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Summary. Let X and J~ be standard Markov processes in duality on a state 
space E and assume that semipolar sets are polar. Let # be a measure on E 
whose X measure-potential #U is a-finite. We characterize the measures v 
on E which arise as the W-distribution of X r for some non-randomized 
stopping time T. We then apply this result to characterize the measures v 
on E which satisfy vU<#U. 

Introduction 

Given a stochastic process (Xt) and a measure v, one may ask when there 
exists a stopping time T such that the distribution of X r is v. This problem has 
been studied by various people including Skorokhod [15; 16, Chap. 7], Dubins 
[-5] and Root [11] for (Xt)=Brownian motion in one dimension, Rost [12-14] 
for (Xt) a standard Markov process, and Baxter and Chacon [3] and the 
author [6, 7] for (X,)= Brownian motion in several dimensions. Under suitable 
conditions on v, Skorokhod and Rost showed how to construct randomized 
stopping times T with X T having distribution v. (A randomized stopping time 
is a stopping time not of the natural filtration of (Xt) but rather of the natural 
filtration of ((X, Y)) where Y is a continuously distributed real random vari- 
able independent of (X~).) The other authors listed above concerned themselves 
with when a non-randomized stopping time T could be constructed which 
would give the desired distribution to X r. The methods used to construct such 
non-randomized stopping times depended on special properties of Brownian 
motion. In this paper we consider this problem for the case where (Xt) is a 
standard Markov process in duality with another standard Markov process 
and satisfying Hunt's Hypothesis H; namely that semipolar sets are polar. In 
so doing, we generalize Theorem 3.1 and Corollary 3.2 of [-7] and sharpen (in 
our more restricted context) the main result of 1-12]. It follows from our results 
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that if # is a measure whose potential #U is a-finite and v is a measure which 
does not charge polar sets and if there exists a randomized stopping time z 
such that #P~ = v (i.e., such that v is the distribution of X~ under pu) then there 
actually exists a non-randomized stopping time T such that #Pr=v.  Contrast 
this with the following example: 

Let (Xt) be uniform motion to the right on the real line. Then only the 
empty set is polar, so any measure v on the state space does not charge polar 
sets, (But here any countable set is semipolar so Hypothesis H is violated.) Let 
# be the unit point mass at 0. Then a randomized stopping time ~ satisfying 
#P~=v exists iff v ( ( - 0 % 0 ) ) = 0  and v(lR)<l. But a non-randomized stopping 
time T satisfying #PT=V exists iff v is the unit point mass at x for some 
x~[0, or) or v=0.  Thus in this case the set {l~Pr: T a non-randomized stopping 
time} is much smaller than the set {#P~: r a randomized stopping time}. This 
in spite of the fact that (Xt) is standard and has a standard dual process 
(namely, uniform motion to the left). 

Let us mention two questions which remain open and which we feel are 
interesting. First, can the results of this paper be proved without assuming that 
(Xt) has a dual process? Second, can one find a formula for a suitable T 
expressed in terms of v? A nice formula of this short has been found by Az6ma 
and Yor [1, 2] for (X~)=Brownian motion in one dimension starting from 0. 

It is a pleasure to thank Joe Glover and Michael Sharpe for some helpful 
discussions. 

Notation. E will be a second countable locally compact Hausdorff space, E 
=Bore lE ,  C* = universal completion of & ~ will be a a-finite measure on do*. 
X = (~2, Jg, J~ ,  X ,  0t, W) and X = (~, ~ ,  2 ,  )(t, 0~, P"~) will be standard Markov 
processes with state space (E, do) (augmented by the cemetery point 6), in 
duality relative to 4, as defined in [4, VI, 1]. ( will be the lifetime [4, p. 21] of 
X and (" that of )(. We shall have need only of such duality theory as is 
developed in Sect. 1 of Chap. VI of Blumenthal and Getoor  [4]. Hence we do 
not assume X or )( to be strong Feller. (~ )  will denote the completed natural 
filtration of X; that is, for each t>0 ,  ~ is the usual [4, p. 27] completion of 
a(X s : 0 < s_< t). (~ )  is defined similarly in terms of X. If T is an (~)-stopping 
time then Pr will be the kernel on (E, do*) defined by Pr(x,A)=pX(XrEA). Since 
Xr=~(~E on {T>(},  this may also be written as Pr(x,A)=W(XT~A, T<() .  
Thus if # is a measure on do* then #PT(A)=W(Xr~A, T<() .  Thus #Pr is what 
the distribution of X T under pu would be if X r were regarded as undefined on 
{T>(}.  Although we use the word "distribution" we do not suppose that/~(E) 
= 1 (i.e., PUff2)= 1) or even that # is finite. If T is an (~)-stopping time t h e n / ~  
will denote the co-kernel on (E, do*) defined by/~(A,  x)=P"~(J(f~A). Co-kernals 
act on functions on the right and on measures on the left. In general, for each 
kernel we associate with X, we associate with J( the analogous co-kernel. This 
is customary and simplifies certain formulas. (U~)~>_o will denote the resolvent 
of X and U = U ~ the potential kernel of X. u: E x E ~ [ 0 ,  oo] will denote the 
potential density. If # is a measure on d o* then # U  and [2# are the measures 

on do* satisfying #U(A)=EU[i lA(Xt)dt], U#(A)=E~[i lA(Xt)dt] while #U is 

the function on E defined by #U(y)=~#(dx)u(x,y). g U is the unique coex- 
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cessive version of the Radon-Nikodym derivative of/2 U with respect to 4. For 
A c E ,  TA=inf{t>0:  X ~ A }  and TA is defined similarly in terms of )(; if A is 
nearly Borel then PA is short for PrA a n d / ~  for/~A- Ar denotes the set of points 
regular for A and rA the set of points coregular for A. If # is a measure and f a 
function then (g , f>  denotes ~fd/2 whenever the integral makes sense. Here are 
the statements of our two main results. 

Theorem 1. Assume semipolar sets are polar. Let/2 be a measure on g* such that 
/2U is a-finite. I f  v is a measure on g* such that /2U>vU and there exists 
C~g* such that for every polar set ZEg*,  v(Z)=/2(Zc~ C) then there exists an 
(~)-stopping time T such that /2Pr=v (and conversely). In particular, if 
/2 U > v U and v does not charge polar sets, then such a T exists. 

Corollary 1. Assume semipolar sets are polar. Let /2 be a measure on g* such 
that /2U is a-finite. Let v be another measure on g*. The following are equiva- 
lent: 

(a) /2U>vU. 
(b) There exist measures c~, fl on g* and an (~)-stopping time T such that 

+/3=/2, fl lives on a polar set, and c~Pr + fl=v. 
We remark that (a)~(b) of Corollary 1 sharpens the result of Rost [12] 

since it may be interpreted as saying that v=/2P~ where z is a randomized 
stopping time which is randomized only at time 0 (and only on a polar set). 
See Corollary 3.2 of [7] for further discussion of this point. Rost did not 
suppose duality or that semipolar sets were polar. Even in the presence of 
duality, our sharpening of Rost's result may fail if semipolar sets are not polar, 
as the example of uniform motion to the right on the line shows. 

Now consider two measures p and v on g* such that /2U and vU are a- 
finite and let us observe some facts which would be well-known if/2, v were 
finite and X were transient [9], [10, IX, T64], [4, III, 5.11 and 6.22]. First, it is 
clear that there exists h~g* such that h > 0  on E and @ U + v U ,  h>< oo. Then 
Uh>O on E and @+v,  Uh><oo. Thus /2 and v are themselves a-finite. Let A 
= {Uh< oo}. Then A is stable in the sense that Vx~A, px(xt(~Au {8} for some 
t > 0 ) = 0 .  Because 0 <  Uh< oo on the stable set A, i f f i s  excessive then ([4, III, 
5.1] or [10, IX, T64]) there is a sequence (f,) in g*  such that Uf, Tf  on A. 
Thus i f / 2 U > v U  then @ , f ) > < v , f >  for any excessive function f, since/2 and v 
live on A. Now suppose /2U=vU. We claim /2=v. As Uh>O on E, it suffices 
to show/2(K)--v(K) when K e g *  such that Uh is bounded below, say by e>0,  
on K. Since /2 and v are a-finite, they are inner regular with respect to 
compacts so we may suppose in addition that K is compact. Then there is a 
sequence ((p,) of continuous functions on E such that 0<q~ ,<e l  and (p,$el g. 
Letting g,=~o,/x Uh we have g,$~l~ since Uh>~ on K. Then @,g,)~,~p(K) 
and <v,g,>$ev(K) by dominated convergence. Since /2U=v U are a-finite, the 
resolvent equation implies/2 U~= v U" for all ~. Since g, is bounded and (g,(X,)) 
is a.s. right continuous, ~U~g,(x)~E~[g,(Xo)]=gn(X ) as ~ o o ,  for all x. Since 
g ,<Uh,  ~U~g,<=c~UUUh<Uh. Thus, using dominated convergence, @,g,> 
= lim <#U ~, c~g,} = lim <vU ~, c~g,} =<v,g,>. 

Therefore /2(K)=v(K) and so #=v .  Of course the observations of this 
paragraph did not use duality. Neither does the proof of: 
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Lemma 1. Let v be a measure on C* such that v U is a-finite. Suppose Z ~ E  is 
nearly Borel, v(Z)=O, and Z is v-polar (i.e., PV(Tz<oO)=0 ). Then there exist a 
decreasing sequence (G,) of finely open nearly Borel subsets of E containing Z 
and an excessive function f such that (v, PG 1),L0 , f = + o o  on (']G,~_Z, 
( v , f )  < 0% and (v, PG,f) ~O. n 

Proof Let hog* such that h > 0  on E and (v, Uh)<oo.  First suppose Uh is 
bounded below on Z, say by e. Now v(Z)=0 so certainly v(Z\Z~)=O. There- 
fore ([4, Ill, 6.1] or [8, 12.10]) there exists a decrasing sequence (B,) of finely 
open nearly Borel subsets of E containing Z such that TB,TT z P~-a.s. Then 
TB~TOoP~-a.s. Replacing B, by B , ~ { U h > e }  if need be, we may assume that 
Uh>e on B,. This having been done, Uh(X(T~,))>e a.s. on {TB <oo } since 
(Uh(Xt)) is a.s. right continuous. Thus 

<v,,Pn 1 > =W(TB < oo)_< e- 1 E~[Uh(XT,~~ 

=~ 1E ~ h(Xt) dt ~,0 
T n 

( [i ] ) by dominated convergence. E ~ h(X~)dt =(v, Uh)<  ~.  Now consider the 

general case. Since h > 0  on E, Uh>O on E so we may write Z as U Z ~  where 
m 

for each m, Z m is nearly Borel and Uh is bounded below on Z m. By the 
preceeding argument, for each m we may choose a decreasing sequence (Bm n)n 
of finely open nearly Borel subsets of E containing Z m such that for each 
n, (v, PB~ 1 ) ~ 2  -(m+"). Let Gn=UBm,.  Since 

m 

PG.I(x) = W(TG, < ~ < ~ ) < ~ ,  PB~ l(x), 
m m 

we have (v, PGn 1 ) < ~  2 -(re+n) = 2 "+ 1. Each G, is finely open and nearly Borel 
m 

and G n ~_ G, + 1 ~ Z. Let f =  ~ Pa, 1. Then f is excessive and 
t l  

( v , f ) < ~ 2 - " + l < o o .  Since P6 1=1  on G , , f = + o o  on ~ G , ~ Z .  I f n < m  then 
n n 

since P G I = I  on G,~_G m and (PG, l(Xt)) is a.s. right continuous, P~I(X(TGm)) 
=1 a.s. on {Ta <oo } soPG Pa l=P~, l .  Thus 

S O  

Pa,,f = ~, PG=Po, I+ ~ PGmPG~I<----(m+I)PGm 1+ ~, PG~I 
n ~ m  n > m  n > n ~  

(v, pamf) <__(m+ l) 2 m+l_[_ Z 2-"+1-- '0 as m~oo.  [] 
n > m  

Now let us recall the following result, whose proof we give for completeness" 

Lemma 2 (Domination principle). Let 2 be a a-finite measure on C* which does 
not charge semipolar sets. Let f be coexcessive and suppose f>=2(~ 2-a.e. Then 
f >  2 0 everywhere. 
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Proof This is an elementary consequence of Hunt's switching identity [4, VI, 
1.16] which states that if A~_E is nearly Borel then for all x, yEE, 

SPA( x, dz) u(z, y) = ~ u(x, z) fiA(dZ, y). 

(Note [4, VI, 1.20] that a subset of E is nearly Borel iff it is co-nearly Borel so 
PA a n d / ~  both make sense.) Recall that 

'~ [2(Y)= S'~(dx) u(x, y) (y~E). 

With the aid of the switching identity and an interchange in order of in- 
tegration which is valid because 2 is a-finite, we find that .)~PA[2=2[2fiA (i.e., 
(2PA) 0=(212)/~).  Let us take A =  {f_->).[2} which is nearly Borel. By assump- 
tion, 2(A C) = 0. Since A \ A  r is semipotar and since ,t does not charge semipolar 
sets, ). lives on A r. Thus PX(TA>O)=O so 2PA=2. Now f(J((7"A))_->2[2(J{(TA)) 
a.s. on {TA < o0} since (f(~,)) and (212(3Z~)) are a.s. right continuous. Therefore 
f >  ffiA> Z[2~=ZPAU=2U. [] 

Proof of Theorem 1. (~).  Suppose T is an (~ )  stopping time such that #Pr = v. 
By the strong Markov property, for any h~g* we have 

oo  

= E U [ !  h(X~)ds]<=EU[ih(X~)ds]=<gU, h> 

so vU<I~U. Let C={x~E: W ( T = 0 ) = I } .  Then Ce6 ~* and, by the Blumenthal 
0 - 1  law, Vx~E\C,  W ( T > 0 ) = I .  Thus if Z~g*  is polar then v(Z)=P"(XreZ) 
= P"(X T f i N ,  r = O) = Pu(X o ~Z, r = O) = I~(Z c~ C). 

(~). Step 1. Consider the case where g does not charge polar sets. Let J -  be 
the set of (~t)-stopping times T such that gPr U>v U. Then 0e3-  so Y-+r If 
(T,) is a sequence in Y- which increases to T then for every h~g* such that 
<# U, h> < oo we have 

Oo 

[i ] +E ~ h(X~) d t = <#PT U, h> 

by dominated convergence so, as y U is a-finite, #PTU>VU, whence TeY .  
That is, the pointwise limit of any increasing sequence in 3- belongs to Y.  
Since P" is a-finite, J -  has W-essentially maximal elements; let T be one of 
them. Let 2 = # P  r. We claim 2=v.  Suppose not. Now 2 does not charge polar 
sets since y already did not. Since we are supposing that semipolar sets are 
polar, ,t does not charge semipolar sets. Next, 2 U < y U  so 2U is a-finite, 
whence 2 itself is a-finite. Consider the nearly Borel cofinely open set A 
= {2 [2 > v [2}. If 2(A) = 0 then v [2 > 2 [2 2-a.e. so by the domination principle 
(Lemma 2), v [2 > 2 [2 everywhere. As v [2 is the density of the measure v U with 
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respect to ~ and similarly for 2 U, v U > 2 U. Then v U = 2 U so v = 2, contradict- 
ing the supposition that 2+v. Therefore 2(A)>0. Now [4, VI, 1.19] a set is 
semipolar iff it is cosemipolar. Thus 2 does not charge cosemipolar sets. Since 
Jf has a reference measure (namely 4; see [-4, VI, 1.13]) it follows that [-4, V, 
1.18] every cofinely open set is 2-measurable and [4, V, 1.21] there is a 
smallest cofinely closed set F such that 2 (E \F)=0 .  F is called the cofine 
support of 2. If B ~ E is Cofinely open then 2(B) > 0 iff B c~ F =t = 0. Thus A c~ F 4: 0. 
Let xo~Ac~F. L e t / ~ =  ~o}O. Then P~~ or 1. 

Sub-step (a). Suppose PA~~ Let (V,) be a decreasing sequence of open 
neighbourhoods of x o such that ~ V, = {Xo}. Then Tv~J,/~. Hence Tv~+0 ff~~ 

n 

Now 

v ~7(x o) <,~ ~7(x o) = E ~'~ [-.~ ~7(J?o)] 

< lim inf/~ ~~ [2 U(J~(Tv~))] 
n ~ o o  

A 

where the last step follows from the a.s. right continuity of (2 U(X~)) by Fatou's 
lemma. Thus there exists n such that for V= V n we have 
vO(Xo)<EX~ Let W= Vc~ {v[7<2U/~c}. Then xo~Wc~F and W is 

A 

cofinely open so 2.(W)4:0. Also W is nearly Borel. Let S=Two , S=Twc. For 
xeW,, 2PsO(X)=2UP~(x)>2Ufivc(X)>VO(X ). Hence if h~C* and hx=hlw, h a 
=h lwo, then 

(2P  s U, h i )  = ~ 2P s U(y) h~(y) ~(dy) >= ~ v U(y) h~(y) ~(dy) = (v U, h~). 

Now [4, II, 1.3] Pwo Uhz=Uh2 because h 2 vanishes off Wq Thus (2PsU, h2) 
=(2,Pwo Uh2)=(2,  Uhz)=(2U,  hz)>_(vU, h2). Hence (2PsU, h)>=(vU, h ). 
Thus 2PsU>=vU. Let T'=T+SoO r. Then #PT.=2Ps by the strong Markov 
property. Thus T'~--. Now [4, VI, 1.25] for any set B~_E, the fine interior and 
the cofine interior of B differ at most by a semipolar set. Let W' be the fine 
interior of W.. Then 2(VV~W')=0 so 2(W')>0. Now [4, I, 11.4 and II, 4.9] 
Xs~fine closure (W ~) a.s. on {S<ov} so 2Ps(W')=0. Thus [IPT~#P T, s o  

# PU(T4: T') > 0. But T__< T' so this contradicts the P -essential maximality of T in Y.  

Sub-step (b). Suppose on the other hand that W ~  That is, suppose 
{Xo} is cofinely open. Then {Xo}\fine int{xo} is semipolar so if {Xo} is not 
finely open it is semipolar, hence cosemipolar, and hence (as it consists of just 
one point) co-thin; i.e., ~{Xo} is empty. But Xo~{Xo} as {Xo} is cofinely open. 
Thus {Xo} must be finely open. That is, W~ > 0 ) =  1 where R =  T~xo}~. Now let 
S=R/x t where t~(0, ~ )  is to be chosen. If h ~ *  and h~ =hl{~o}~, g=l{xo~ then 
PR Uhl = Uhl since h 1 vanishes outside {Xo} ~ so 

(2P s U, h a) > (2P R U, h~) = (2, PR Uhl) = (2, Uh~) = (2 U, h~). 

Next, 

( 2PsU, g ) = E ~ [R!tg(Xs) ds] ~ E ~ [ i  g(Xs)ds] =( 2 U, g) 

as t$0 while ~({Xo} ) > 0 as {Xo} is finely open so 
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<2 U, g) = j 2 L?(y) g(y) {(dy) = 2 [7(Xo) {({Xo} ) > v 0(Xo) {({Xo} ) = <v U, g). 

Thus we may choose te(0, oo) so that with S = R A t ,  we have 
<)~Ps U, g) > <v U, g). Then <2P s U, h) = <2P s U, h l )  + h(xo) <2P s U, g) > <v U, h~) 
+h(xo) <v U , g ) = < v  U, h). Note that t does not depend on h. Again let T ' =  T 
+ S o O r. As before T <  T' e~--. Now 

P~(T< T')=PU(T< o% So 0T>0 ) 

> W ( X  r = Xo, S o Or > O) 

= P~(X o = x o, S > O) 

= 2({Xo} ) Px~ > 0) = ,~({Xo} ). 

Now 2({Xo})>0 since xoeF and {Xo} is cofinely open. Thus again we have a 
contradiction of the W-maximality of T in Y.  Thus it must be that 2 =  v after 
all. That is, #Pr=v. We have now shown that the theorem is true whenever # 
does not charge polar sets. 

Step 2. Consider the case where v does not charge polar sets. The measure # is 
o--finite and the collection of nearly Borel polar sets is closed under countable 
unions so there exists a #-essentially largest nearly Borel polar set Z___E. If A 
is a polar set then by definition A is contained in a nearly Borel polar set B; if 
A m Z = O  then we may take Bc~Z=O and then #(B)=0 so A is #-measurable 
and #(A)= 0. By Lemma 1 there exist an excessive function f and a decreasing 
sequence (G,) of finely open nearly Borel subsets of E containing Z such that f 
= +oo on (~ G,~_Z, <v , f )<o% and <v, PGnf)<2 n. Let Ho=G~o and for n > l ,  

n 

letHn=G,_lcvG~,,. Let # ,=#Pu. ,  vn=vPn. Then # , U < # U  so # ,U  is a-finite. 
Now for any excessive function g, <#,g)__><v,g). Hence for any h~#* ,  
<# ,U,h)=(# ,PH Uh)>-_(v, PH U h ) = ( v n U ,  h)  so # ,U>vnU.  If A g E  is polar, 
let B _  E be nearly Borel and polar with A_c B. Then 

#~(B) = Pv(X (TH. ) EB) = Pu(X (Tn. ) EB, TH. = O) 

<= PU(XoeB , Tn, = O, XoeG~,) <= #(B n G~,) = 0 

so A is #n-measurable and #n(A)=0. Thus #,, does not charge polar sets. Thus 
by Step 1, for each n there exists an (~)-stopping time R n such that #,Pa =v, .  
Let S,=Tm+R,~ Then #Ps =v, .  Let S = i n f S  n and for each n, let Q, 

n 

=S o A .../x S n so that Q,;S. Then 

<#Ps,f > = E" [ f  (Xs) ] 

< lim infE ~ [f(Xe~)] 
n ~ o o  

< lim inf L E~ [f(Xsk), Qn = Sk] 
n ~  k = O  

<-_ ~ E ~ [ f  (Xs,,)] 
n 

=~,  <#Psi,f> 
n 
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= ~ ( v , , f )  
n 

= Z  (v, PHJ) 
n 

< ( v , f )  +~, (v, Pa,f) 
n 

< ( v , f )  + ~ 2 - ' <  oo 
n 

where the second step follows from the a.s. right continuity of (f(X,)) by 
Fatou's lemma. Since f =  + oo on Z, #Ps(Z) must equal 0. If Bc_E\Z is polar 
and nearly Borel then #Ps(B)=0 since already #(B)=0. Thus #Ps does not 
charge polar sets. Since #U>#PsU, #PsU is a-finite. Consider h e # * .  Then h 
= g + ~ h ,  where h = 0  on < and g = 0  on UH,=((~G,)C~_{f=oo}c. Then 

n n t l  

P;t, Uh,= Uh, so 

(#PsU, h,) >= (#Ps U,h , )=(v ,  U,h,)=(V, PH, Uh,)=(v ,  Uhn)=(vU, h,>. 

Also { f=oo}  is v-polar since ( v , f ) < o o  so 0 = ( v U ,  g ) < ( # P s U ,  g). Thus 
(#PsU, h)>=(vU, h) so #PsU>vU. Therefore by Step 1 again, this time with # 
replaced by #Ps, there exists an (~t)-stopping time T' such that #PsPT, = V. Then 
#Pr = v where T= S + T'o 0 s. 

Step 3. Consider the general case. Then there is a trivial reduction to the case 
where v does not charge polar sets. For  let Cog*  such that for every polar set 
Zc #* ,  v(Z)=#(Zc~C). Let M be a v-essentially largest #*-measurable polar 
set. Since v ( M \ ( M n  C ) ) = # ( M n  CCc~ C)=0, we may and we do assume that 
M_c C. Then if ZE#*  is polar, v ( Z ) = v ( Z n M ) = # ( Z n M n  C)=#(ZnM).  Hence 
if we let #'(A) = #(Z\M), v'(A) = v(Z\m)  and 7(A) = # (A n  M) (=  v(A mm)) for 
A c # *  then #', v', and 7 are measures on #*, # ' + 7 = # ,  v ' + y = v ,  and v' does not 
charge polar sets. As #U  is a-finite and #U>vU,  #'U is a-finite and 
#'U>v'U. Thus, by Step 2, there is an (.~t)-stopping time T' such that #'Pr" 
= v'. Let 

T={T '  on {XoCM } 
0 on {XoCM }. 

Then for Ae#*,  

#PT(A) = P"(XTeA ) = W ( X  T, cA, X o CM) + W(X  o cA, X o eM) 

= P;'" (X T, eA) + #(A c~ M) = #' PT,(A) + 7(A) = v'(A) + 7(A) = v(A). 

Thus #PT=V. The theorem is now completely proved. [] 

In order to establish Corollary 1, we have need of the following result 
whose proof does not use duality: 

Lemma 3. Let # and v be measures on #* such that # U is a-finite and # U > v U. 
Let Z ~ E be nearly Borel and #-polar. Then Z is v-polar and #(Z)>= v(Z). 

Proof For any excessive function g, (# ,g)=>(v ,g) .  Thus (v, Pzl)  =<(# ,Pz l )=0  
so Z is v-polar. Next, by Lemma 1, there exists a sequence (g,) of excessive 
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functions such that each g , = l  on Z and <7,g,)$0 where 7 is the measure on 
g* defined by 7(A)=#(A\Z) .  (In the notation of that lemma, take g ,=Po 1.) 
Then v(Z)__<iv, g ,)  < ( # , g , )  =#(Z)+(7,g,)~#(Z ). [] 

Proof of Corollary 1. (b)~(a) is clear. 
(a)~(b). By Lemma 3, for any polar nearly Borel set Z~_E, #(Z)>v(Z). 

Now a polar set which is d*-measurable is actually nearly Borel. Let M be a 
v-essentially largest #*-measurable polar set. Let fl(A)=v(AnM), v'(A) 
=v(A\M) for A~N*. Then v'+fi=v and/~ lives on the polar set M. A l s o / ~ < #  
so as # is a-finite, there is a (unique) measure ,  on g* such t h a t ,  +/~ = #. Now 
#U=,U+f iU>v'U+f lU=vU.  Since # U  is a-finite, ,U>v'U. Note that v' 
does not charge polar sets. Thus, by Theorem 1, there exists an (~)-stopping 
time Tsuch that c~Pr=v'. Then ,Pr+fi=v. [] 
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