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Summary. Very weak Bernoulli processes with values in a separable metric
space are introduced. An estimate for the Prohorov distance in the central limit
theorem is obtained. This estimate is used to establish a strong (almost sure)
approximation of the partial sums of a very weak Bernoulli process by a
Brownian motion where the error term is of the order O(t'/2~7). The proofs are
based on a new version of the Berkes-Philipp approximation theorem.

1. Introduction and Statement of Results

Functional central limit theorems as well as the functional law of the iterated
logarithm and other asymptotic fluctuation results for processes X =(x,),., can
be derived from a strong (or almost sure) approximation of the partial sums of
the process by a Brownian motion with a sufficiently small error term.

In a remarkable paper Kuelbs and Philipp [14] recently established a
number of strong approximation results for Banach space valued sequences
satisfying various mixing conditions. Their proofs rest on an approximation
theorem given first by Berkes and Philipp [2] and in more general form by
Philipp [16]. Dehling and Philipp [7] showed that various approximation
results stated in [14] for ¢-mixing sequences continue to hold for absolutely
regular sequences. Dehling [4] succeeded to improve the error term in the
approximation of the last mentioned sequences. By constructing a counterex-
ample he pointed out the limits of the argumentation used ([4], [5]). For
processes with a finite state space absolute regularity is equivalent to being
weak Bernoulli.

In this paper we will get an approximation of the order

Y x, — Xyt (1.1)

vt

for very weak Bernoulli processes (Definition 1). Very weak Bernoulli processes
with finite state spaces were introduced by Ornstein (see e.g. [15]) in con-
nection with the solution of the isomorphism problem of ergodic theory.
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18 E. Eberlein

Our first result (Theorem 1) is a new version of the Berkes-Philipp approxi-
mation theorem. It is used in the proof of Theorem2 to estimate the Prohorov
distance in the central limit theorem for very weak Bernoulli processes. Both
Theorem 1 as well as Theorem 2 are needed to prove (1.1) which is stated as
Theorem 3. The last result finally is a further application of our basic approxi-
mation theorem.

Some remarks concerning the notation: £(X) denotes distribution of a
random variable X defined on a probability space (2, U, P). If 4eA, P(4)>0
we denote by £(X|A) the conditional distribution of X given A.
(X, ..., X )A) is used if X=(X,,....X,) is a vector. The variance of a real-
valued random variable X is denoted by Var(X). N(0,7?) stands for a normal
distribution with mean zero and variance t?. Stationarity of a process will
always mean strict stationarity. Given a Banach space B, B* is the topological
dual space. For any subset E of a metric space (S, ¢) and ¢>0, E° denotes the
open g-neighborhood of E. ET means complement of a set E. Z are the integers.
“<” and “0(.)” are used with the same meaning.

Theorem 1. Let {(S,,0,)|k=1} be a sequence of complete separable metric spaces
and let (X)), , be a sequence of random variables with values in S,. Let (=1
be a sequence of o-algebras such that X, is &,-measurable. Suppose that for
every k=1 there exist D, e, = \/ &» 6,20 and 0, =0 such that P(D;)<n, and

if AcW, |, A<D, |, P(A)>0 then
inf | o, (u, v) dA(u,v) &2 /2 (1.2)

AePr
where B, is the class of all Borel probability measures A on S, xS, with
marginals 2(X,|A4) and 2(X,). Let (G,),», be a sequence of Borel probability
measures on S, and p,, 8, nonnegative numbers such that

LUXNE) = GE™ )+, (1.3)
for all Borel sets ECS,.

Then without loss of generality there exists a sequence (Y, of independent
random variables such that £(Y,)=G, and

Plo(X,,Y)22p, +e < +n, | +0. (1.4)

2

Here and in Theorem 3 the phrase “without loss of generality ...” is to be
understood in the sense of Strassen [20]: without changing its distribution we
can redefine the sequence on a new probability space on which there exists a
sequence (V). satisfying (1.4) (resp. a Brownian motion (X ()5 o satisfying
(1.1)).

(1.2) means that the distributions £(X,|4) and 2(X,) have distance less
than eZ/2 in the Wasserstein metric which is defined in general as follows. Let
#, v be two Borel probability measures on a complete separable metric space
(S,0) then we define their Wasserstein distance by

p(u, v)=inf | o (u, v) dA(u, v) (1.5)
2ePB
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where P is the class of Borel probability measures on S > S with marginals p
and v. Since S is complete and separable both of the measures u and v are
tight. This implies that the infimum in (1.5) is actually a minimum.

Recall that the Prohorov distance is defined by

n(w, v)=inf{e> 0| w(E) < v(E%) +¢ for all closed EcS}. (1.6)

We will make use of the following relation

(V) = (p (s, v)2 (1.7)

This inequality can easily be derived from the Ceby$ev-Markov inequality and
the following alternative definition for =

7w, v)=inf inf{e> 0| A{({(u, v)|o(u, v) >&}) < &}
AP

which is a consequence of the Strassen-Dudley theorem [9].
We will now define the Wasserstein distance for distributions of processes.
For each n we consider a metric o, on the product space §"=8x ... x§

n

o, v)=n"1> o(u;,v,)
i=1

if u=(uy,...,u), v=(vy,...,0,)€S". Given two S-valued processes X =(x;),., and
Y =)z We define for n=1, keZ

p_n((xk+ 1> ---7xk+n)7 (yk+ 12 "'9yk+n))=lirg§0—n dj' (18)

where 9B, is the class of all Borel probability measures on S"xS§" with mar-
ginals (X, 1, --.» X, ) and LV 15 .-, Yo o)- Since S” is separable and com-
plete again the infimum in (1.8) is a minimum. If k=0 then we write for short
p,(X,Y) in (1.8). The processes Y we consider in the following are processes
derived from a fixed process X by conditioning X on certain sets 4 of positive
measure, ie. we consider measures A with one of the marginals being
(% 15 > X, | A). Again we shall write X |4 for short if k=0.

In the following (§,),., will denote a family of sub-s-algebras, where we

will always assume without further mention that &, is countably generated for
each k.

Definition 1. Let X =(x,),., be a strictly stationary S-valued process defined on
a probability space (2,9, P) and let (&,),., be a family of sub-g-algebras of A
such that x, is &,-measurable. The process is called very weak Bernoulli (with
respect t0 (§&,),.) if for each ¢>0 there is an n such that for all integers m=0,
keZ there exists a set

k—m™—

J

k
D=Dnm keAW:_ = >/ 8;

m

such that P(DS)<¢ and if AeWE_ A<D, P(4)>0 then

k—m>

p_n((xk+ 1> '-7xk+n)7 (xk+ 15 = xk+n)|A) <& (19)
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Given a sequence (e(n)),», of positive numbers decreasing to 0 we say X
=(Xez 18 very weak Bernoulli (with respect to (§,).,) at rate ((n)), , if for all

integers m=0, n=1, keZ there exists a set D=D(n,mk)eW:_, ~such that
P(D)<e(n) and if AeAF A<D, P(4)>0 then
Pullxes 1 N M N ¢ cn X )N A) S e(n). (1.10)

The process is called strictly very weak Bernoulli resp. strictly very weak
Bernoulli at rate (e(n)), >, if (1.9) resp. (1.10) hold for any set AW} ., P(4)>0.

k—m>

The dependence structure given by this definition differs from the mixing
conditions in the sense that the rate (¢(n)),., has implications on the qualita-
tive dependence structure. More precisely, a process which is very weak Ber-
noulli at rate e(n)=o(n"') is a Bernoulli process, ie. is independent. It is easy
to see that this rate implies that the process is strongly mixing. By a simple
extension of the argument it was shown recently [6] that this rate actually
implies independence. (“Strongly mixing” is used here in the probabilistic
sense, not in the terminology of ergodic theory).

If the state space S is a finite set endowed with the discrete metric and the
&, are the o-algebras generated by the x,, Definition 1 coincides with the one
due to Ornstein. In the following two theorems we consider real-valued pro-
cesses. Thus p, will be computed with respect to

o, v)=n"1Y |u,—v, (1.11)
for u, veR". =1

Theorem 2. Let X =(x,),., be a stationary real-valued process which is strictly
very weak Bernoulli at rate
e(my<gn! (1.12)

Suppose x, is centered and bounded with probability 1 and lim Var (Z xk):oo

R— 00 k=1

n
then there exists a finite positive value ¢* such that lim n~! Var ( Y xk)=02 and
for some x>0 noeo k=1

T (53 (n‘”zéjlxv),N(O,az))<n"‘. (1.13)

The explicit value of the exponent is x=1/64.

Theorem 3. Let X =(x,),., be a stationary real-valued process which is strictly
very weak Bernoulli at rate (1.12). Suppose x, is centered and bounded with

n
probability 1 and lim Var ( Y xk> = o0 then there exists a finite positive value ¢*
n—00 k=1

n
such that im n~! Var (Z xk> =¢? and without loss of generality there exists a
k=1

Brownian motion (X(t)),, , with variance ¢> such that

n—00

Y x,— X<t (1.14)

vt

for some y>0.
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The next definition is a straightforward extension of a notion given in [19].
Let X and Y again be S-valued processes. Recall that p,(X,Y) denotes the
Wasserstein distance of £((x,,...,x,)) and £((y,,...,»,). Set

X, Y)=sup7,(X,Y). (1.15)
nz1

Definition 2. Let X =(x,),., be a stationary S-valued process. X is called almost
block independent if given £>0 there is an N such that if n=N and Y is the
process defined by the two conditions

YVt 1 oo Vner 1)) =%y, 0 x,))  for all keZ, (1.16)
for each k, (V4 1> +++» Ynges 1)) 18 independent of {0 <t 1.17)
then
pX,Y)<s

Theorem4. Let X =(x,),., be a very weak Bernoulli S-valued process and sup-
pose that ¢ is bounded, then X is almost block independent.

Let us finally point out another aspect of this paper. The central limit
theorem and the strong approximation result established here are of a rather
different nature than the aims and statements one is looking towards in the
isomorphism theory. But it became obvious that some of the underlying
approximation ideas are exactly the same.

2. Proof of Theorem 1

We consider the case of discrete random variables X, and probability measures
G,=2(X,) first. This means that the assumptions hold for p,=0,=0 (k=1).

Define Y, =X, and suppose Y,,...,Y,_, have been constructed. Suppose
furthermore Y; is A-measurable (1<j<k—1). Define D=D(b,,....b,_)={Y;
=by,....,Y, ,=b,_}nD, , for values by, ...,b,_, in the range of Y;,...., Y,
respectively. Then Del;, | and D=D, ;.

As we mentioned already the infimum in (1.2) is a minimum. Therefore if
P(D)>0 there is a Borel probability measure . on S, xS, with marginals
X, D), £(X,) and

A{(u,v)lo(u,0)Ze}) Ser [0, dAZe,. (2.1)

Note that for this part of the proof we use only the bound & in (1.2). Let
{a;i=1} be the range of X,. Then 1 is concentrated on {(a;,a;)|i, j=1} and

P[X,=a|D]= ) Aa;, a))

jz1 :
for each i=1. All the &, can be assumed to be atomless since (X,),»; can be
redefined on a richer probability space if necessary. Therefore {X,=a;} nDe;
can be partitioned into 2} -measurable sets D;; such that P(D;;|D)=4(g;,a;). We
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define ¥, =a; on D; (i, j=1). Then the joint distribution of (X, ¥,) on D is 4
By (2.1) this means

P({o(X,, Y) =&} D)< P(D)e,. (2.2)

On sets D with P(D)=0 and on D'={Y,=b,,...,Y,_,=b, }nD;_, we define
Y, such that (Y, |D)=2(Y,|D')=2(X,). Now Y, is defined on the whole space
and by (2.2)

Plo(X,, Y)zgls Y PD)g+ ) PD)Setm . (2.3)
DEDy_ D'eDS_,
By the very construction Y, is Uj-measurable, 2(Y,)=2(X,) and Y, is inde-
pendent of Y;,..., Y, .
Now we consider the general case: Fix k=1. Given 6>0 we can construct
a partition (E),,, of the separable space S, into Borel sets such that
diam(E})< (i=1). We do this for §=min (¢2/4, p,/4) and choose a point y,eE,
(iz1). The discrete random variable X, defined by X;(w)=u; for weX; }(E) is
& -measurable and satisfies o,(X,,X;)<d. Now let be given a set AcD,_,,
AU, |, P(4)>0 and a Borel probability measure A on S, xS, with marginals
2(X,|4) and £(X,) such that

Jo(u, v)dA(u, v) S &/2. (2.4)

We get a probability measure A" on S, xS, concentrated on {(u;,u)|i, j=1} if
we define A'(u;,u)=A(E;xE). A’ has marginals £(X;|4) and 2(X}). Further-
more using (2.4)

for(uv)dX(wv)=Y | o(u;,u)dA(u,v)

i,j EixEj
<> [ (op(u,v)+e2/2) dA(u, v)
L,jEixEj
=(o,dA+el/2<¢}.

Thus we have constructed a sequence (X;),., of discrete, §;-measurable ran-
dom variables satisfying ¢, (X,, X}) <min(e?/4, p,/4) and

inf | o, (i, v) dA (u,v) < &7
po

where infimum is taken over all Borel probability measures A’ on S, x§, with
marginals £(X|4) and £(X}) for sets 4 as considered above. By the first part
of the proof there is a sequence (Y}),.; of independent random variables such
that 2(Y))=2(X;) and -

Plo (X, Y)zel<e +n, 4.

The proof is finished following exactly Philipp’s arguments in [16] p. 176.
We just indicate the changes in the quantities ¢, 7, pg, 9,. By (1.3) we get for
any Borel set EcS,

LYE) SGUE %) + 0.
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Using the Strassen-Dudley theorem one constructs a probability measure A on
S, x S, with marginals £(Y;) and G, such that

A (Uu, v)lo(u, v) 23 p,/2}) 0
This implies that there is a sequence (Y,),,, of independent random variables,
£(Y)=G, and
Plo (X, Y)22p,+¢.]
=Ploy(Xy, X2 pi/4] + Plo (X5, Y) 2 ] + PLo (Y, ) 23 /2]
S+ + 0

3. Inequalities for Moments

In this section if not specified more precisely B will mean a separable Banach
space with norm |-, X =(x,),., a strictly stationary B-valued stochastic pro-
cess defined on a probability space (2,2, P) and (&,),., 2 fixed family of
countably generated sub-g-algebras of U such that x, is &,-measurable (keZ).
For m=n we shall write W? for the o-algebra generated by {&,|m=k<n}.
Given a set Ae, P(4)>0, P(.]4) denotes conditional probability given A.

Besides of the Banach space norm | .| various other norms will be used.
I.|, denotes the norm in B* and |.|, stands for I'-norm, ie. if | |x|"dP <o
for some B-valued random variable x we write

Ixll,=({ ix|"aP)'™ (r=1).

I.|l, will also be used for the usual I-norm, ie. if flhl’ dP < oo for some real-
valued random variable /i then

Ihll,=(f bl dP)'"  (r=1).

Lemma3.1. Let h be a real-valued random variable measurable with respect to
A°  for some m=0 and having finite r-th absolute moment for some r>1. Let g
be a uniformly continuous, bounded function g: B"—>R with modulus of con-
tinuity c(7) and bound |g|< C. Then, if X =(x,),_, is very weak Bernoulli at rate
(&2 1,

= |ELhg(xy,...,x,)]—E[M] E[g(xy, ...,x,)]|

Z Al (e(n)+2Ce(m)t™ s 2 Cl g(n))lls. (3.1

Here s is defined by r~*+s~'=1 and 7>0 is any real number.

1
Proof. We may assume that h is of the form h= Z a;1,, for a partition of sets

A,eN° satisfying P(4)>0. Then using Holder’s mequallty
|EChg(xy,....x,)]—E[h] E[g(x,, ..., x)]|

= 2 a{fglxy, ..., x,)dP(.|A) ~[g(x,, ..., x,) dP} P(A)

i=1

1/s

<00, (318600 %) P1A) (011 %) PP P(A))
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Since D chosen according to Definition1 is an element of A°, we can assume
- taking intersections if necessary — that 4, D or 4;,=D* for each i

Consider the case 4,=D. Denote £((x,,...,x,)) by p and £((x,,....x )4,
by ji. Furthermore let 2 be a measure such that

ﬁn(X>XIAi):j0nd}' (32)
then
Ifg(xy,....x,)dP(.|4)—fg(xy,...,x,) dP]
=|I£ng(v) di(v)— § g(u)dp(u)

B"

< | lgw—g®ldi(u,v).

Bn x B

Splitting this integral in the two parts where {o,=71} and {o,>1} we get the
bound c(t)+2 C A{{g,>7}). By the CebySev-Markov inequality and (1.10)

Mo, >t o, di<t e(n). (3.3)
Therefore
\E[hg(xy,....x,) ] —E[A] E[g(x;, ..., X,)]]
SPALC Y le@m+2CTt T emP P(4)+ Y, 12CP P(A)'~

A;=D A;eD"
(3.1) follows since P(D")<e(n). [
Considering less general functions g will allow us to deduce sharper

bounds. In the limit theorems to be proved g enters always in the form g (Z xi).
Write =1

Lemma 3.2. Let X =(x,),., be a stationary B-valued process which is very weak
Bernoulli at rate (¢(n)), (. Suppose | x| = C with probability 1. Let h be a real-
valued random variable measurable with respect to W°  for some m=0 and
having finite r-th absolute moment for some r>1. Then for geB* and n=1

|ELhg(S,)]—E[h] E[g(S)]l

<|al, gl ey +2nr C)F s(n)'s (3.4)

where s is defined by r~*+s~t=1. If X is strictly very weak Bernoulli at rate
(e(M),», and x, is integrable then for h and g as above

\ELhg(S,)]—E[R] E[g(S)NI =1kl gl ne(). (3.5)

Proof. Let D=D(n,m, 0N’ be a set chosen according to Definition 1 then
for any 4eUA° , A=D, P(4)>0
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{g(S,)dP(.14)~[g(S,)dP|

f ((:2 ) (Z i))d/l((ul,...,un)»(vl,...,vn))

Bn x B i=1

éHg“* j. z Hu Undl(ul""a )(Ul""’vn))

BrxB" i=1

:”g”* j nan(u’ U)d;“(ua U)éHgH*nS(n)

B x B"

Here again 4 is a measure satisfying (3.2). Now we take the same repre-
sentation for 4 as in the proof before and apply Holder’s inequality, then

|ELhg(S,)]—E[R]E[g(S)]|

4 1/s
<10, ( 3 17e()aPC1 40~ el dPF P

(3.5) follows immediately since if X is strictly very weak Bernoulli, the set D
has probability 1, ie. the estimate above applies to each of the A4;. In order to
derive (3.4) we split the sum according to A;=D or A, D and use the trivial
estimate |g(S,)| < llgll,, n C in the latter case. Thus we get the bound

Il { Y (gl ne@y P(A)+ 3. (2lgl,nCy PAY}™-.

A;<D A;eDE
(3.4) follows since P(D“)Ze(n). O

Lemma3.3. Let X =(x,),., be a stationary real-valued process which is strictly
very weak Bernoulli at rate (e(n)),, given by (1.12). Suppose x, has mean zero
and finite variance then for any N>1 and M=2N or M=2N +1

QL= )2 1Syl SIS pll S 1Sx 1220 + ey )'? (3.6)
where

Co/lISyllzs  Cany1=2Co/ISyll,+1%0015/2 ISyl
and C, is the constant implied by < in (1.12).
Proof. Consider the case M =2N first. We use Lemma 3.2 with »=2. Then (3.5)

yields o N
E(. 5, =) ()]

Therefore by stationarity

“SZN|\§=2HSNH§+2E[(iﬁ)( ZZN xi)]

i=1 i=N+1

<11yl; Co. (3.7)

<2[Syl3+2[Syl. C

This gives the upper inequality. The lower inequality follows in the same way
if we use the representation Sy =5,y —(S,y—Sy)-
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0 N+1
Now let M=2N +1. Applying again (3.5) to E [( 2 xi) ( ) x")] and

0] i=—-N+1 i=1
to E [( > xi)xl] we get

—N+1

M=

2N+1
|S2N+1”%:2”SN”§+HXZN+1H%+2E [( xi) ( Z xi)]
i=1 i=N4+1

+2E [( %V xi)me]

i=N+1
S2|ISyllz+1xoll3+4 18yl Co
=[Syl32(L +2 Co/ ISyl +11xoll3/2 ISy 112)-

]

The lower bound in (3.6) can be derived similarly. []

Lemma3.4. Let X=(x,),., be a stationary real-valued process which is strictly
very weak Bernoulli at rate (e(n)), ; given by (1.12). Suppose x, has mean zero,
finite variance and lim Var(S,)= oo then

Var(S,)=nh(n) (3.8)
where h(n) is a slowly varying function of the integral variable n.

Proof. We have to show that for every k=1

lim Var(S,,)/Var(S,) =k. (3.9)

n— 00

If we define y,= ) x_y,,,; for j=1,....k then by stationarity
i=1

k—1
Var(S,)=kVar(S,)+2 Y E[y,(y,+... +¥,, J].
I=1
By (3.5)

n

Y X

k=1

E[y(yy+ - +y, JIIS Zlns(ln)g(Var(Sn))l/2 Co.

Therefore
Var(S,,)=kVar(S,)+o(Var(S,). O

Proposition3.5. Let X =(x,)..; be a stationary real-valued process which is
strictly very weak Bernoulli at rate (¢(n)),,, given by (1.12). Suppose x, has
mean zero, finite variance and lim Var(S,)= oo then there exists a finite positive
value ¢* such that e
lim n~ ! Var(S,)=c>. (3.10)
Before proving this Proposition we restate a lemma from Bradley [3]
(Lemma 2). Define under the assumptions of the Proposition above

gm=n="2]5,l, ~ (3.11)
then the following holds
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Lemma 3.6. Given any ¢>0 and any positive integer L, there are positive
integers N and L with L= L, such that for all [, L<I<2L one has

(1-e)g(N)=g(h=(1+¢)g(N).

The proof of this lemma is the same as in [3], since the basic ingredient
used there, namely
lim g(mN)/g(N)=1 (3.12)
N—-oo
for all m=1 holds under our assumptions by Lemma 3.4.
Again as in [3] we choose 0< 4 <1 sufficiently small that if (a,),-, is any
sequence of real numbers such that )’ |a,|<A4 then B

nz1

N—T]A+a)£2 > la,] and [1-[]A+a) "1£2 ) la,l

nx1 nz1 nzl nz1
Proof of Proposition3.5. Let 0<¢< A be given and denote by C, the constant

implied by < in (1.12). Let r=2 be a fixed integer and C>0 a constant to be
determined later. Since lim Var(S,)=co we can choose L,=0 sufficiently large

n— o

such that ;' <g/4 and for all N> L,

1=2Co/IISyll = I1xoll3/2 [SyllF>2717, (3.13)
[Syll,>C (3.14)

and
Ixol3/2 ISyl = Co. (3.15)

By Lemma 3.6 there exist positive integers H and L with L= L, such that for
all [, LLIZ2L one has

(1—-e)g(H)=g(h=(1+¢)g(H).

Now let m be any integer m=2L then 2M L<m<2M+1 L for some M. There
exist integers Jy,J,....,Jy, such that m=J,,, L<J,<2L and for all n=0,
1,...M—1,J,  =2J, or J, ,=2J,+1. By (3.6)

8, )=g(U)I+3Co/lIS, 1)

where we made use of (3.15). Introducing (3.13) in the lower half of (3.6) and
making use of (3.14) we see that ||S; [|,=2"~"/2" C. Therefore

g, VgL +3 Co/C2rtr=nyli2
and

gm0y ( ﬁo(l 13C,/C ”/2*))”2.

Now we choose C such that Y 3 Co/C2""~ V2" <¢/4 then

n=0

gm=g(Jo)(1+9)"” =g(H)(1+2). (3.16)
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Using the lower half of (3.6) we get

g ) Z8WU)Q TN, )P (1=3Co/]S,, ]2

2 g(J,)(1 =27 D L)1 =3 C,f €2 Viz)t2

or
ad 1/2
gm)zg(Jy) (ﬂ (1=27 D L1 =3Co/C zn(r—1>/2r)> :
n=0

By the choice of L, and C

g(mzg(Jo)(1 —e)zg(H)(1 &)™ (3.17)
This together with (3.16) shows that lim g(m) exists, which proves (3.10). [

Proposition3.7. Let X =(x,),., be a stationary real-valued process which is
strictly very weak Bernoulli at rate (g(n)),,, given by (1.12). Suppose x, has
mean zero, finite variance and lim Var(S,)=co then

m~1Var(S,)—c*<m™1/? (3.18)

where ¢*=lim n~ ' Var(S,).

n— 00

Proof. Since lim g(m) exists and is positive by (3.10) we can choose constants
n— 00

0<C,<C, such that C,<g(m)=C, for all m. Let C, be the same constant as

before and let L be a positive integer such that C, ( y 2 2) /C, L<A. Given
n=0
an integer m we write 2 [2<m<2M+1[? and for each n=0,1, ... we set J,
=2"m. By (3.6)
g, 1) S8+ Cy/Cy L2+,

Since lim g(m)>=g¢? this implies

m— 00

e8]
g(m?*zo? n (1+C,/C, L2e+MI2)~1

n=0

Using the lower half of (3.6) we get
gm?=a® [ (1= Co/Cy L2MHMI2)~L,

n=0

Both estimates together yield

lgm)?—?|£26% Y Co/C, L2012 =0(m~12), O

n=0

Lemma3.8. Let X =(x,),., be a stationary real-valued process which is strictly
very weak Bernoulli at rate (¢(n)),, ; given by (1.12). Suppose x,, is centered and
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bounded with probability 1 and lim Var(S,)= oo then for any 0= <1

=0

|
k=1

249
Z Xk

Proof. Write for short a,=E[IS,|**’] and ¢,=E[|S,|*]"/* for any n=1. From
Proposition 3.5 we know that

] <nt+o?, (3.19)

c2=a*n(l+o(1)) (3.20)
n 2n
for some 62>0. Besides of S,= ) x; we use S,= Y x; then by stationarity
i=1 i=n+1

we get as in Doob [8], p. 226

a,,£2a,+E[S7 5,1+ E[IS, I’ S}

: . (3.21)
+2E[S, "8, [1+2 ELIS, 1S, 11 1.
Let C, again be the constant implied by < in (1.12). If 4eU° |, P(4)>0
and 1 is a probability measure satisfying (3.2) then
118, 1dP(.] A)—[IS,|dP]
= | ( Z u,|— Z )d/l(u v (3.22)
R* x IR = =
<fno,(uv)dA(u,v)<nen) £ C,.
We may assume that
o 1
X|=> a1, (3.23)
k=—n+1 i=1

for a partition of sets 4,eA° ,, satisfying P(4,)>0. Then by stationarity and
Holder’s inequality

ETIS, ' +21S,1—ELIS,[* "1 E[IS, I

=)§ a%”ﬂISnIdP(-lAi)—flSnldP}P(Ai)‘

IA

240 CO

! (1-8)/2
éai”{Z I§1S,1dP(.| A)—[IS,|dP|? =2 P(Ai)}
i=1

In the last inequality we assumed ¢,21 which is true for sufficiently large n.
Since E[|S,[**?1<oi*? and E[IS,[1<0, we get

E[IS, )12, [1=(Cy+ 1) 627°. (3.24)

k=1
inequality |y?—z?|<2nC|y—z| which holds for 0=<y,z<n C. Then similar to
(3.22)

Let C be the bound for x, then ’ Y xk{ <n C and we can apply the elementary
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I§1S,1>dP(.|4)—{IS,|* dP|

Z“k

k=1

<2nC |

Re x R

diu,0)=2nCC,.

We introduce this in the following estimate where (3.23) and Holder’s in-
equality are used

IE[IS °18,"1—-E[IS,IP1 ELIS, 12l
< Z a2 |[18,12dP(.| A)— [ 1S,1> 4P| P(4) <6221 CC,.
By (3.20) the last term is bounded by 67?4 CC,o~? for large n. Since E[]S,|’]
<¢? and E[|S,1*] =02 we deduce
E[IS,PIS,F1S(1+4CCyo g, °. (3.25)

The following inequality ||y|*+?—|z|**°| (1 +8)(n CY’||x|—|y|| which holds for
0<y, z<nC implies together with (3.22)

{18,112 dP(.| A)—[IS,I'*?dP|=(1+8)(n C)Y’ C,
Therefore by Holder’s inequality
|ELIS, | 1S, “°]1 = E[IS, 1 ELIS,I*+7]]
= i |a|[§1S, 1"+ 2 dP(.| A)—[IS,|"*° dP| P(4,)
i=1
<06,148)nCY Cy<al*?°(14+68) C° Cy2° 0 *°.

In the last line (3.20) is again used. Our assumptions lims; =00 and d<1

imply lim ¢! ~%=co. Therefore the last term above is less than ¢27° for n large
enough. We conclude -
E[IS, 118,/ +*1 262+, (3.26)

Now we consider the remaining summand in (3.21).

E[S2IS,1P1=a2 (ELIS,I* IS, 1),
Using (3.22) we casily derive

IE[S21S,11- E[SZ1 EDIS, I < C, 02
Therefore

E[S2|S |71 <20 -9(Cya2Y +020)=Chal+a.™°

The last term is bounded by 262 for large n. Thus

E[IS,|* IS, [P1<202*°. (3.27)
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Introducing (3.24)-(3.27) in (3.21) we get for some constant C' >0
a,,<2a,+C g2*°.

Now define b,=a,/o2*° then since limo3,/02=2 the last inequality implies

that there exist constants 4, 0<A<1 ar:d C"” >0 such that for all n
b,,EAb,+C".

Hence
supb,, <b, +C'(1-2)" ' < 0. (3.28)

The deduction of a,<ac?*? for some constant a>0 from (3.28) is routine (see
Doob [8] p.227 or Ibragimov-Linnik [13] p.343). Proposition3.5 has to be
used here. This proves the lemma. []

Let us mention that essentially by using (3.5) it is easy to prove the
following inequality for higher moments

Remark. Let X =(x,),., be a stationary real-valued process which is strictly
very weak Bernoulli at rate (¢(n),,; given by (1.12). Suppose x, is centered
and bounded then for any integer [>2

d

n

2 X

k=1

I
] <n171.

4, Proof of Theorem 2

The existence of ¢? was shown in Proposition 3.5. Define for every n=1, N
=N(n)=[n'¥1%], I=1(n)=[n¥'®] and
N

X;= ) - x, (Igj=)
v=(j—1)N+1

Furthermore we consider the following sub-g-algebras
JN

&= V8 (=)

v=(—1)N+1
and as in Theorem 1

kN
A=V &F=VE 1=k
i<k v=1
Let k and Ae, |, P(A)>0 be given. Then according to Definition 1

inf | oydiZe(N)

AePN RN x RN
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where By is the class of Borel probability measures on RV xIR¥ with mar-
ginals L((xg 1)y, 15 - %) and (X4 1y 15 - )| 4). Let By be a mea-
sure such that [oydA=<e(N) and define T: R¥ x R >R xR by T((uy, ..., uy),

N N

(Vg5 vy))= (”_1/2 You, nHEY vi). Then T(A) has marginals £(n~1?X,)
i=1 i=1

and £(n~'? X,|4) and

| lu—v]dT(A)(u,v)

Rx IR

= [ n2
RN x RN

_Zl (u;—vy)

<n~M2Ng(N)SCoyn 112

dA((uy, ..., up), (U, ..., Uy))

where C, means the constant implied by < in (1.12). Since constants are of no
importance in these estimates we assume C,=1/2. By Theorem1 applied to
the sequence (n~"/? X)), ., ., there exist independent random variables n~"? Y,
such that &(n=*? X )=L(n *?Y) and

Pln=Y2X, —n V2 Y |Zn Y] < V4

Note that we need here only the special case of Theorem1 where G, =2(X)
and p,=4,=n,=0. The last inequality implies

1 1 ‘ )
n (2 (n‘l/2 Y Xk),ﬁ (n‘”z Y Yk>)§ln‘1/4§n‘”16. (4.1)
k=1 k=1
From the definition of X, and Proposition 3.5 we derive
2
g |
2
=n’1E[ ]<rr1(n—lN)<n‘1(I+N)<;r3/16

which immediately implies

i n

n 2y X, —n"1? > x,
k=1 v=1

n—IN

DIES

v=1

i n
fefre S x)efre Ealjern
k=1 v=1
The following estimation for the Prohorov distance of certain distributions is
due to Yurinskii [22]. We restate it in slightly refined form from [4], Prop.5.1.

Proposition. Let X,,...,X, be independent R%valued random variables with
mean zero and E[|X,|?>*%]<co. If p, denotes the distribution of n='* 3 X,

i=1
and v, the Gaussian measure with mean zero and the same covariance as y, then

Tc(lu'n’ vn) é c n75’/9 d1/3(ﬁ2+5/)2/9

n
where p, o=n"" Y E[||X;[|**°] and c is an absolute constant.
i=1
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The bound actually given in [22] (and [4]) is more complicated. We will
apply this Proposition to the random variables (I/n)'? ¥, (1<k<]). By Lem-
ma 3.8

E[Nl/m)' 2 Y2+ <1

for any 0<¢& <1. If 2 denotes the variance of (I/n)'/* Y, we can conclude using
o=3/4 l
7 (53 (n‘l/z y Yk),N(O, fﬁ))«wl/ﬁ‘*. 4.3)
k=1

In the next two steps we use results of Dehling.
Theorem ([4], Th.7). Let u and v be two Gaussian measures on RR® with mean
zero and covariance operators S and T. Then the following estimation holds

n(uw, V) S CIIS—TI? a1 +|log|IS— T~ * d|'/?)

where C is an absolute constant and |||.|| is defined by
d
IIIR|||=S(UI)J 2 I(Rey,e)
€i) i=1
and the sup is taken over all orthonormal bases (e;) for R”.

We denote by 75 the variance of N~'2Y,. Proposition3.7 implies 12— o>
<N-'2So if we replace the estimation in the theorem above by n(y, v)< C,
IS —T||** dt* we get

n(N(0,73), N(0,6%) < N~ 18 gn- 110, (4.4)

The last link in our chain of estimates is a direct consequence of

Lemma ([4], Lemma 2.1). Let X and Y be R°valued square-integrable random
variables with mean zero. Then we have the following estimation for the Prohorov
distance of the corresponding Gaussian measures

7(N(0, cov X), N(0,cov Y) <(E[| X — Y |*])*>.
Therefore
n(N(0,73), N(O,s) S (E[I(I/m) 2 Y, = N~ 2 Y, ]

=(n"t(n—(NnDl?)*3 (E[ 2] )1/3.

By Proposition 3.5 and the definition of N and ! we conclude

N
- 1/2
N=T2 Y X,
v=1

(N0, T3), N(O,13) <(n~ (I + N))*P<n- 113, 4.5)

Theorem 2 follows from (4.1)-(4.5). O
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5. Proof of Theorem 3

We define N, =[k!**"' ] (k=1) where « is the exponent from Theorem 2 and set
te= >, N;as well as

i<k—1 fre+t
X, =N;" Y x. (5.1)

i=te+1

Since (x,),., is strictly stationary Theorem 2 implies
(LX), NO,6%) = C' N7~

for some constant C'>0 which can be assumed to be 1 for our purposes.
Therefore £(X,) and N(0,¢?) satisfy assumption (1.3) with p, =4, =N_". Fur-

123
thermore given a set A, ;= \/ §;, P(4)>0 there is a Borel probability
j=1

measure 4 on R xRM with marginals  £2((x and

L((x, 4 15 +++>Xg, )| A4) such that

te+1° ""xtk+1))

N
[N Y [0, dA(u, v) S 6(N).
i=1
If T is defined on R x R by

Ni Ni
T((uy, ..o uy,), (01, -, U )) = (Nk‘l/2 > u, NoV2 Y vi>
i=1 i=1

then T(A) has marginals £(X,) and £(X,|A) and

§ lu—vldT (%) (u,v)

Rx R

Nie
N Yl —v,dA(u,0) < Co N V2

RNk x RNk i=1

Again we can assume that C,=1/2. This means that we can apply Theorem 1
with g,=N_'* and 5,=0. Without loss of generality there exists a sequence
(Y1 of independent N(0, o2)-distributed random variables satisfying

PLIX, = KIZ2N "+ N TSN VN N, Rkt

which implies by the Borel-Cantelli Lemma
X, — LIS2NT*+N-V*<N7* as. (5.2)

For any Brownian motion (X(t)),», with variance ¢® the random variables
(te, 1 —t)~ "2 (X(t,, ;) — X (1)) have the same distribution as Y,. Therefore with-
out loss of generality we can assume that there exists a Brownian motion
(X(1),s o with variance ¢ satisfying

(Zk+ 17 tk)~ 1/Z(X(tk+ 1) _X(tk)) = Yk (k 21).
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Now

+1

Z xi—(X(tk+ ) —X(5)

i=te+1

=NU2|X, — Y, |<N/2~% as.

If we sum over k and make use of the relation

K~ 24x-1
K2+ l<tk+1<k "
we get

te+1

2 X=X (e, )
v=1

k
< Z ]\]jl/Zﬁxék(l-rx-l)(l/fo)ﬁ-1:k1/2ax+1/2k<té_/‘hsz/2 a.s.
j=1

For any t>0 choose k such that t, <t<r,  then

1S x,— X(0)
</ S x - x4 Y x| X O-X().

v=t+ 1

Therefore our proof is finished if we show that there is a constant y>0 such
that with probability 1

t

max | Y x,|<t/?7 (5.3)
fe<tSti+ 1 |y=tg+ 1
and
sup  [X()— X (1) <}, (54)

e <t=lk+1

With the help of Lemma 3.8 the first of these two statements is shown anal-
ogous to the proof of Proposition2.2 in [14]. (5.4) finally follows directly from
Fernique’s theorem [11]. [

6. Proof of Theorem 4

Let X be a very weak Bernoulli process. For a fixed integer N and any keZ
kN

. _ . . N

we define X, =(xg_ 1y, 1., %) and F = . \{)N 1&. Then X, is an SM-
v=(k—1)N+

valued -measurable random variable. Define ¢, on SV x SV as before. Given

an ¢>0 we choose N according to Definition1 such that for any k>1 there
k

exists a set D, eW=\ §; such that P(DS)<e and if Ae¥, ,, A<D, ,,

P(A4)>0 then i=1

inf [oydi<e
AeBN
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where B, is the class of all Borel probability measures on SV xSV with
marginals £(X,) and £(X,|A4).

By Theorem1 there exists a sequence (Y,),,, of independent random vari-
ables such that £(Y,)=2(X ) and for all k=1

Ploy(X, Y) 226?128 +e. (6.)

Let Y be the process generated by the Y, and let C denote the bound for ¢
then by (1.8) for any n=1

Pun(X, V)=t 3 | oyd2(X,, Y.

k=1 SN xS§SN

Splitting this integral in the part where gy=(2¢)'? and its complement
{ox<(2€)'?} we get by (6.1)

p_nN(Xs Y)é(C—i—l)(z 8)1/2+ Ce.

From this the result follows. [

Acknowledgment. 1 am grateful to E. Berger for valuable comments.
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