) since ee(0, 1) is arbitrary. 
We can now prove the following result which is the first of the desired 

mean ergodic theorems. 

(4.32) Theorem. Let X=(Xs,t) be a family of co%valued random sets satisfy- 
ing the assumptions of  Theorem (4.1). Then there exists a co ~-valued random set 
Y having the following properties: 

(4.33) ~ II YN dP< oo; 
~2 

o,t converges to Y in the mean, i.e., 

{ix , ) (4.34) l im~p  \ t  o,t Y d P : 0 :  

Proof. Immediate from (4.9) and Lemma (4.24). 
Another consequence of Lemma (4.24) is as follows. 

(4.35) Theorem. Let X:(X~,~) be a family of co~-valued random sets satisfying 
the assumptions of Theorem (4.16). Then there exists a set C e c o ~  such that 

(4.36) lim ~ p2 (~Xo,~ ' C)dP=O.  
t ~ o o  f2 

Proof. Immediate from (4.20) and Lemma (4.24). 
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5. Two Counterexamples 

In [5], a strong law of large numbers is first proved for independent and 
identically distributed co g-valued random sets. A clever application of a well- 
known theorem due to Shapley and Folkman (see [3], p. 396) then shows that 
a strong law of large numbers still holds for %valued random sets (provided, 
of course, they satisfy a certain first moment condition). The following example 
implies that, in general, such a line of argument does not work in the context 
of subadditive superstationary families of random sets. 

(5.1) Example. For n~N let 

(5.2) n = ~ ai(n)2 i, 
i=0 

be the dyadic representation of n. Put 

(5.3) C"={ ~ bi2~: b~{O'a~(n)}' i~N~ 

Clearly 

(5.4) 

ai(n)~{0 , 1}, i~No, 

n~N. 

{0, n} c C,, c {0, 1, 2, ..., n}, n~N. 

The sets C 1 , . . . , C 1 6  look as follows. C1={0,1}, C2={0,2}, C3={0  , 1, 2, 3}, 
C 4={0,4}, C 5={0, 1, 4, 5}, C 6=(0,  2, 4, 6}, C 7={0, 1, 2, ..., 7}, C s={0,8}, 
C9={0, 1, 8, 9}, C lo={0  , 2, 8, 10}, Cla={0,  1, 2, 3, 8, 9, 10, 11}, C12={0, 4, 8, 
12}, C13={0 , 1, 4, 5, 8, 9, 12, 13}, C~4={0 , 2, 4, ..., 14}, Cas={0,  1, 2, ..., 15}, 
C16={0, 16}. 

(5.5) Lemma. The sequence (C,) given by (5.3) is subadditive. 

easily seen that the sequence (.IC, t (C, given by (5.3))is not con- It is 
1 1 

vergent in (cg, p). In fact, we have e.g. 2n C2,,= {0, 1}, heN, and lim ~ C  2 1 
,,~oo2 - 1  "- 

=[0,  1]. One checks that the family (Xsfl given by (4.15) is a subadditive and 
even stationary family of Cg-valued random sets satisfying Condition (4.2) of 

Theorem(4.1). However, X0,~(eo ) does not converge in (Cg, p) for any coe~2. 

Proof of Lemma (5.5). The iaclusion (4.11) will be proved by induction on m 
+n. Clearly (4.11) holds if re+n=2. Assume that (4.11) holds for all m,n~N 
such that 2 < m + n < r - 1  for some r__>3. Let m + n = r  for some r>3.  Let 
O+-c~Cm+ n. Then, for some keN, 

(5.6) c=211+2i2+. . .  +2  ik, O ~ i l < i 2 < . . . < i  k . 

Case 1. 

(5.7) aik(m)=aik(n)=O. 
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Putting 
ik ik 

(5.8) m l  = ~ ai(m) 21, nl = S ai(n) 2i 
i = 0  i = 0  

and using the induction hypothesis, one shows 

(5.9) CeCml + C,l 

which implies c~ C m + C, since Cm, c C m and C,i ~ C,. 

Case 2. aik(m )+aik(n )> 1. 

Again one can deduce that c~Cm+C . by observing that (5.7) implies (5.9) (ml, 
n 1 given by (5.8)) whenever c is given by (5.6). 

The results of [4] (see Introduction) suggest the following question. Does a 
pointwise ergodic theorem still hold if the random sets Xs, t occurring in 
Theorem (4.1) are supposed to be nonvoid, convex and closed (but not nec- 
essarily bounded)? In order to make this question more precise let ~ denote 
the family of all closed subsets of R e (d>l) ,  and put ~ = ~ - { 9 } .  If ~ is 
endowed with the topology of closed convergence, ~ becomes a compact 
metrizable space (see 1-21]). A sequence (C,)ccg converges in (Cg, p) iff (C,) 
converges in ~ and there exists some C~Cg such that C, cC ,  n~N (see 
Theorem 1.4.1 of 1-21]). Let N(Y) denote the family of Borelian subsets of Y. 
The following example implies that there exist subadditive stationary families 
X=(Xs,t) of N(~-)-measurable J~0-valued convex random sets such that 

(}X0,t) is nowhere in the of closed convergent topology convergence. 

(5.10) Example. Let the sets C,~,~o, n~N, by given by 

f{n} if neN is even 
C, 

([n, oo) if nEN is odd. 

The sequence (C,)is clearly subadditive but (1C,) does not converge in ~. 
v ~  ! 

The desired random sets Xs, t are now defined by (4.15). 

Acknowledgement. I am indebted to the referee for this expert comments and suggestions. Es- 
pecially, he called my attention to Lyagenko's interesting paper which I didn't know when I wrote 
the first version of this paper. 
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