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Summary. A sequence of functions defined on the space of excursions of a 
Markov process from a fixed point is considered. For each of the functions 
the sum over the excursions that begin b y  time t is normalized in an 
appropriate manner. Conditions are obtained for the convergence of the 
sequence of normalized sums to the local time evaluated at time t. We 
obtain a unified structure for convergence theorems which includes some 
new constructions of local time as well as many constructions previously 
obtained by quite varied techniques. 

I. Introduction 

When X(t, co) is a Markov process and x is a suitable point in the state space, 
there is a continuous additive functional A(x, t) which grows only when X(t) 
=x.  Such a functional is called a version of the local time at x: we use the 
framework and terminology of Blumenthal and Getoor  [1968] which will be 
explained more fully in the next section. The general theory ensures the 
existence of A(x,t), and its uniqueness apart from a multiplicative constant. 
However, much effort has been put into the construction of A(x, t) by limiting 
processes based on the sample path properties of X(t). In fact, the results of 
L6vy [1948] for Brownian motion on the line were obtained before there was 
any general theory. Let us recall these: we write A(t) for A(0, t). 

The first concerns the density of the occupation time of ( - e ,  e); 

1 t 
! 1( .... )(X(s))ds~A(t) as e$0. (1.1) 

Now let D(e, t) denote the number of times X(t) crosses fi'om ~ to 0 before t; 

~1/2D(~, t)~A(t) as e,10. (1,2) 
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The zero set Z(t)= {sE[0, t): X(s)= 0} is closed and its complement [0, t ) \  Z(t) 

is a countable union of disjoint open intervals of lengths Pi where ~ pi=t. Set 
N(e, t) equal to the number of Pi > e and ~= i 

Then 

and 

t)= ?Z 
P i < ~  

8:t/ZN(8, t)--+A(t) as e$0 

e-a/zs(e, t)~A(t) as e$0. 

(1.3) 

At first sight all the above constructions look very different and it is 
puzzling that they should all work. In fact, not only have the above methods 
all been shown to work in quite general circumstances, but there are in the 
literature many more such constructions some of which we will consider later. 
Our main object is to set up a general "umbrella" construction for which as 
many as possible of the methods of construction are special cases. 

The key tool is the theory of Poisson point processes which was first 
applied to the excursions of X(t) from a fixed point x by It6 [1970]. We apply 
a family of functions to the excursions, sum over the excursions which start 
before t, normalize suitably and then proceed to the limit to obtain A(t). We 
consider three distinct modes of convergence to A(0. General theorems are 
developed in Sect. 3 which give necessary and sufficient conditions for con- 
vergence in probability and L2-convergence. In Sect. 4 we obtain general suf- 
ficient conditions for a.s. convergence which turn out to be surprisingly power- 
ful. Necessary and sufficient conditions for a.s. convergence are only available 
in one special case. Maisonneuve [1980, 1981] has also observed that general 
theorems can be proved by using the Poisson point process, the points of which 
are excursions of a strong Markov process. 

As pointed out by Blumenthal and Getoor  [1968], the local time A(x, t) at 
x will, as t~oo ,  be unbounded a.s. when {x} is recurrent for X(t), but it 
remains constant for t > %  if {x} is a transient set and z 0 is the last exit time 
from {x}. All ou r  theorems are valid whether {x} is recurrent or transient, but 
we give the detailed proofs in Sects. 2 to 4 for the recurrent case and then, in 
Sect. 5, outline the changes needed to deal with the transient case. 

In Sect. 6 we give constructions, a general one of which is due to Maison- 
neuve [1974], that involve counting excursions; (1.3) was the first such result. 
Here very little is needed beyond the requirement that the number of excur- 
sions counted tend to infinity. In Sect. 7 we discuss intrinsic constructions in 
which we work directly with the complementary intervals of the zero set and 
are not concerned with the behavior of X(t) away from 0. Both (1.3) and (1.4) 
are of this type. The generalized version of (1.3) works for every X and all 
modes of convergence. We discuss the differing conditions under which (1.4) 
works for each mode of convergence. The curious thing (Corollary 7.2) is that 
a minor modification of (1.4) will always work. This result is due to Kingman 
[1973]. It is worth noting that the strong Markov sets of Hoffmann-Jorgensen 
[1969] are the zero sets of a suitable Markov process, so that we could 

(1.4) 
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construct a local time for such a random set via the sample paths of such an 
X. For this context, however, it is natural to use only intrinsic constructions, 
as described in Sect. 7. 

In Sect. 8 we generalize a result of Knight [1971] concerning the zero set of 
the process sup{Y(s): s<=t}-Y(t) where Y(t) is a symmetric stable process of 
index c~ to the case where Y(t) is any strictly stable process. Interest centers on 
working out the precise effect of the lack of symmetry for differing values of e. 
For the most part we are content to show that many existing constructions are 
corollaries of our procedure, though in many cases the constructions can be 
generalized or their validity extended. However, in Sect. 9 we consider briefly a 

t 

construction which is new even for Brownian motion - based on the area S(e 
o 

-e/x IX(s)l)ds. It turns out that 6 .2 is the correct normalizing factor for every 
strictly stable process of index c~ > 1. 

Although we have developed a structure which seems to include most of 
the known constructions we should point out two kinds of difficulties which do 
not allow all constructions of local time to fit under our umbrella. For any 
Markov process satisfying the conditions which guarantee the existence of 
local time, Taylor [1973] showed that there is an appropriate Hausdorff 
measure function (p(s) such that 

~o - m ( z r ~  (o, t)) = A ( t ) .  

This is an intrinsic construction based on the zero set, but it does not appear 
to be covered by our umbrella because Hausdorff measure depends on the 
order as well as the lengths of the complementary intervals. The second 
problem arises when the construction is not intrinsic, and cannot be carried 
out using one excursion at a time. For example, the construction of Getoor 
[1976] is of this kind; we can only deal with a special case of this, which we 
discuss in Sect. 6. 

Even for particular cases covered by our umbrella, computational problems 
may arise - firstly when calculating the normalizing constants and secondly 
when checking the conditions of the theorems. Lemma 3.4 is a surprisingly 
helpful computational tool. The main result in [Getoor and Millar, 1972] is an 
example of a result we have not been able to obtain as a corollary of our 
results because we have been unable to do the computations necessary to 
check the conditions of the theorem. Getoor and Millar hypothesize the 
existence of a reference measure; it is not clear how to use that hypothesis as a 
computational aid in our approach. 

2. Preliminaries 

We use the framework of Blumenthal and Getoor [1968]. Let X be a standard 
Markov process with state space S. We are interested in a particular state x 
such that 

W (inf { s > 0: X (s) = x } = 0) = 1 (2.1) 
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and 

P~(inf {s > 0: X(s) + x} = 0) = 1. (2.2) 

Let Z = { s : X ( s ) = x } .  Condition (2.2) implies that Z is nowhere dense a.s. 
Condition (2.1) implies that Z is perfect a.s., that Z - Z  is at most countable 
a.s., and that there exists a continuous additive functional A(t), not identically 
zero, of the process X whose support  is {x}, that is, which is constant on 
intervals outside of Z. Such a continuous additive functional, called a local 
time at {x}, is determined up to a positive multiplicative constant and it is 
unique if normalized so that 

E x e - 'dA( t  = 1. (2.3) 

We will not be considering local times at more than the single state x, so the 
normalization (2.3) is not important  to us; it merely ensures that the local 
time, A(x, t), at x can be integrated in x over a set c S to give the occupation 
time of c .  When we state our results we suppress x and always mean that A is 

some version of the local time at x and we only require that E x e-MA(t)  be 

finite and positive, rather than equal to 1. We assume X(0)--x.  The reader will 
see that, for our results, this assumption entails no loss generality. 

The inverse function 

T(~) = i n f  {t: A(t) > ~} (2.4) 

is right continuous and, considered as a process in the variable -c, is a sub- 
ordinator. Thus, for 0 > 0, 

E(e-~ -~ t r  S (1-e-~ (2.5) 
(0, col 

where ~c>0 is the drift and #o is the LOvy measure. The condition (2.2) ensures 
that #o(0, o o ] = + o o .  We recall that #o is a-finite and, in fact, 

(0, co] 
(s A 1)#o(ds)< oo. We note in passing that if #o is any Borel measure on (0, ~ ]  
satisfying these conditions, there is a standard Markov  process X with state 
space ~ for which the local time at zero has an inverse satisfying (2.5) (see, for 
example, [Horowitz,  1972]). This allows us to construct the local time for a 
strong Markov  set by using the excursions of such a Markov  process. We have 
included the possibility of a finite a tom at + oo which corresponds to an 
infinite jump in the subordinator T; this can arise when the set in (2.4) is 
empty which will happen when -c > ~, the lifetime of T which is an exponen- 
tially distributed random variable. Thus, #o has an a tom at + oo if and only if 
{x} is a transient set for X. In the remainder of this section and in Sect. 3 and 
4 we follow It6 [1970] in giving a detailed discussion only for the case where 
{x} is recurrent so that the integral in (2.5) can be taken over (0, oo). In Sect. 5 
we indicate the changes needed in case {x} is transient. 

It6's contribution was to think of the excursions of X from {x} as a 
Poisson point process. Suppose (c~(co),/~(co)) is a component  of the complement 
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of the closure of the time set Z(o))={t:X(t,~o)=x}. Then the piece of the 
sample path of X for e<t<fl  is called an excursion, which we denote by W. 
Thus, 

W(t'~ X(t'c~ forf~ t>fl(co)~(c~ t < fi(o)) 

denotes a process starting at time ~= W -  and leaving S for a terminal state A 
at f l= W § For  each such W we translate the time axis to obtain V= V(W) 
given by 

V(t)= W(t+ W-) for t>=0. (2.6) 

If ~U is the space of all right continuous functions with left limits from 
[0, ~) -*Su{A} which are " trapped" when they reach A, we can endow #" with 
the Skorohod topology, and consider measures on "//" defined at least on the 
Borel sets. 

Now note that A(t) remains constant during the excursion W so we can 
define 

vw=A(W -)--A(W +) (2.7) 

and think of ~w as the time at which the excursion occurs (on the ~ time scale). 
It6 [1970] showed that there is a a-finite measure v on ~F, defined at least on 
the smallest a-field Y generated by the finite-dimensional cylinder sets in 
function space such that: 

(i) for any measurable subset O of [0, oo) x r # {(Zw, V(W))~D}, where ~w 
is defined by (2.7) and V(W) by (2.6), is a Poisson random variable with mean 
(2 x v)(D) where 2 denotes Lebesgue measure. (We use the convention that a 
Poisson variable with infinite mean is a.s. + oo); 

(ii) if {D~} is any disjoint family of measurable subsets of [0, oo) x ~ then 
the corresponding family of Poisson random variables is an independent fam- 
ily. 

We now consider a measurable function f :  U ~ R  + and extend it to excur- 
sions by 

f(W)=f(V(W)).  

For any Borel set B c l R  + we put 

This implies that 

#(B) = v { V: f(V)6B}. (2.s) 

Sf(V)v(dV)= ~ r#(dr). 
"r (0, oo) 

The key result which we use in all our constructions is the following. 

Lemma 2.1. Suppose X is a standard Markov process satisfying (2.1) and (2.2) 
and f: ~U--+]R + is a measurable function on the excursion of X from x satisfying 

[ f (V)  A 1] v(dV) < ~ .  (2.9) 
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Then, for f ixed b > O, 

a ( r ) =  ~< f ( W )  
W - =  T(~) b 

is a subordinator in z with 0 drift and LOvy measure 11 where r/(s, oo)=/~(bs, c~) 
and I ~ is defined by (2.8). I f  (2.9) does not hold, then G(z)= ~ a.s. for each ~ > O. 

Proof It is clear that G(z) is the sum of its jumps occuring before time z and 
that the expected number of jumps occuring during (Zx, z2] and having magni- 
tudes belonging to B equals 

(z 2 - zl) v { V: f (V) /bEB} = (z 2 - z 1) t/(B). 

Suppose (2.9) holds. Then S(s/x b-1)tl(ds)< oo; so, corresponding to r/ there 
is a corresponding subordinator with drift 0. In fact, G(z) is such a sub- 
ordinator for its jumps have the correct distributions for a subordinator with 
LOvy measure t/; in particular it has independent increments because the 
excursions corresponding to r's belonging to one interval are independent of 
those for z's belonging to another interval disjoint from the first interval. 
ing to another interval disjoint from the first interval. 

Suppose (2.9) does not hold. Write 

2 ,_1A1 
G(z)__> ~ b ' 

w < T(r) 
n =  - - c o  2 n - I  < f ( W ) ~  2 n  

an infinite sum of Poisson random variables which, for z>0 ,  is, according to 
the Three Series Theorem, equal to + oo a.s. (since the sum of expected values 
is + m  a n d 2 " - l i l < l ) .  [] 

We adopt the convention that, if f has a subscript, then the corresponding 
/~ and t/ inherit the same subscript. For consistency we reserve fo for the 
particular function f o (V)=V+,  so f o ( W ) = W + - W -  denotes the duration of 
the excursion W. This is consistent with (2.5) because the jump of the sub- 
ordinator T(~) at z w is exactly the duration of W. 

For  m=1,2 ,  ..., let fro: ~ I R +  be measurable functions on the excursions 
of X from {x} and let b m be positive constants. Set 

f~(W) (2.10) 
Fro(t)= Z bm 

w <=t 

Our main objective is to obtain results of the form Fm(t)~A(t ) as m ~  in one 
or more of three modes of convergence - in probability, L 2, and a.s. To do this 
we study a sequence of subordinators: 

Gm(~)= Z f , ,(W) (2.11) 
w ~ r ~ )  bm 

Clearly, 

Fr~(T(r))=Gm(z ) (2.12) 
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and, since both A and F,. are constant on excursions, 

Gm(A(t)) = Fm (t), (2.13) 

even though T(A(t)) is not usually equal to t. The following lemma states that 
F~(t)--*A(t) is equivalent to Gm('c)--,z. 

Lemma 2.2. Let F m and G~ be defined by (2.10) and (2.11). For each of the three 
modes of convergence the following are equivalent: 

(A) for all t>0,  F,,(t)--*A(t); 
(B) for each to>0, Fm--+A uniformly on [0, to]; 
(C) there exists % > 0  such that G,~(%)~%; 
(D) for all 'c>0, Gm(z)~'c; 
(E) for each ~o >0, G~('c)~'c uniformly on [0,%]. 

Proof Part 1. From Lemma 2.1 we see that none of (A)-(E) is true if (2.9) does 
not hold for all but finitely many fro; so in the remaining parts of the proof we 
assume that (2.9) is true for each f,,. 

Part 2. The implications (B) ~ (A) and (E) ~ (D) ~ (C) are clear. 

Part 3. The implications (A)~(B)  and (D)~(E),  in all modes of con- 
vergence, follow from the monotonicity of all the functions involved and the 
continuity of the limit functions. 

Part 4. We prove ( C ) ~  (D) in each mode of convergence. Since each G m is 
a subordinator, Gm((k + 1) %) - Gm(k %)-*% for each positive integer k. Hence, 

Gm(k%)--*k % as m-* oo. (2.14) 

Since G~(%/2) and [G,~('co)-G~(zo/2)] are independent, identically distributed 
random variables, it follows from (C) that G~(%/2)~%/2. By induction and an 
application of (2.14) we obtain, for all positive integers k and n, 
G~(k2-" %)-*k2-"c o. Now (D) follows from the monotonicity of each G~. 

Part 5, We complete the proof in the U-case by showing ( A ) ~  (C) and (D) 
(A). We first want to show that E(G~(1))~I is a consequence of (A) and also 

of (D) so that, without loss of generality, we may assume that b,, is chosen so 
that E(Gm(1)) = 1. It is obviously a consequence of (D) [U-case]. Let ( ~  : t > 0) 
denote the family of a-fields to which the Markov process X is adapted. Then, 
by (2.11), G m is a subordinator adapted to the family (~r(~): r>0) ;  and, for a 
fixed to,A(to) is a stopping time with respect to this family. Hence, by (2.13) 
and Wald's Identity for L6vy processes [Hall, 1970], 

E(Fm(to)) = E(A(to) E(~m(1)). 

Therefore, (A) implies that E(Gm(1))~I. 
Assume E(Gm(1))=I. Then G,,(z)-'c is a martingale adapted to the family 

(~-T(~): "c>0), so by (2.13) and [Hall, 1970] 

E([F,,(t)-A(t)]Z)=E([G,,(A(t))-A(t)]2)=E(A(t))E([Gm(1)-I]2). (2.15) 
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Since 
E (A (t)) = E {inf{r: T(z) > t} } < 0% 

we conclude from (2.15) that ( A ) ~  (C) and (D)=:> (A). 

Part 6. We prove ( D ) ~  (A) in the cases of convergence in probability and 
a.s. convergence. Fix t >0  and e >0  and use the monotonicity of F~, Gin, and A 
to obtain 

First choose k such that 2-k<e/2 .  For  convergence in probability choose N so 
that the last event has probability less than ~ and m large enough so that each 
of the events {[Gm(j2-k)--j2-kl>e/2}, I<j<=N, has probability at most z/N, 
giving probability less than 3e for {o~" [Fm(t,o~)-A(t, co)]>e }. For a.s. con- 
vergence we see that each of the events {[Gm(j2-k)--j2-k[>e/2} occurs only 
finitely often. This gives a.s. convergence of Fm(t) outside the event 
{A(t)>N2-k}.  Now let N ~ o e .  

Part 7. To prove ( A ) ~  (D) in the cases of convergence in probability and 
a.s. convergence one uses 

co { j - l <  < j ]  {IGm(~)-~l>~}=0~=l Iam(~)-~l>~,~-=~ ~. 

We omit the details which are similar to the details in Part 6 of this proof. []  

We will not systematically investigat e the possibility of replacing " W - <  t" 
by " W  § __<t" in (2.10). Often there are no problems in doing so as in Corollary 
7.2. However, in other cases the corresponding results are false - an explicit 
example can be constructed by allowing excursions of long duration to make a 
contribution that does not vanish in the limit. 

We suspect that the statement "There exists t 0>0  such that F,,(to)~A(to)" 
is, for each of the three modes of convergence, equivalent to the statements 
(A)-(E) in Lemma 2. A proof for the L z case is essentially contained in Part 5 
of the preceding proof. We are not able to find an argument for either of the 
other two modes of convergence. A proof for the a.s. case will, via a sub- 
sequence argument, yield a proof for the in-probability case. 

Our object in the rest of the 
imply the truth of (A) in Lemma 
are also necessary. However, it is 
(C), and we can then appeal to 
results in terms of condition (A) 
other equivalent statements. 

It is helpful to state a general 
monotone functions. We will only 

paper is to obtain analytic conditions which 
2.2, and to consider whether these conditions 
easier to examine these questions in terms of 
Lemma 2.2. In the sequel we will state our 
of Lemma 2.2 and will no longer repeat the 

result about convergence of the ratio of two 
have need of it for a.s. convergence. 
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Lemma 2.3. Suppose Y is a random variable and f and g are random monotonic 
functions defined on (0, y), y > 0, such that g is continuous a.s. and either 

(i) f(e) and g(e) both ~ + ~  as e$O a.s. 

o r  

(ii) fie) and g(e) both 3,0 as ~$0 a.s. 

For each of the three modes of convergence the following two statements are 
equivalent: 

f ie) 
- - - * Y  as ~],0; 
g(e) 

f G)__, y as n--, oo 
g(~~ 

for each sequence G defined by 

=inf{e: g(e)=p'}, ~'P > 1 in case (i) 
8n (2.16) 

l p < 1 in case (ii)' 

We omit the easy proof based on the fact that p may be taken arbitrarily 
close to 1. 

Throughout the paper c will stand for a finite, positive constant whose 
value is unimportant and may change from line to line. 

3. Convergence in Probability and in L 2 

We can now obtain necessary and sufficient conditions for convergence in 
probability. 

Theorem 3.1. For a standard Markov process X satisfying (2.1) and (2.2), let 
(fro: re=l ,2 ,  ...) be a sequence of nonnegative measurable functions on the space 

of excursions from {x}, (b,,: m= 1, 2, ...) a sequence of finite, positive constants, 
and l~m the measure corresponding, as in Lemma 2.1, to fm and bm. Then, as 
m----> o o  ~ 

Z L ( w )  b ~ - * A ( t )  in probability (3.1) 
W -  <-t 

for each t > 0  if and only if, as m--+oo, 

G,(s, oo)~0 for s > 0  (3.2) 
and 

y stlm(ds)--+l for 0<f i<oo .  (3.3) 
(o, p] 

Proof. According to Lemma 2.2 the convergence in (3.1) is equivalent to 

Gm(1)~l in probability. (3.4) 
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Since convergence in distribution to a constant implies convergence in proba- 
bility to that constant, we conclude from the continuity theorem for Laplace 
transforms that (3.4) is equivalent to 

(1-e-~S)ri~(ds)~2 for 2>0.  (3.5) 
(0, oo) 

Integration by parts shows that (3.5) is equivalent to 

Oo 

17re(S, oo)e-ZSds-,1 for 2 > 0  
0 

which happens if and only if 

~ rim(s, oo) d s ~ l  for 0 < f l < o o  (3.6) 
o 

(that is, if and only if the measure ri(s, oo)ds converges vaguely to the atom of 
size 1 at 0). In case (3.2) holds, integration by parts shows (3.3) to be equivalent 
to (3.6). On the other hand, suppose (3.6) holds. Then (3.2) follows from 

S rim ( S , oo ) d s ---~ O , 0 < ~ < f l < o o ,  

and the monotonicity of rim(S, oo). [] 

Remark. The conditions (3.2) and (3.3) are not independent. The above argu- 
ments show that (3.2) implies that ~ Srim(dS)~l for all or no fi; (3.3) implies 

(o,#1 
that rim(s, oo)~0 for all or no s. 

Corollary 3.2. Suppose that b m in Theorem 3.1 satisfies 

bin= ~ r#m(dr), (3.7) 
(0,ce) 

where #m, corresponding to fro, is defined via (2.8). Then (3.1) is true if and only if, 
as  m---+ oo ~ 

1 
b~ ~ r #m(dr)-*O for fi>O. (3.8) 

(l~bm, ~)  

Proof By (3.7) 

and, hence, 

s rim(ds) = 1 
(0, oo) 

1 
r #1n(dr)-=- ~ s rim(ds)= 1 -  ~ srim(ds) V_ m (l~bm, co) (~, oo) (0, ~l 

from which the equivalence of (3.3) and (3.8) follows. Since 

(3.8) ~(3.2). [] 

1 
rlm(s , o o ) = # m ( s b m ,  oo)<__ b S rpm(dr) ,  

S m (sbm, oo) 
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Remark. (3.7)~ E(Gm(z))= z. This follows from (3.22) appearing in the proof of 
the forthcoming Theorem 3.5. 

Example 7.8 shows that (3.1) may hold with an appropriate normalizing 
sequence even though it does not hold with the normalizing sequence 
(~r#m(dr): re=l ,2 , . . . ) .  In order to avoid the need to check (3.2) and (3.3) for 
every sequence (bin: m=1,2,  ...) we now find a canonical sequence which will 
give convergence provided there is any sequence that does so. 

Proposition 3.3. The assertion (3.1) of Theorem 3.1 holds for some sequence (bin: m 
=1,2, ...) if and only if it is true when bin=am, where 

am=su p b > 0 : g  S r#=(dr)>l  . (3.9) 
(0,bl 

In case b~=%, (3.1) is true if and only if, as m--+oe, 

#~(tam, o0)~0 for t>0.  (3.10) 

Remark. The proposition should be interpreted as asserting that if (3.2) and 
(3.3) hold for some sequence (bin: re=l ,2 ,  ...), then, for all sufficiently large m, 
% is defined, via (3.10), and is finite and positive. 

Proof Part I. Let (b~: re=l ,2 ,  ...) be a sequence satisfying (3.1) and, thus, (3.2) 
and (3.3); whence, 

#m(tb~, o9)--+0 for t > 0  (3.11) 
and 

1 
~_ ~ r#~(dr)--+l for 0<f i<oe .  (3.12) 

m (O,/~bml 

Let 0 < e <  1. From (3.12) we deduce that, for sufficiently large m, 

and 

1 1 
r # ~ ( d r ) > - -  (3.13) 

(1 - 2e) b~ ( 0 , ( 1  - -  2 e ) b m ]  1 - e 

1 1 
S r#m(dr) �9 (3.14) 

(1 +2e)b m (0,(1+ 2g)bm] < i  ~-/3 

From (3.13) we see that the set in (3.9) is nonempty so that am(< oo) is defined 
and am_>_(1-2e)b m. 

Let b>(1 +2e)b,,. From (3.14) we see that 

1 1 
~ r#m(dr)<l+e+ ~ #m(dr) 

(O,b] ((1 + 2e)bm, b] 

which, by (3.11), is less than 1 for sufficiently large m (independent of b). For 
such m, a,,<(l + 2e)b,,. 

Since g was arbitrary we have shown am/bm-+l as m-+oo. So (3.1) holds with 
b~ = a m. 
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Part 2. Let b m = %  at least for all sufficiently large m. Since (3.2) and (3.3) 
are equivalent to (3.11) and (3.12), we want to show that (3.11) and (3.12) both 
hold if and only if (3.10) holds. But (3.10) is identical to (3.11) (for bin=am), so it 
remains to prove that (3.9) and (3.10) imply (3.12). 

From (3.9) we obtain 
1 --  ~ r #m(dr)= l (3.15) 

a m  (0, am] 

which implies the case /3=1 of (3.12). The case /3>1 of (3.12) follows from 
(3.15) and 

1 --  ~ ~rl~(dr)</3#m(am, oo)-*0, 
am (am,flare] 

a consequence of (3.10). A similar argument works in case/3< 1. 
It is clearly useful to be able to compute S r #(dr) from the sample path 

(0, oo) 
properties of X. The following is a surprisingly potent weapon. 

Lemma 3.4. Let (o(0)=-logE(exp(-OT(1))) .  Then, for each 0>0,  

j" r~(dO=~o(O)E 
(0,c~) 

Proof. Note that (2.5) can be written as 

For p a positive integer 

E(e -~ = e  -"~176 (3.16) 

oo ( T ( ( k +  1)/p) "} 

=(p(0) 2 E ~ S e-~ d(w~<=f(W)) 
k = 0 k T(k/p) 

(3.17) 

oo ( T((k -- 1 )/p) -- T(k/p) "~ 

= (P(0) k~O= Ele-Or(k/v' ~o e -~ d( r(k/p,•< w - f(W)) ~. (3.18) 
<= t + T(k/p) 

Write the expectation in (3.18) as the expectation of the conditional expec- 
tation with respect to ~'r(k/p) (Recall ~ is the a-field with respect to which X(t) 
is measurable) and use the fact that T(k/p) is ~r(k/p)-measurable to get (3.18) 
equal to 

} 
(r(1/p) } 

:(p(0)k=0 ~ e-e(~ ! e-~ f(W)) 
(r(1/p) 

~pE~ ! e-~ } (asp--*oo) 

[by (3.16)] 

(3.19) 
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= ~ E e ~ f ( W  
j =  0 ~ T ( j / p )  W t 

(T(1) 

=E~ ! e ~ d(w~<=tf(W)) } 

where the integer j(t) is defined by 

(3.20) 

(3.21) 

T(j(t)/p) < t < T((j(t) + 1)/p). 

If t = W -  for some excursion W, then, as p--,oo, T(j(t)/p)~t. Hence, a.s. it is 
true that t -T ( j ( t ) / p )~O almost everywhere with respect to the measure 

d( ~ f(W)). 
W - < = r  

By the Lebesgue Dominated Convergence Theorem, (3.21) approaches, as 
p--+ oo, 

E( 2 f ( W ) ) =  ~ r#(dr). [] (3.22) 
W- _< T(1) (0, oo) 

Remark. It is not true that t -T ( j ( t ) / p )~O almost everywhere with respect to 
the measure 

d( ~ f (W)) .  
W + <=t 

The above proof and, in fact, the lemma itself break down if W -  is replaced 
by W +. 

We are also able to obtain necessary and sufficient conditions for L 2 
convergence. 

Theorem 3.5. For a standard Markov process X satisfying (2.1) and (2.2), let 
(fro: m= 1, 2, ...) be a sequence of nonnegative measurable functions on the space 
#" of excursions from {x}, (bin: m = 1, 2,...) a sequence of finite, positive constants, 
and l~  the measure corresponding to fm via (2.8). Then, as m--* o% 

X L (w)  
w <_, b ~  -~A(t) in L 2 (3.23) 

for each t > 0  if and only if, as m~oo,  

b , ~  ~ r#m(dr ) 
(0, co) 

and 

(3.24) 

1 
b5 ~ r2#m(dr)-~0. (3.25) 

m (O, ce) 

Proof. By Lemma 2.2 the convergence in (3.23) is equivalent to Gm(1)~l in L 2. 
For this it is necessary and sufficient that E(G,,(1))~I and var(Gm(1))~0. 

From Lemma 2.1 we obtain 

E(exp(-OGm(1)))=exp(-  ~ ( 1 - e  ~ 
(0,  oo) 
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Two differentiations with respect to 0 yield 

E(Gm(1))= ~ st lm(ds)=~ ~ rlxm(dr) 
(0, oo) (0, oG) 

and 
1 

var(Gm(1))= ~ S2tlm(ds)=~m(o!o@r2#m(dr), 
(0, oo) 

(3.26) 

from which we see that E(Gm(1))~I and var(Gm(1))-~0 are equivalent to (3.24) 
and (3.25), respectively. [] 

Proposition 3.6. The assertion (3.23) of Theorem 3.5 holds for some sequence 
(bin: re= l ,2 ,  ...) if and only if it is true when bin=am, where 

am= ~ r#m(dr). 
(o,~) 

In case b~=am, (3.23) is true if and only if a m < oo for all but finitely many m 
and, as m ~  0% 

1 S r2#m(dr) - '0  for fi>O. (3.27) 
am (flam, oo) 

Proof  The first assertion is obvious. For the second, let bm= % and observe 
that (3.25) implies (3.27). It remains to prove that (3.27) implies (3.25). This is 
the case since 

a~ 2 S r2 #m(dr) 
(0, 0o) 

=am 2 S r2 ~m( dr) 4-a~n2 S r2 #m(dr) 
(0, tam] (tam, ~) 

<ta2, 1 ~ rigm(dr )+a2,2 S r2#m(dr) 
(O,tam] (tam, oo) 

_-<t+as 2 ~ r2#m(dr) 
(tam, c~) 

and t may be taken arbitrarily small. [] 

Example 7.7 shows that D-convergence can fail for a monotonic sequence 
(fro:m=1,2, . . . )  even when we have a.s. convergence. However, if (fm:m 
=1,2, . . . )  is bounded but b,,--+o% we always get L2-convergence, even without 
monotonicity. 

Corollary 3.7. Suppose that for some constant K, fm(V)< K for all m and V, that 
bin= ~ rffm(dr)<o % and that bm--}oo as m--,oo. Then (3.23) holds. 

(O, co) 

Proof By Proposition 3.6 we need only verify (3.27), since b m = am. But (3.27) is 
obvious since its left side equals 0 for b m > K/ft. [] 

Remark. All results of this section are valid when applied to an uncountable 
family {f~:e>0} with, say, eJ,0. 
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4. Almost Sure Convergence 

In general we cannot hope to obtain necessary and sufficient conditions for a.s. 
convergence. Since a.s. convergence can occur without finite moments any 
conditions involving moments cannot be necessary because they can be vio- 
lated by adding a second term which converges to zero a.s. but has large finite 
moments. Unless we can use monotonicity or other dependence properties of 
the family (fro) the sufficient conditions for a.s. convergence needs to be strong 
enough for a Borel-Cantelli argument to work. We start with a crude result, 
which is relevant when we already know there is L2-convergence. 

Suppose we are in the situation of Theorem 3.5, so that, with 

~m(l)= F, L(w) 
W -  =< T(1) bm ' 

varGm(l)= j" r2#~(dr)<oo.  
(O, oc) 

We can apply Chebychev to deduce, for each 5 > O, 

from 

L(w) 

m= l ~ r #~(dr) 
(0,oo) 

r z #,,(dr) 
(0, oo) 

( ; r#midrt) 2 m = l  
(0, oo) 

(4.1) 

< oo. (4.2) 

Using Borel Cantelli, (4.1) implies that for each 5 only finitely many of the 
events in braces occur a.s., and taking a sequence of values of 550 gives 

Gm(1)-~ 1 a.s. 

If we now apply Lemma 2.2 we complete the proof of: 

Theorem 4.1. For a standard Markov  process X satisfying (2.1) and (2.2), let 
(fro: r e= l , 2 ,  ...) be a sequence of  nonnegative measurable functions on the space 
"r o f  excursions f rom {x} and #m the measure corresponding to fm via (2.8). I f  
condition (4.2) is satisfied, then, for  each t, 

Y L(w) 
w- <_t ~A(t) a.s. 

r #~(dr) 
(0, oo) 

a s  m - +  o o .  

It is surprising that this apparently weak theorem yields a strong result 
when applied to a bounded family (f~: e>0)  that is increasing as ~,~0. 

Theorem 4.2. Let  X be a standard Markov  process satisfying (2.l) and (2.2). Let  
K be a f in i t e  constant and let (s  e>0)  be a family  of  measurable functions f rom 
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#" to t (  + such that f~ (V)<K for e > 0  and V6r and f~(V)T as e$O for V e ~ .  
Suppose further that, as ~ $ O, 

Then, as ~ $ 0, 

+ o e > b ~ =  J r # ~ ( d r ) ~ + ~ .  
(o, ec) 

b[ ~ ~ f~(W)-~A(t) a.s. (4.3) 
W - < t  

Proof. We first suppose that e~--~b~ is continuous. Preparing to use Lemma 2.3 
we let p > 1 and define e, by (2.16) so that 

Since 
b 

8 n ~ p  �9 

r 2#~.(dr) K K 
( 0 ,  o e )  < _ _  _ _ _ _  

b 2 = b~ p"' 
8 n  n 

(4.2) holds; so an application of first Theorem 4.1 and then Lemma 2.3 yields 
the result in case ~--~b~ is continuous. 

We now drop the assumption that e~--~b~ is continuous and proceed to 
complete the proof by "patching" e~--,f~(W) at each discontinuity of e~--~b~. 
Suppose the discontinuities of ~-~b~ in (0, 1) occur on the countable set {ei:i 
= 1,2, ...}. Consider the mapping a: (0, 1)~--~(0, 3): 

cr(e)=e+2 2 2-~+ Z 2-~" 
~ i < g  E i = ~  

Then a is monotone increasing in e with a double jump at each e i. Let a(~i)= ~i 
and note that 

(5 i - l i m  a(e) =2  -i = l im a ( e ) -  b i. 

For each excursion W we define g0(W) for 6 > 0 as follows, remembering that 
e~--,f~(W) is monotonic: 

g~(~)(W) =f~(W) if cr is continuous at e; 

g~,(w)=L~(w); 

g~, - 2-i(W) = limA(W); 

g~, + 2-,(W) = limA(W); 

by linear interpolation in the intervals (61-2 i, 5~) and (6i, 6~ + 2-~) �9 

Let t/6 correspond to g6 as # corresponds to f in (2.8) and let 

c6= J sm(ds). 
( o , ~ )  
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Since 3~-~ga(W ) is continuous on each [61-2- i ,  5 i+2  ~] and (IF--~/x a is con- 
tinuous elsewhere, b~--~c a is continuous everywhere. Also, b~--,ga(W ) is 
monotonic, and, hence, the continuous case of the theorem, already proved, 
implies 

C5 1 2 ga(W)~ A(t) a.s. as 3,~0. (4.4) 
W-<=t 

Now let b+0 omitting the intervals 

(6i-2-i,  b3 and (hi, hi+2 i). 

The convergence holds on the restricted set, the closure of the image of a. 
Since 

f~(W)=g~(~)(W), b~=G(,) , 

we conclude from (4.4) that, as e$0, (4.3) holds. [] 

Remark. Unfortunately, the result in which f , t  is replaced by f,$ as e+0 in 
Theorem 4.2 is in general false; we will return to this case later. 

To obtain Theorem 4.1 we used Chebychev to estimate the tails in (4.1). If 
we use the special nature of the distribution we can obtain better estimates for 
these tails. 

Lemma 4.3. Suppose X is a standard Markov process satisfying (2.1) and (2.2), 
and f: ~ I R  + is measurable with f ( V ) < M  for all V. Let 

b=Ss#(ds), c=Ss2 #(ds), a=bc -1/2 

Then, for each 3 > c, 

P{lb -1 ~ f ( W ) -  11 >6} 
W ~T(1)  

<={22exp[-�89 if cSaM<l 

exp [ - L ~ 5  a ] if 3aM>l .  

Remark. These inequalities look very like the negative exponential bounds in 
[Lo6ve, 1960, p. 254], which is hardly surprising since we use these in the 
proof. 

Proof With z w as defined at (2.7), 

f ( W ) =  ~ f(W). (4.5t 
W -  < T(1) (zw, f(W))e(O, 1] x (0, M] 

Write (0,1Jx(0, M] as the union of a sequence ( R , : n = l , 2 , . . . )  of disjoint 
rectangles, an infinite sequence being required so that (2 x /0  (Rn)< oo for each 
n. The quantity at (4.5) equals 

~ f(W). (4.6) 
n= 1 (zw, f(W))aRn 
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The probability that at least one of the inner sums has move than one term is 
bounded by 

~ [  1 - e -  (x • ~)(R") _ ( 2  x # )  ( R . )  e (~ • u ) (R . ) ]  
n = l  

< ~ [(2 x #)(R,,)] z. (4.7) 
n = l  

where )~ denotes Lebesgue measure. The quantity at (4.7) can be made as small 
as desired by an appropriate choice of ( R , : n = l , 2 , . . . )  and, therefore, with 
probability as close to one as desired (4.6) equals 

sup {f(W):  (zw,f(W))~R,} (4.8) 
n = l  

where sup ~ = 0. 
The summands in (4.8) are bounded by M, so the bounds in [Lo6ve, 1960, 

p. 254] are applicable (a slight extension being needed for the infinite sum). 
The mean and variance of (4.8) are not exactly b and c; b and c are the mean 
and variance of (4.6). It can be shown, because (4.7) can be made arbitrarily 
small, that the ratios between the two means and between the two variances 
can be made as close to one as desired. In this way we obtain the inequalities 
in the statement of Lemma 4.3, since the errors introduced on both sides can 
be made as small as we please. [] 

By using Lemma 4.3 to obtain a sufficient condition for (4.1) and then using 
Borel-Cantelli we immediately obtain: 

Theorem 4.4. For a standard Markov process X satisfying (2.1) and (2.2), let 
(fro: m=  1, 2 . . . .  ) be a sequence of nonnegative measurable functions on the space 

of excursions from {x} and #m the measure corresponding to f,, via (2.8). For 
each m suppose that bin= S sf , ,(ds)< oo and, for each W, fm(W)<=M,,. Put, for 
each m. (o, ~) 

If, for all 7>0, 

Cm= ~ S2#m(ds), am=bmc~ 1/2. 
(0, co) 

then, for each t > O, 

• e-~"'/Mm+ ~ e-~"~<oe,  (4.9) 
m ~ l  m = l  

b2, 1 ~ fm(W)~A(t)  
w <t 

a s  m--4  oo. 

Corollary 4,5. In the special case where 

a.s .  

f m -~- 1Era 
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for some measurable Em c ~ ,  

if, for every 7 > 0, 

#{W: W-<=t and V(W)6Em} 
v(Em ) ~,A(t) a.s. 

~ e -~v<Em)'/2 < oo. (4.10) 
m = l  

Proof. In this case c m = b  m = v(Em) , M m = 1, and a m = v(Em) I/2. Clearly, the second 
term in (4.9) is irrelevant and (4.9) is equivalent to (4.10). [ ]  

In Theorem 4.4 there is no monotonic i ty  condit ion so we cannot  replace m 
by a cont inuous parameter  - and there is no hope of  getting a.s. convergence 
with a cont inuous parameter  wi thout  some smoothness condition. We now 
consider one impor tant  special case where a sharp theorem is possible. 

Theorem 4.6. Suppose X is a standard Markov process satisfying (2.1) and (2.2) 
and f is a nonnegative measurable function on the space Yf of excursions from 
{x}. Let (o~: e>0)  be a family of measurable subsets of Yr with E~$~ as e+O. Put 
f~=fle~ and let #~ correspond to f~ via (2.8). Suppose e~-*b~ is a nondecreasing 
continuous function such that b~---,O as ~.L O. For p < 1 define 

e, =inf{e:  b~=p"}, n =  1, 2, .... 
Then 

by 1 ~ f~(W)--*A(t) a.s. (4.11) 
W - < t  

as elO for each t > 0  if and only if 

,=1 b~,-b  . . . .  > 6  <oo  (4.12) 

for every p < 1 and ~ > O. 

Proof. By L e m m a  2.2, (4.11) holds for each t if and only if 

b~ 1 2 f~(W)-+l a.s. 
W -  < T(1) 

which, by L e m m a  2.3, is equivalent to 

b~, 1 • f ~ , ( W ) ~ l  a.s. (4.13) 
W -  < T(1)  

for every p < 1. (Recall: e, depends on p.) 
To begin the p roof  of  the equivalence of  (4.12) for every 6 and (4.13), 

assume that (4.12) is true for every 6. By Borel-Cantelli  there exists for almost  
every co and each rational 6 an n o such that, for n > no, 

( 1 - 6 ) ( b ~ - b  . . . .  ) <  ~ [ f~ (W)- f~+~(W)]  
W =<T(1) 

<(1 +6)(b~ - b  . . . .  ). (4.14) 
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Sum over n_> N >- n o to obtain 

( 1 - ~ ) b ~ , <  ~ f ~ ( W ) < ( l  +6)b,~ 
W -  < T ( 1 )  

and let ~5~,0 to obtain (4.13). 
Now suppose (4.13) is true and let c5>0. For almost every co there exists an 

n o such that, for n >= no, 

Adding these inequalities for n and n + 1 and using that 

b,~-b~n§ 
b~ +b . . . .  l + p '  

we obtain (4.14) for n>n o. Since the events in braces in (4.12) are independent, 
a consequence of the sets 8~,-g~,§ n = l , 2 ,  3, ..., being disjoint, (4.12) follows 
by Borel-Cantelli. []  

We cannot get a nice version of Theorem 4.6 without assuming that e~--~b~ 
is continuous. However, the same arguments yield the following three results. 

Corollary 4.7. Assume the definitions and conditions of Theorem 4.6 except for 
the continuity of e~--~b~. I f  there are ~>0,  and p < l  and a sequence ~$0 such 
that b ..... <pb~for  all n and (4.12)fails, then (4.11) is false. 

Corollary 4.8. Using the definitions and conditions of Theorem 4.6 except for the 
continuity of ~--*b~ and the definition of ~; suppose that for every c5>0 and 
p < l  there is a sequence ~ 0  for which b . . . .  >pb~  for all n and (4.12) holds. 
Then (4.11) is also true. 

A defect in Corollary 4.8 is that there is no chance of it being applicable if 
e~--*b~ has infinitely many jumps that are too large, a situation that arises 
naturally when #o has large atoms. We will not, for instance, be able to use" 
Corollary 4.8 in Examples 7.7 and 7.9, although the next result, which can also 
be proved by the same arguments, can easily be applied in these examples. 

Corollary 4.9. Assume, except for the continuity of ~--~b~ and the definition of ~, 
the conditions and definitions of Theorem 4.6. I f  for every (~ >0  and p < 1 there is 
a sequence ~,~0 such that: 

b( . . . .  )+>pb~_ for all n, (4.15) 

b~_ <p(b,+ - b ~ _ ) ~ e = e ,  for some n, 

2 
n = 2  

If( . . . .  ~_(w)-L~_(w)]  

b(~ ,)_ - b~_ - 1 > ~ < oc, (4.16) 
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Ef~~176 
~ p {  w-~r(1) - 1  > 5 } < ~ ,  (4.17) 

, :  ~ b~.  - b ~ . _  

[Lo+(w)-L~(w)] } 
,-. e w ~r(1, - 1  >5  <o~; (4.18) 

,= 1 b,,+ - b~, 

then (4.11) is true," where, in (4.17) and (4.18), c/O= o0 if c>O and 0/0=0.  

Examples 7.9 and 7.10 will further illustrate the difficulty of obtaining 
necessary and sufficient conditions for a.s. convergence. 

5. The Transient Case 

Most of the conditions which we have imposed on the process X are needed to 
make the problem non-trivial. For example, if x is not regular for {x}, the set 
Z = { s :  X(s)=x} is discrete. If #0(0, oo)< oo and 5>0,  which is the case if and 
only if (2.2) fails, then Z is a union of intervals whose lengths are independent, 
identically distributed exponential random variables. The assumption that X(0) 
= x  is natural because the local time at x does not grow until the first hitting 
time of {x}. However, in stating theorems and proving results we have also 
assumed that {x} is recurrent; that is, that Z is unbounded with probability 
one. This assumption is unnecessary for the validity of our constructions. In 
this section we examine the changes needed when {x} is transient; that is, 
when Z is bounded with probability one. 

The local time A still exists, but as a function of t it will be bounded. The 
right continuous inverse is still a subordinator Tprovided it is understood that 
Twill jump to + oo at a finite (random) time. Accordingly, #o will have a finite 
atom at +Go. The formula (2.5) is still correct provided, of course, that 
1 - e - ~ 1 7 6 1 7 6  for 0>0.  

Excursions of infinite duration now play a role, but we still require our 
functions f to be finite-valued in which case the corresponding #'s have no 
atom at + o0. The function fo, which assigns to each excursion its duration, is 
an exception; #0 does have an atom at + oo. 

It6's measure v does not in general have as natural an interpretation as it 
does under the assumption that {x} is recurrent. Recall that, under this 
assumption, 

{(~w, V(W))~D: V(W) defined by (2.6)} 

is Poisson with mean (2 x v)(D). In general this cannot be the case since there 
are no excursions corresponding to v's larger than A(oo). However, we can 
think of there being such excursions which, since they will correspond to 
"infinite t ' ,  will not affect X at all. Here is an indication of how to make this 
idea precise. For  C a measurable subset of ~,, let v(C)=limE(p)/a where p is 

a,t0 
the number of excursions Wfor the process X which actually occur and satisfy 

"cw <~r, V(W)~C. 
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Use this measure v on excursion space to define spurious excursions W for 
which "cw>A(oo), and proceed initially to include both actual and spurious 
excursions in the analysis. 

Now /~ corresponding to a function f can still be defined via (2.8). In 
Lemma 2.1 the definition of Gm needs to be altered to the following: 

L(w) 
~wS~ bm ' 

where the spurious excursions just introduced are included. However, the 
definition (2.10) of F m requires no alterations, and it is F~ which is involved in 
the major theorems of Sects. 3 and 4. 

We now claim that Lemma 2.2 and all the results in Sects. 3 and 4 are valid 
without the assumption that {x} is recurrent. The proofs are valid with only 
minor changes except for the proof of Lemma 3.4 and the argument that (A) 
~ ( D )  in the cases of a.s. convergence and convergence-in-probability in the 
proof of Lemma 2.2. For  (A) ~ ( D )  in the transient case two steps are needed - 
the first a proof that (A) implies 

6~(~) l~,: A/o>_-~ f . . . . . .  ~ 

~T 1{o): A(t)>z for some t} 

and the second a proof, using the fact that Gm is a subordinator for which 
A(oo) is a stopping time, that Gm(z)-~z. In (3.18) the expression T((k+l)/p) 
-T(k/p) may, in the transient case, be the meaningless expression o o -  oo in 
which case exp(-OT(k/p))=O; so, the argument leading from (3.17) to (3.19) 
remains valid. The equality between (3.19) and (3.20) fails in the transient case: 
a correction is needed to account for the possibility that T(j/p) may equal + 
ifj:t:0. That correction is just what is needed in (3.22); for, since A(oo) may be 
less than 1, (3.22), as it stands, is not valid in the transient case. 

In the transient case qo(0+)>0, so, for an appropriate version of the local 
time, ~o(0+)= 1. For  this version we can let 0~0 in Lemma 3.4 to obtain 

r#(dr)=E( ~ f(W)). (5.1) 
(0, oo) W -  <oo 

We have introduced W -  < oo in (5.1) as a reminder that only actual excursions 
(as opposed to the spurious ones introduced earlier in this section) are includ- 
ed. Since v assigns finite, positive measure (in the transient case) to the set of 
excursions having infinite duration, there is no loss of generality in assuming 
that set to have v-measure one. 

Lemma 5.1. Suppose that 

v{Ve~U:V + = oo} =1. 

Let ~ be a measurable subset of U such that Veg ~ V +< oo. Then 
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where p(E) equals the probability that at least one excursion belonging to E 
occurs during finite time in the t-scale. 

Proof. Let ~ =  {V~V." V+= ~}. Then p(g) equals the probability that the first 
(in the z-scale, say) excursion belonging to @ u E belongs to & So, since ~ c~ C 

v(~) v(O) 
p(~) = 

v ( ~ u  C) l + v ( g ) '  

from which (5.2) follows. [] 

6. Counting Constructions 

The a.s. portion of the following result is due to Maisonneuve ([1974, Theo- 
reme X. 4], [1980]). 

Corollary 6.1. Let v be the measure on the space ~ of excursions described in 
Sect. 2. Let ( ~ / ' .  a>0) have the property that oo > v(d~ oo as ~ 0  and let 

Then, as ~0,  

N~(t)= :~{W: V(W)~E~, W-<__t}. (6.1) 

NAt) 
v(g~ )-~A(t) (6.2) 

in L 2 for each t. I f  in addition, E~T as e~,O, then (6.2) also holds almost surely. 

Proof. Let f,  denote the indicator function of ~ .  Apply Corollary 3.7 to obtain 
L2-convergence. Apply Theorem 4.2 to obtain a.s. convergence. [] 

The idea of obtaining corollaries such as Corollary 6.1 by examining It6's 
[1970] Poisson point process of excursions also appears in [Greenwood and 
Pitman, 1980]. 

Even though the next corollary is not "a counting construction result" we 
include it here because it has an easy proof based on Corollary 6.1. 

Corollary 6.2. Let f be a measurable function from ~ to IR + and let/2 be defined 
as in (2.8), with /2{~}>0 being permitted. Suppose that ~(r A 1)/2(dr)<~ and 
/2(0, 1] = ~ .  Then, as e+O, 

w <=~ -~A(t) in L 2 and a.s. (6.3) 

~/2(r, oo] dr 
0 

for each t. 

Proof. Let E ~ = { V ~ ' . f ( V ) > e } .  Our hypotheses on /2 imply that we may use 
Corollary 6.1 to deduce that, as r,~0, 

N~(t) .A(t) in L 2 a n d  a.s. (6.4) 
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The finiteness of ~(r/\ 1)#(dr) implies that the denominator in (6.3) is finite. 
Thus, we integrate the denominator and numerator in (6.4) to obtain 

S Nr(t) dr 
o ~A(t) in L 2 and a.s. (6.5) 

8 

S ~(r, oo] dr 
0 

as e;0. Integrate by parts in the numerator at (6.5) to obtain (6.3). [] 

The next two examples are applications of Corollary 6.1. In each of them, 
g~ of Corollary 6.1 is the set of excursions which hit a certain set of real 
numbers. 

Example 6.3. A process X is called strictly stable of index c~ if X has stationary, 
independent increments, and if, for any a>0 ,  the process t~--,a-~X(a~t) is 
stochastically equivalent to X, a property that is called the scaling property. 
Necessarily, 0 < c~ < 2. We consider a one-dimensional strictly stable process X 
of index c~> 1 starting at 0. It is known that (2.1) and (2.2) hold. For ~< 1, (2.1) 
is false. 

Let 6~ denote the set of excursions that hit the set ( - o o , - ~ ]  u [~, oo). If 
v(6~ + oo the number of excursions belonging to 6~ and occuring by the 
(random) time T(1) would be Poisson distributed with mean + oo; that is, it 
would equal + oo a.s. in contradiction of the fact that processes with sta- 
tionary, independent increments have discontinuities of only the first kind. 
Hence, v(g~)<oo for each e>0  and, therefore, Corollary 6.1 is applicable: 
N~(t)/v(C~)~A(t) a.s. and in L 2. We will use Lemma 3.4 to show v(g~)=ce -(~-1). 

For each Wm~K and each re(0, oo) let W~ denote the excursion defined by 
(W~)-=r~W - and W~(t)=rW(r-~t). By the scaling property, the family {W} is 
stochastically equivalent to { W~}. By Lemma 3.4, 

~(4) = ~o(o) E(2e  -~ I~(W)) 

= qo(O)E(~e -~ I~(W~)) 

= ~o(0) ~ ( ~  e-~176 b ,  (W)). 

Set 0=e  -~ and use ~o(0)=0 (~-1)/~ [Stone, 1963] to obtain v(g~)=cg -(~-l) [] 

Example 6.4. Let X be an asymmetric Cauchy process specified by 

log E(e i~x(t)) = -tiu[ (1 +ih sgn (u) log lu]), (6.6) 

where h~[-7~/2,0)w(O, ~/2] is a constant. (We omit h = 0  for it corresponds to 
the (symmetric) Cauchy process which does not satisfy (2.1).) Since X has 
infinitely many jumps in every time intervals, (2.2) holds. Since the real part of 
(6.6) is integrable for u in a neighborhood of 0, X is transient. Port and Stone 
[-1969] showed that (2.1) holds. Let g~ denote the set of excursions from 0 that 
hit ( - o  o , - e ]  and g*={V~g~: V+<  oo}. Pruitt and Taylor [1982] analyze the 
local structure of the process X and their Lemma 4.2 gives, in the notation of 
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our Lemma 5.1, that, as e+0, 

1 - p ( g * ) ~  c/log (l/z) 

for some positive, finite constant c. (In [Pruitt  and Taylor, 1982], the value of 
c is given in terms of h, but this value is unimportant and is changed by the 
normalization of Lemma 5.1.) By Lemma 5.1, v (g*)~c  -1 log(l/e). Since ~ has 
at most one more member than g*, v(G~)~c- l log(1 /e ) .  Now Corollary 6.1 
gives : 

N~(t) +A(t) a.s. and in L 2 as e~0 (6.7) 
log (l/e) 

where N~(t) is the number of excursions that begin by time t and hit ( - 0 %  
-~] .  [] 

The next result is in some ways more general and in other ways less 
general than a result of Getoor [1976]. For 0 > 0  and x the point at which we 
want to study the local time A let 

G(O, y) = EX(e- o inf{,: X(,)- y}), 

H(O, y) = EY(e Oinf{t:X(t)-x}). 

Corollary 6.5. Suppose (x~: m=1,2 ,  ...) is a sequence Such that each x~=l= x and, 
for  some 8>0,  Gm(O, xm)-~ l as m~o�9  Then, as m ~ o %  

1 - G(O, xm) H(O, xm) N(xm, x, t)--*A(t) (6.8) 
~o(o) 

in L 2 for  each t, where N (Xm, x, t) is the number o f  passages f rom x m to x by time 
t. 

Remark. In one sense, q)(0) is superfluous in the corollary since A is only 
determined up to a multiplicative constant. We have inserted it so that the 
same version of local time is obtained for different values of 8. If G(O, x m ) ~ l  
for some 0 > 0, it does so for all 0 > 0. In the transient case 0 + may be inserted 
for 8. 

Proof. Since G(O, xm)---,1 and (2.1) holds, H(O, x , , )~ l  [Blumenthal and Getoor, 
1968, V Exercise (3.36)]. Let X o denote the process obtained by terminating X 
using an independent random time with an exponential distribution having 
mean 1/8. Clearly, we only need prove the corollary for X o. 

Let d~m denote the set of excursions V which hit {xm} and satisfy V + < oo. 
Since X o is a strong Markov process, G(O, xm)H(O ,x~) equals the probability 
that X o has at least one excursion belonging to E~. Thus, from Lemma 5.1, we 
obtain 

Vo(~,~ ) ~ c o [1 - G(O, Xm) H(O, Xm) ] - -  1 

as m~oo,  where v o is the measure on ~ induced by X o and c o is a constant 
that frees us from the normalizing hypothesis in Lemma 5.1; accordingly, 

Co=Vo{V~ ' .  V + = ~ } .  
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The L 2 portion of Corollary 6.1 is now applicable despite the fact that the 
numerator there may differ by 1 from the number of passages by X o from x m 
to x by time t, so it only remains to show that we get the same version of the 
local time for different 0's by choosing Co= (p(O). 

One way of fixing one version of the local time of X independent of which 
value of 0 is used in the preceding argument is to regard v o as being induced 
by v (rather than by X o in which case there is an arbitrary constant for each 
0): v o is obtained by shifting some of the measure v to excursions having 
infinite duration. Let @={V~C" V + =oo}. The probability that for X o there 
exists an excursion W with V ( W ) e ~  and rw~(0, 1] (see (2.6) and (2.7)) is the 
probability that the local time for X o never exceeds 1 which is the probability 
that the local time A of X does not exceed 1 when it is evaluated at the 
independent exponentially distributed random variable S o having mean 1/0. 
Thus, it equals 

P { T ( 1 ) > S o } =  ~ [ 1 - e  ~ 1 7 6  
(0,~1 

Since this probability is also the probability that a Poisson random variable 
with mean Vo(~ ) is non-zero (The spurious excursions introduced in Sect. 5 are 
playing a role), we obtain Vo(@)=~o(O ) as desired. [] 

In the following example we give a result for diffusions that It6 and 
McKean [1965, 6.5a] obtained by using a time substitution in Brownian 
motion. Even for Brownian motion this result has attracted recent attention 
([Getoor, 1976, p. 2], [Chung and Durrett, 1976], [Williams, 1977] and [Mai- 
sonneuve, 1981]). 

Example 6.6. Let p, satisfying p(0)=0, be a scale of a non-singular diffusion X 
on an interval containing [0, hi for some h>0.  As is usual we allow a variety 
of behavior at the endpoints of the interval except that we do require (2.1) and 
(2.2) for x = 0 even if 0 is the left endpoint. 

Suppose Xm,~X=O as m~oo.  We note that Corollary 6.5 and, because of the 
continuity of X, the a.s. portion of Corollary 6.1 are applicable so that (6.8) 
holds almost surely. We now analyze [ 1 -  G(O, xm)H(O, xm)]/~o(O ). 

Let G denote the generator of X and let go and h o denote, respectively, 
increasing and decreasing solutions of G f = O f  chosen so that the Wronskian 
g'oho-goh'o =1 where (') denotes right derivative with respect to p. It6 and 
McKean [1965, 4.10] give: 

G (0, y ) -  go (O)/go (y), 
H (0, y) = h o (y)/ho (0). 

Hence, 

1 - G(O, Xm) H(O, Xm) __ gO(Xm) ho(O ) -g0(0) ho(xm) 
q)(O) qo(O) go(Xm) ho(O ) 

= [g  (xm) - g(O)] h o (0) - go (0) [h  o(xm) - h o (0)] p (x,~) 

p(xm) go(Xm) ho(O ) ~o(0) 
p(xm) 

go(O) ho(O) ~o(0) 
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So (p(O)=c[go(O)ho(O)] -1 in agreement with l i t6 and McKean, 1965, 6.2] and 

p(Xm) N (xm, x, t)--" A (t) 

a.s. and in L 2. [] 

For a discontinuous X, the a.s. part of Corollary 6.1 may not be applicable 
in the context of Corollary 6.5. The following sufficient condition for a.s. 
convergence follows easily from Corollary 4.5. 

Corollary 6.7. Under the hypotheses of Corollary 6.5, the convergence at (6.7) 
takes place a.s. if  

~ e x p ( -  7[1 -G(O,  xm) H(O, Xm)]l/2)< ~ .  

for some 0 > 0 and every ? >0. 

The sufficient condition for a.s. convergence that one can obtain from 
Corollary 6.7 in case X is a L6vy process is weaker than Getoor's [-1976] in 
our context (which is more restrictive than is his). For comparison of our 
Corollaries 6.5 and 6.7 with his paper, his (1.9), (1.10), (2.1l), and (2.22) are 
relevant. 

7. Intrinsic Constructions 

In this section we consider functions that depend on the excursion V~;V" only 
through its duration V § In other words we are interested in obtaining A(t) as 
a limit of approximations that depend only on the strong Markov set being 
studied rather than on some other aspect of a Markov process whose zero set, 
say, happens to be this strong Markov set. 

We shall restrict our attention to possible limit theorems involving three 
one-parameter families of random functions: 

N~(t) = 4t= {W: W-  <t,  W + - W -  >s}, (7.1) 

R~(t) = ~ s/~ ( W  + - W - ) ,  (7.2) 
W - < t  

S,(t) = ~ ( W  + - W - )  (7.3) 
W < t  

W + - W - -  < s  

- each defined for s > 0. 
It6 and McKean [-1965, 6.3] proved the following result by a method to 

which some of our methods are similar. 

Corollary 7.1. For each t, as silO, 

N~(t) --+A(t) in L 2 and a.s., 
~o(S, 0o] 

where N~ is defined at (7.1). 



100 B. Fr i s ted t  and  S.J. Tay lor  

PrOof. This corollary is a special case of Corol lary  6.1. [ ]  

Even though S t is studied more  often than is R~ we consider the simpler R~ 
first, and obtain a result of Kingman  [1973]. As a reminder  to the reader that  
for some theorems, but  not  all, W + < t can replace W -  < t, we depart  from our  
usual format  and include both  possibilities in our  statement.  

Corollary 7.2. For each t, as slO, 

R~(t) 

j#o(S, oo] ds 
0 

,A( t )  in L 2 and a.s., (7.4) 

where R t is defined at (7.2) and 

[~A(w+- w-)] 
W + _-<t 

i lio(S oo] ds 
0 

* A(t) in I~ and a.s. (7.5) 

Proof. F r o m  Corol lary 6.2, (7.4) follows immediately.  The difference between 
the numerators  on the left sides of (7.4) and (7.5) is no larger than e. The  
equivalence of (7.4) and (7.5) follows from 

g 
< _ _  

t 

~o(S, ~3 ds =e~~ ~] 
0 

,0. [ ]  (7.6) 

One way of construct ing a s tandard Markov  process X whose zero set is, 
except for a countable  set, a part icular  strong Markov  set Z is to let 

X ( t )=in f  {s > t: s~Z}  - t .  

The numera to r  on the left side of (7.4) differs by no more  e from the occu- 
pat ion t ime of [0, e] by X before t ime t, provided that  the Lebesgue measure of 
Z equals 0. Not ing  (7.6), we can conclude, in case the drift ~ = 0  (see (2.5)): 

i liu:x(u)<=~} 
o ~ A ( t )  

J ~o(S, ~]  ds 
0 

in L 2 and a.s. as e$0. 
We turn  to the study of  S~, defined at (7.3). What  is interesting is the 

variety of possibilities, depending on /%, for the behavior  of St(t)/b ~ as e J,0. 
Accordingly, we look at some  examples in which f~(V)= V + if V + <e  and = 0  
if V + > e  and /& denotes the corresponding measure defined via (2.8). Clearly, 
#~ (B)=#o(B~  [0, e]). In the following example convergence in probabil i ty fails. 
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Example 7.3. Let #0(s, oo] =0  v log (l/s). For s < 1, 

1 1 b^~ bAs 
(o, ~blr#~(dr)=~ ~o r(1/r)dr= b 

so, a~, defined via (3.9), equals s. We try t=�89 in (3.10): 

#~(g , oo) = l o g  ( 2 / 0  - l o g  ( i / s )  = l o g  2-++ 0. 

By Proposition 3.3 we conclude that, as g$0, S~(t)/b~ does not converge to A(t) 
in probability whatever be the numbers b~. If X is an asymmetric Cauchy 
process, then [Hawkes, 1970, Lemma 2.1] 

- l o g  E(exp ( -  0 T(1))) ~ c log 2 

as 2-+ oo. By a Tauberian theorem 

#o (s, c~] ~ log (I/s) 

as s+0. Accordingly, the argument just given shows that S~(t)/b~ does not 
converge to A(t) in probability for any choice of b e. [] 

The next example is at the opposite extreme from the preceding one and 
contains as a special case one of L6vy's results for Brownian motion. 

Example T.4. For 0 < f i < l ,  let #o(S, OO)=s-~, s>0.  By Theorem3.5, as s+0, 
S~(t)/sl-~--+A(t) in L 2. By Theorem 4.1 and Lemma 2.3, as s~0, S~(t)/e*-~A(t) 
a.s. If X is a strictly stable process. (See Example 6.3) with index c~> 1, then 
[Fristedt, 1974, Example 5.11] #o for its zero set is given by #o(S, oo)=s-~ with 
fi = (~-1)/~. Setting ~ = 2 (Brownian motion), we obtain (1.4). []  

In the next example L 2 convergence holds even though a.s. convergence 
fails. 

Example 7.5. Let #0 be supported by 

{2-k/log k: k =2, 3, 4,...} 

with 

We have 

and, as e$0, 

#o {2 k/log k} = log  k. 

r#o(dr)= 2 ;(o+* 
(0, e] 

S r2#o(dr)  ~ 3 - 1  4-J(a)+l/l~ 
(0, el 

where the integer J(0 satisfies 

2-J(~) < s < 2-Ju) + * 
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By Theorem 3.5, 2J(~)-lSe(t)~A(t) in L z. In order to prove that a.s. con- 
vergence fails we set e ,=2-" / logn,  b(e,)=2 - '+1, p=�89 and 6=1 in Corollary 
4.7 and examine 

P{ e"~{W:W-<T(1) 'W+-W-=s"}  >1} 

= P { # { W : W - < T ( 1 ) , W  + - W  =e,}>21ogn} 

( l og /2 )  i e -l~ ( l o g  ~/)21ogn 
= > 

i> 2 logn i! = nF(2(1 +log n)) 

(F= ga mma  function) which by Striling's Formula, is asymptotic to 
cn-(l~ -5/2, the general term of a divergent series. So, by Corollary 
4.7, a.s. convergence does fail. 

In the next example convergence in probability holds with the normalizing 
function 

S r~o(dr) 
(0,~] 

even though both L 2 convergence and a.s. convergence fail. 

Example 7.6. Let go be supported by 

with 

As ~+0 

{k -12-k:  k=2,  3, . . . } t A { k  1 / 2 2 - k :  k=2,  3 . . . .  } 

i~o{k-~ 2-k}=k, i.zo{kl/22-k}=k -1. 

where the integer j(e) satisfies 

and 

r#o(dr) ~21 J(~), 
(0, s] 

j(e)- 1 2-J<~) < g < [j(e) - 1] - 1 21 -j(~); 

(~ r 2  ~dr' f j (e ) - i  41-j(o/3 
#or J ~ 141_j(~)/3 

if g<j(e)1/22 j(E) 
if g~j(g)l/22-j(~). 

For any fixed fi>0, f121-i(e)>j(g)-12-J(e) for e sufficiently small. So, as e+0, 

2 j(~-I ~ r#o(dr)<2-*j(e)-*/e-+o. 
(/321 - j(~), e] 

Corollary 3.2 and Theorem 3.5 now apply: 

2j(~)- 1 S~(t)--+A(t) (7.7) 

in probability but not in L 2. 
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To consider (7.7) in the almost-sure mode we prepare to use Corollary 4.7 
by letting 6=1, p > Z  and 2~ 

gn = n l / 2  2 - n "  

The series at (4.12) can be written as 

~,P{In 1 gn_]_nl/2 r n _ _ l l > l }  ' (7 .8 )  
n 

where U, and V, are independent Poisson random variables with means n and 
n-1, respectively. The series at (7.8) dominates 

2P{In ' U,-II<I}P{V,>O} 
n 

which dominates 

c ~ P{V,>O}=c ~ [1 -exp(n-1) ]  
n = l  n = l  

which diverges by comparison with ~ n  -1. Corollary 4.7 thus implies that (7.7) 
does not hold a.s. [] 

In the following two examples a.s. convergence holds but L 2 convergence 
fails. In the first 

r#o(dr) (7.9) 
(0, el 

is a correct normalizing function. In the second (7.9) is finite but not a correct 
normalizing function. 

Example 7.7. Let #0 be supported by 

{ k  - 2  2-k: k=4,  5, ...} vo {k2-k: k=4 ,  5, ...} 

with #o{k-22-k}=k e and #o{k2-k}=k -2 and define the integer j(e) via 

j ( g )  - 2 2 -J(e) =< g < [ j ( g )  - -  13 - 2 21 - j(e). 

Calculations similar to those in Example 7.6 show that 

2j(e ) --1 Se(l~)--->A (t) 

in probability but not in L 2, and that 

(7.10) 

21-J(~)~ S r#0(dr)" 
(0, ~] 

To consider (7.10) in the almost-sure mode we prepare to use Corollary 4.9 
by fixing 6 > 0 and setting 

% = n - 2 2  -". (7.11) 

If we define b~=21 J(~), then b~ is constant in (e,+ 1, e,) so that 
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Even though the sequence in (7.11) does not depend on p we have still satisfied 
(4.15). To successfully apply Corollary 4.9 it remains to check (4.16) and (4.17), 
as (4.18) is trivially satisfied. The left side of (4.16) equals 

~P{[n  -2 Un+nV,- l l>(~  } (7.12) 

where U, and V, are independent Poisson random variables with means n 2 and 
n - z ,  respectively. The sum at (7.12) is bounded by 

2 P{jV,-nEl>g)n2} + ~ P{V,>O}, 
n n 

which, by Chebyshev, is bounded by 

We omit the verification of (4.17); it is similar to the preceding argument but 
easier since V, is not involved. By Corollary 4.9, (7.10) holds in the almost-sure 
mode. [] 

Example 7.8. Let #o be absolutely continuous with support ~) (I k u Jk), where 
k=3 

{lk, Jk: k=3,4 ,  ...} is a disjoint family of closed intervals such that the right 
endpoints of I k and Jk are k - 2 2  -k and k 32 -k, respectively; and let #O(Ik)=k2 
and l~o(Jk)=k -2 with #0 uniform on each 1 k and on each Jk. The intervals I k 
and Jk should be thought of as short. Indeed, many of the following assertions 
are only valid if, as k~oo,  the lengths of I k and Jk go to 0 sufficiently fast. 
However we will not explicitly say this each time. 

From Proposition 3.3 it is straightforward to show that if any normalizing 
b~ will yield convergence of b E t S~(t) as e$0, then the continuous function 
e~-,b~ that satisfies 

bE=21 k if e = k - 2 2  -k, 

is linear on each Ik, and is constant on intervals in the complement of Q)I k is 
such a normalizing function. 

For e=k32  -k, 
S rlzo(dr) ~k21-k  

(0, el 

and, so, the "natural" normalizing function given at (7.9) will not give con- 
vergence; rather 

l im in fb j  S r#o(dr)=O (8;0). 
(0, El 

Checking condition (3.24) we see that we can not obtain convergence in the L 2 
mode. 

We fix ~ > 0 and p < 1 and let e n be defined as in Theorem 4.6. A necessary 
and sufficient condition for en elk is 2-(k + 1) < p, < 2-k or, equivalently, 

( log2 ~ ( log2 
(k+ 1) t ~ !  > n > k  l ~ ! "  (7.13) 
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We want to apply Lemma 4.3 to the n th term in (4.12). 
We first suppose that {e,, ~n+ 1}cIk SO that 

[ log2 \ , ( log2 '~ 
(k+ 1) ~ ]  - 1 >n>k \log(1/p)]" (7.14) 

We may take 2 k for M in Lemma 4.3. The numbers b, c, and a of that lemma 
are, respectively, close to 

pn(1-p) ,  k - 2 2  kpn(1-p) ,  and k2k/2pn/2(1--p) 1/2. 

From the second inequality in (7.14), 

k 2k/2 pn/2 (1 __ p)1/2 M < k(1 - p ) 1 / 2 2 - k ~ 0 .  

Accordingly, the first of the bounds in Lemma 4.3 is valid, and, absorbing the 
approximations into the unspecified constant c in the exponent, we obtain 

Y~ [L~ L~ ,(W)] 
p{  w-~T~l~ -1  >~}  

b=-b .. . .  

< 2  exp [ - cc~ 2 k 2 2 k p=(1 -- p)] 

which, by the first inequality in (7.14), is less than 

2 exp [ - c6 2 k 2] < 2 exp [ - c6 2 n2"], 

the general term of a convergent series. 
Next we suppose that e, EI s and e,+ lSlk for some k>j. From (7.13) there is, 

since p is fixed, a fixed bound K on k - j .  The expression we want to consider 
is 

P{I ~ [f==(W)-f~=+l(W)]-[b~=-b~=+,][>@"(1-p)} 
W <T(1)  

which can be bounded by the sum of at most K terms of the kind considered 
in the previous paragraph plus 

k 

2 P ( + { W :  W-=<T(1), W + - W - ~ J ~ } > 0 )  
i = j + l  

k k 

= ~ [ 1 - e x p ( i  a ) ]<  2 i 2. 
i = j + l  i = j + l  

As we sum over n we pick up no more than c ~ i  2 which is finite. 
By Theorem 4.6, 

b~-lS=(t)-~A(t) a.s. [] 

The existence of atoms in Example 7.7 did not play a crucial role. We 
could have spread them out as we did in Example 7.8. Generally, if there are 
atoms and bE-~S~(t)--->A(t) either in probability or in L 2, then the atoms can be 
spread out and b~ adjusted so that the convergence is not lost. If  there are 
atoms, and convergence in some particular mode is not possible for any choice 
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of e~--,b~, then such convergence will still be impossible if the atoms are spread 
out slightly. In the following example there are atoms and there is a.s. con- 
vergence. However, if the atoms are spread out (see Example 7.10), then a.s. 
convergence is not possible. 

Example 7.9. Let #o be supported by 

with 

Let 

{k-22 -2k' k =  1, 2, 3...} 

#o{k-22-2k}=k 2. 

b =2-2k, 2 2k==_r 2s  

In order to apply Corollary 4.9 we fix c~ > 0 and set 

~n =2-2n. 

Conditions (4.15) and (4.18) are trivially satisfied and conditions (4.16) and 
(4.17) are identical - namely, that 

e{In  -2 g . -  11 >a}  < oo (7.15) 
n 

where U, is a Poisson random variable having mean n:. Chebshev implies 
(7.15) and so 

b~-lS~(t)~A(t) a.s. [] 

Example 7.10. Let #o be absolutely continuous with support ~) Ik, where 
k = l  

{ I k , ' k = l ,  2, ...} is a disjoint family of closed intervals such that the right 
endpoint of I k is 

k 22 2~; 

and let #o(Ik)=k2 with #0 uniform on each I k. As in Example 7.8 some of the 
following steps depend on Ilkl--*0 sufficiently fast. 

By Proposition 3.3, we see that if b21S~(t)--,A(t) a.s. for some function 
e~-~b~, then we will have convergence with: 

be=2 -2k if e = k - 2 2  -zk, 

and e~---,b~ continuous, linear on each Ik, and constant on intervals in the 
complement of UIk. For this be, 6=�89 and fixed p < l ,  let ~, be defined as in 
Theorem4.6. For each k consider the n such that Z,+z~Ik, e,,+l~Ik and, 
therefore, for k sufficiently large e,(~Ik: 

2k+1 ( log2 ~ ( log2 
\ ~ ]  - 1 >n=>2 k+~ \log(1/p)] -2 .  (7.16) 

The n th term in (4.12) is approximately 

P{Ik 22-2kp-n(1--p)-i g , - l l > � 8 9  

__>PiU.=0} (7.17) 
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where U, is a Poisson random variable with mean 

k 2 2zk p,(1 - p )  

which, by the second inequality in (7.16), is dominated by 

kZ 2 2 k p - 2  2 -  Zk+i(l__p) 

which approaches 0 as k~oo.  Hence, the quantity at (7.17) approaches 1 as 
n--->~ through the sequence satisfying (7.16) for some k. Thus, (4.12) fails and 
bjlS~(t) does not converge to A(t) a.s. 

In this example it is not essential to have a uniform distribution on each 
Ik: a similar argument will work provided the distribution of #0 is continuous 
on each I k. [] 

Erickson [1981] obtains, in case #o is non-atomic, a good sufficient con- 
dition on #o for 

s~(t) 
+A(t) a.s. (7.18) 

r#o(dr) 
(0, ~] 

We can also obtain a sufficient condition by using Theorem 4.6 in conjunction 
with Lemma 4.3. Because our sufficient conditions can be satisfied for a #o 
with atoms they are clearly not equivalent to those of Erickson. It would be 
interesting to obtain necessary and sufficient conditions for (7.18). The exam- 
ples of this section show that a set of conditions which covers all relevant cases 
may be quite complicated. 

8. A Theorem of Knight 

It is well known that, for Brownian motion Y(t), the result of reflecting in the 
maximum 

x ( t )  = s u p  { y ( s ) :  0 _ s _< t} - Y(t) (8.1) 

is a process X(t) which behaves like [Y(t)l not only away from the zeros of X(t) 
but also on the zero set. For a symmetric stable process of index a (0< ~ < 2), 
the local behavior at zero is different from that at other points. However, 
Knight [1971] shows that the local time at zero can be obtained as the limit of 
suitably normalized occupation times of [0, e]. It is clear that this result fits 
into the framework of the present paper. We can generalize the result to 
include all strictly stable Y(t). We exclude the monotone Y(t) from the state- 
ment because the corresponding zero set for X(t) is trivial. 

Corollary 8.1. Suppose Y is a strictly stable process in IR 1 with characteristic 
function 

E eiOY(O _= e-C[1 -iflsgn(O)] Io[ = 

where c>0 ,  0<c~<2 and 

{ ~ Itan(~z c~/2)1 /f ~<1 
Ifil Itan(rc c~/2)1 /f c~ > 1. 
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Then the process X(t) defined by (8.1) has a local time A(t) at 0 and, as e+ O, 

i lto ,o(X(s)) ds 
0 L2 

A(t). (8.2) ~a/2 (1/rr) arctan fl a.s. 

Remark. If fl = 0, Y is symmetric and this theorem is due to Knight. If 0 < c~ < 1, 
the exponent in (8.2) can take all values in (0,a). Positive values of fl cor- 
respond to an asymmetric process in which positive jumps are more likely 
than negative jumps. Ths makes Y"st ick" near its maximum so the numerator 
in (8.2) is larger and the exponent of e has to be smaller than for f l=0.  For  c~ 
= 1, the processes Y included i n  the theorem are usually called symmetric 
Cauchy with a linear drift corresponding to the value of ft. A positive drift 
corresponds to f i>0  and a smaller exponent in (8.2). For  1 < e < 2  we can again 
see how the lack of symmetry in the stable process Y leads to exponents in 
range [ e - 1 ,  1]. For  c~=2 we must have Brownian motion and our theorem is 
just a restatement of (1.1). 

Proof For all the processes Y included, 

inf{s>0:  Y(s)>O}=O=inf{s>O: Y(s)<0} a.s. 

so the process X obviously satisfies conditions (2.1) and (2.2); thus A(t) exists. 
We can apply our framework to the excursions of X. For  e> 0 put 

V + 
f~(V)= ~ l[o,~)(V(s))ds 

0 

and let #~ be the measure corresponding to f~ via (2.8). We will show that there 
exist finite positive constants c 1 and c 2 such that 

5s#e(ds)=c 1 g~/2 (1/n)arctanfl, (8 .3 )  

and 
S $2 ~ ( d s )  = C 2 ~3e/2 (1/x)arctanfl. (8.4) 

Since larctan(+ tan rc r162 < rc e/2 for r162 > 1, straightforward uses of (8.3) and 
(8.4) in Theorems 3.5 and 4.1 and Lemma 2.3 give the desired convergence. It 
remains to prove (8.3) and (8.4). 

The process X inherits the sealing property (see Example 6.3) from Y We 
use the scaling property, Lemma 3.4, 0 = e  -~, and the known [Fristedt, 1974, 
Example 9.13] formula 

~0( 0) = 012 + l~arctanfl~ 

to obtain 
1 1 
- - + - -  arctanfl e ~ d r #,(dr) = 0 2 ~ E 

(0, o~) 

o~ 1 ~ - - ~ -  . . . . .  tanfl (.~ 
E e-~-=*d ~ f~(eW(e-~.))) 

\o W -  <re -~ 

=e 2 ~ E e - ' d  ~ f l ( W  . 
W <s 
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A similar argument shows 

oo 3 a  l a r c t a n f i  
t . 2  #~(dr) = e 2 :'t 

0 

E ( ~ e  -*d ~< f ( ( W ) )  
\ 0  W = s  / 

It remains to prove that y r#~(dr) and y r 2 #~(dr) are finite. That is the case 
but we omit the argument since it is similar to and slightly easier than an 
analogous argument in Sect�9 9. [] 

9. Residual Area for a Strictly Stable Process 

Our final result gives a construction which is new even for Brownian motion. 
The arguments works for any strictly stable process (defined in Example 6.3) so 
we state it in that context. 

Corollary 9.1. Suppose X is a strictly stable process in IR with index :~ > 1. Then, 
as e~,O, 

t 

t -  S (~ a IX(s)l) ds 
0 

e2 ,A(t) (9.1) 

a.s. and in L:, where A is the local time at O. 
t 

Remark�9 The quantity e t -~e /x lX(s ) lds  is the area above the graph of IXI 
below ~. 0 

Proof The total area can be calculated excursion by excursion. Let 

V + 

L(V) = S E~- (~ A I V(s)l)3 ds. 
0 

We use Lemma3.4,  the scaling property, (p(0)=0 (~-1)/~, and 0 = e  -~ as in 
Example 6.3 to obtain 

(i ) r#~(dr)=O(~-l)/~E e-~ ~, f~(W) 
(0 ,  m )  W -  < t  

= e - ~ + I E  e-,~-~ d f~(8 W(e-~ �9 
\ 0  W _<_te ~r 

By using s in lieu of s we obtain 

r2#e(dr)=g3+~E(i 
(0, o~) 

f~(W)) .  (9.3) e - S d  

w < s  

We will next show that (9.2) is finite. Integration by parts, correct even if 
the integral is infinite, gives 



110 B. Fristedt and S.J. Taylor 

oO 

0 W-<s  0 
F~ fl(W)ds 

w-<=s 

oo [ inf{t>s:X(t)=O} ] 
<= S e-S s + ~ 1[_ 1, ll(X(u)) du ds 

0 s 

<= 1 + ~ e-s(Ks+ 1) ds 
0 

where Ks, conceivably + o% is the supermum of integers k such that 

inf{t > s: X(t)= O} 

1[_ 1, ll(X(u)) du > k. 
S 

Since X is recurrent, for any k we can define 

tk=inf{u:!l[_l,ll(X(u))du=k} 

By quasi-left-continuity IX(tk-) l< 1. By restarting X at time t k we see that, 
conditioned on Ks>  k, the probability that K s > k + q is no larger than 

1 -  inf W{X(u)=O for some u<q} 
Ixl _-< 1 

which, by the scaling property (see Example 6.3), is equal to 

1-P(-1){ X(u)=O for some u < q} A Pl {X(u)=O for some u < q}, 

which is less than 1 for some q (actually, for all q). Hence, E(Ks) is bounded by 
a finite number independent of s and, thus, (9.2) is finite. A similar argument 
shows (9.3) to be finite. 

By Theorem 3.5, Theorem 4.1, and Lemma 2.3, 

L(w) 
W-<=t 

~2 ,A(t) (9.4) 

a.s. and in L 2. To obtain (9.1) from (9.4) notice that the numerator in (9.1) is no 
larger than the numerator in (9.4) but is at least as large as the numerator one 
obtains by replacing t by s 7, 7 > 0, in (9.4), where 

s~=sup{u: A(u)=A(t)-7}. 

Question. Is Corollary 9.l true for every L6vy process satisfying (2.1) and (2.2)? 
We note that the normalizing function e 2 does not depend on the index of the 
strictly stable process. 

10. Concluding Remarks 

In this paper we have produced a general method which includes as special 
cases all the constructions (1.1) to (1.4) first considered for Brownian motion. 
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P r o v i d e d  the  c o n s t r u c t i o n  can  be  m a d e  by  " a d d i n g  u p "  the  b e h a v i o r  on  

s epa ra t e  excur s ions  we h a v e  gene ra l  t h e o r e m s  wh ich  will  apply,  a l t h o u g h  it is 

n o t  a lways  easy to check  the t ru th  o f  the  hypo theses .  H o w e v e r ,  the re  are  cases 

w h e r e  the  m e t h o d  does  n o t  app ly  because  the  c o n s t r u c t i o n  c a n n o t  be  d iv ided  

a c c o r d i n g  to excurs ions .  Th is  is the  case  for the  resul t  due  to  G e t o o r  [1976]  

for d o w n c r o s s i n g s  f rom x m to Ym, b o t h  d i f ferent  f r o m  x. H o w e v e r  if  o n e  k n o w s  

e n o u g h  a b o u t  the  p rocess  one  can  s o m e t i m e s  o b t a i n  this  type  o f  resul t  f rom 

the  resul t  ba sed  on  excurs ions .  Th is  is d o n e  in [ P r u i t t  a n d  Tay lo r ,  1982] to 

o b t a i n  a c o n s t r u c t i o n  o f  loca l  t i m e  for the  a s y m m e t r i c  C a u c h y  process  di f ferent  

f rom tha t  g iven  in E x a m p l e  6.4. 
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