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Summary. Very weak Bernoulli processes with values in a separable metric 
space are introduced. An estimate for the Prohorov distance in the central limit 
theorem is obtained. This estimate is used to establish a strong (almost sure) 
approximation of the partial sums of a very weak Bernoulli process by a 
Brownian motion where the error term is of the order O(t 1/2 0. The proofs are 
based on a new version of the Berkes-Philipp approximation theorem. 

1. Introduction and Statement of Results 

Functional central limit theorems as well as the functional law of the iterated 
logarithm and other asymptotic fluctuation results for processes X =(Xk)k~ z can 
be derived from a strong (or almost sure) approximation of the partial sums of 
the process by a Brownian motion with a sufficiently small error term. 

In a remarkable paper Kuelbs and Philipp [14] recently established a 
number of strong approximation results for Banach space valued sequences 
satisfying various mixing conditions. Their proofs rest on an approximation 
theorem given first by Berkes and Philipp [2] and in more general form by 
Philipp [16]. Dehling and Philipp [7] showed that various approximation 
results stated in [14] for @mixing sequences continue to hold for absolutely 
regular sequences. Dehling [4] succeeded to improve the error term in the 
approximation of the last mentioned sequences. By constructing a counterex- 
ample he pointed out the limits of the argumentation used ([4], [5]). For  
processes with a finite state space absolute regularity is equivalent to being 
weak Bernoulli. 

In this paper we will get an approximation of the order 

x~ - X( t )  ~ t 1/2-~ (1.1) 
V~<t 

for very weak Bernoulli processes (Definition 1). Very weak Bernoulli processes 
with finite state spaces were introduced by Ornstein (see e.g. [15]) in con- 
nection with the solution of the isomorphism problem of ergodic theory. 
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Our first result (Theorem 1) is a new version of the Berkes-Philipp approxi- 
mation theorem. It is used in the proof of Theorem 2 to estimate the Prohorov 
distance in the central limit theorem for very weak Bernoulli processes. Both 
Theoreml  as well as Theorem2 are needed to prove (1.1) which is stated as 
Theorem 3. The last result finally is a further application of our basic approxi- 
mation theorem. 

Some remarks concerning the notation: ~(X) denotes distribution of a 
random variable X defined on a probability space (f2, 91, P). If A~91, P(A)>0  
we denote by ~(XIA) the conditional distribution of X given A. 
!~((X 1 . . . .  ,X,)IA) is used if X=(X1 ,  . . . ,X , )  is a vector. The variance of a real- 
valued random variable X is denoted by Var(X). N(0,r  2) stands for a normal 
distribution with mean zero and variance z 2. Stationarity of a process will 
always mean strict stationarity. Given a Banach space B, B* is the topological 
dual space. For  any subset E of a metric space (S, a) and e >0, E * denotes the 
open e-neighborhood of E. E = means complement of a set E. Z are the integers. 
" ~ "  and "O( . )"  are used with the same meaning. 

Theorem 1. Let {(Sk, ak)[k_>__ 1} be a sequence of complete separable metric spaces 
and let (Xk)k> = i be a sequence of random variables with values in S k. Let (~'k)k>_a 
be a sequence of a-algebras such that X k is ~'k-measurable. Suppose that for 
every k> 1 there exist Dk691'k = V ~), ek>O and 11k>0 such that P(D~)<tlk and 

j<=k 
if AE9.I'k_a, A~Dk_a,  P(A)>0  then 

inf S ak(U, V) d2(u, v) < e2/2 (l.2) 
,te~k 

where ~k is the class of all Borel probability measures 2 o n  S k x S k with 
marginals 9~(XkIA ) and ~(Xk). Let (Gk)k> 1 be a sequence of Borel probability 
measures on S k and Pk, Ok nonnegative numbers such that 

e(Xk)(E) <= Gk(E~) + 6~ (l.3) 
for all Borel sets E = S k. 

Then without loss of generality there exists a sequence (Yk)k>= 1 of independent 
random variables such that !~(Yk)= G k and 

P[ak(Xk, Yk) > 2Pk + ek] Gek+qk- 1 +6k" (1.4) 

Here and in Theorem 3 the phrase "without loss of generality ..." is to be 
understood in the sense of Strassen [20]: without changing its distribution we 
can redefine the sequence on a new probability space on which there exists a 
sequence (Yk)k>=l satisfying (1.4) (resp. a Brownian motion (X(t))t>=o satisfying 
(1.1)). 

(1.2) means that the distributions 9.(XklA ) and ~(Xk) have distance less 
than a2/2 in the Wasserstein metric which is defined in general as follows. Let 
#, v be two Borel probability measures on a complete separable metric space 
(S, a) then we define their Wasserstein distance by 

p (#, v) = inf S a (u, v) d2(u, v) (1.5) 



Strong Approximation of Very Weak Bernoulli Processes 19 

where ~ is the class of Borel probability measures on S x S with marginals # 
and v. Since S is complete and separable both of the measures # and v are 
tight. This implies that the infimum in (1.5) is actually a minimum. 

Recall that the Prohorov distance is defined by 

rc(#, v)=inf{e>Ol#(E)<v(E~)+e for all closed E c S } .  (1.6) 

We will make use of the following relation 

~(~, v) __< (p(~, v)) ~/~. (1.7) 

This inequality can easily be derived from the Ceby~ev-Markov inequality and 
the following alternative definition for ~z 

(#, v) = inf inf {e > 0l 2({(u, v) la (u, v) > e}) -<_ e} 

which is a consequence of the Strassen-Dudley theorem [9]. 
We will now define the Wasserstein distance for distributions of processes. 

For each n we consider a metric % on the product space Sn=S x ... x S 

n 
~n(u,v)=n ~ ~ a(u,,v~) 

i - I  

if u=(ul,  ...,u,), U = ( V  1 . . . . .  Vn)@S n. Given two S-valued processes X=(Xk)k~ z and 
Y=(Yk)k~Z we define for n > l ,  k e Z  

Pn((Xk+ 1," ' ,  Xk+,), (Yk+ 1 , ' " ,  Yk+ n))= inf 5 a n d2 (1.8) 

where ~3 n is the class of all Borel probability measures on S"xS"  with mar- 
ginals ~((xk+ 1,-..,xk+n)) and P~((Yk+ 1 .. . .  ,Yk+n))" Since S n is separable and com- 
plete again the infimum in (1.8) is a minimum. If k = 0 then we write for short 
fi,,(X, Y) in (1.8). The processes Y we consider in the following are processes 
derived from a fixed process X by conditioning X on certain sets A of positive 
measure, i.e. we consider measures 2 with one of the marginals being 
~((Xk+ 1, ...,xk+,)lA). Again we shall write XIA  for short if k--0. 

In the following (~k)k~Z will denote a family of sub-a-algebras, where we 
will always assume without further mention that ~k is countably generated for 
each k. 

Definition 1. Let X =(Xk)k~ z be a strictly stationary S-valued process defined on 
a probability space (~, 9.i, P) and let (~k)k~z be a family of sub-a-algebras of 9.1 
such that x k is ~k-measurable. The process is called very weak Bernoulli (with 
respect to (~k)k~z) if for each e >0  there is an n such that for all integers m> 0, 
k~Z there exists a set k 

D=D(n,m,k)Eg.I~_m= V ~j 
j=k-m 

such that P (D~)<e  and if A~9.1~_~, A c D ,  P(A)>0  then 

Pn((Xk+ 1 , ' " ,  Xk+ n), (Xk+ 1 , ' " ,  Xk+ n)[ A)  < ~" (1.9) 
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Given  a sequence (~(n)),_>~ of posit ive numbers  decreasing to 0 we say X 
=(Xk)k~ z is very weak Bernoulli (with respect to (q~k)k~z) at rate (e(n)),__> 1 if for all 
integers re>O, n > l ,  k ~ Z  there exists a set D=D(n,m,k)s9.I~_ m such that  
P(D =) < e(n) and if A eg.i~_ ~, A ~ D, P(A) > 0 then 

/5,((xk + 1,-..,  Xk+,), (Xk+ 1 . . . .  , xk+,)[A) < e(n). (1.10) 

The process is called strictly very weak Bernoulli resp. strictly very weak 
Bernoulli at rate (e(n)),__> 1 if (1.9) resp. (1.10) hold for any set A Eg.I~ m, P ( A ) >  O. 

The dependence  structure given by this definit ion differs f rom the mixing 
condi t ions in the sense that  the rate (e(n)),>__ 1 has implicat ions on the quali ta-  
tive dependence  structure. More  precisely, a process which is very weak Ber- 
noulli  at  rate e (n )=o(n  ~) is a Bernoull i  process, i.e. is independent .  It  is easy 
to see that  this rate implies that  the process is s t rongly mixing. By a simple 
extension of the a rgumen t  it was shown recently [6] that  this rate actual ly 
implies independence.  ("Strongly mixing"  is used here in the probabi l is t ic  
sense, not  in the te rminology  of ergodic theory). 

If the state space S is a finite set endowed with the discrete metr ic  and the 
~k are the a-a lgebras  genera ted by the xk, Defini t ion 1 coincides with the one 
due to Ornstein. In the following two theorems we consider real-valued pro-  
cesses. Thus  ~, will be compu ted  with respect  to 

n 

a , ( u , v ) = n  -1 ~ lui-vi l  (1.11) 
for u, wlR".  i_ ,  

Theorem2 .  Let  X=(Xk)k~ z be a stationary real-valued process which is strictly 
very weak Bernoulli at rate 

e(n) ~ n -  1 (1.12) 

Suppose x o is centered and bounded with probability 1 and lira Var  x = oo 
n ~ o o  \ k = l  / 

then there exists a finite positive value a 2 such that l im n -  1 Var  x k = a 2 and 
for  some to>0 , , ~  \ k = l  " 

!~ n - 1 / 2 ~ x ~  ,N(0, a 2) ~ n  -~. (1.13) 
v = l  / 

The explicit value of the exponent  is ~c = 1/64. 

Theorem3 .  Let  X=(Xk)k~ z be a stationary real-valued process which is strictly 
very weak Bernoulli at rate (1.12). Suppose x o is centered and bounded with 

probability 1 and l i m V a r  x k = oo then there exists a f ini te  positive value a 2 
n ~ o o  \ k = l  / 

= a  2 and without loss o f  generality there exists a such that l im n -  1Var  x k 
n~ oo k 1 

Brownian motion (X(t))t>=o with variance a 2 such that 

2 Xv - -  X ( t )  <~ t 1 / 2 - '  (1.14) 
V < t  

for  some y > O. 
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The next definition is a straightforward extension of a notion given in [19]. 
Let X and Y again be S-valued processes. Recall that r Y) denotes the 
Wasserstein distance of ~((x a . . . . .  x,)) and ~((Ya . . . . .  Yn)). Set 

•(X, Y) = sup fin(X, Y). (1.15) 
n>_l 

Definition2. Let X=(Xk)k~ z be a stationary S-valued process. X is called almost 
block independent if given e > 0  there is an N such that if n>=N and Y is the 
process defined by the two conditions 

!~((y,k+a , ...,y,(k+l)))=s . . . .  ,X~)) for all k ~ Z ,  (1.16) 

for each k, (Y,k+ 1 . . . . .  Y,,(k+ a~) is independent of {(Y)j__<,k} (1.17) 

then 
p(x, r)__<,. 

Theorem4. Let  X=(Xk)k~ z be a very weak Bernoulli S-valued process and sup- 
pose that r~ is bounded, then X is almost block independent. 

Let us finally point out another aspect of this paper. The central limit 
theorem and the strong approximation result established here are of a rather 
different nature than the aims and statements one is looking towards in the 
isomorphism theory. But it became obvious that some of the underlying 
approximation ideas are exactly the same. 

2. Proof  of  Theorem 1 

We consider the case of discrete random variables X k and probability measures 
G k = s first. This means that the assumptions hold for Pk = 6k = 0 (k > 1). 

Define Y I = X 1  and suppose Y1,'",Yk-1 have been constructed. Suppose 
furthermore Yj is 9.i~-measurable (1 < j < k -  1). Define D =D(b 1 . . . .  , bk- 1) = {Y1 
= b l , . . . , Y  k l = b k _ l } c ~ D k _ l  for values b l , . . . , bk_  1 in the range of I71 . . . . .  Yk 1 
respectively. Then DEN;,_ 1 and D c D  k 1. 

As we mentioned already the infimum in (1.2) is a minimum. Therefore if 
P (D)>0  there is a Borel probability measure )0 on S k x S  k with marginals 
~(XI~[D), ~o(Xk) and 

1 O" 2({(U,V)[Crk(U,V)>ek})<e; [. k d 2 < e  k. (2.1) 

2 in (1.2). Let Note that for this part of the proof we use only the bound e k 
{all i>  1} be the range of X k. Then 2 is concentrated on {(ai, a)] i, j > 1} and 

P[_Xk=ai[D ] = ~ ~(al ,a)  
j>=l 

for each i > l .  All the ~ can be assumed to be atomless since (Xk)ka I can be 
redefined on a richer probability space if necessary. Therefore {X k = ai} c~De9.I' k 
can be partitioned into 9.1~,-measurable sets Dij such that P(D~j]D)= 2(ai, a).  We 
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define Yk = aj on D u (i, j >= 1). Then the joint distribution of (X  k, Yk) on D is 2. 
By (2.1) this means 

P( {ak(Xk, Yk) >= ek} C~ D) N P(D) ek" (2.2) 

On sets D with P(D)=0 and on D ' = { Y I = b l ,  ..., Yk_I=bk_I}C~D~_~ we define 
Y~ such that P-(Y~ID)=P-(Yk[D')=P-(Xk). Now Yk is defined on the whole space 
and by (2.2) 

P[ak(Xk, Yk)>Zk] G ~ n(D)~k+ ~ P(D')Gek+tlk 1" (2.3) 
D~Dk- t D" ~D~_ 1 

By the very construction Yk is 9/~-measurable, ~2(Yk)=~(Xk) and Yk is inde- 
pendent of Ya, ..., Yk- 1. 

Now we consider the general case: Fix k__> 1. Given (3>0 we can construct 
a partition (E~)i__> 1 of the separable space S k into Borel sets such that 
diam(Ei)<c5 (i> 1). We do this for ~=min(e2/4,pg/4) and choose a point uiEE i 
(i> 1). The discrete random variable X~, defined by X'k(CO)=U i for og~X~ l(Ei) is 
~-measurable and satisfies ak(Xk,X'k)<g). Now let be given a set A=Dg_  1, 
A~9"Ik-1, P(A)>0 and a Borel probability measure 2 on S k x S k with marginals 
!3(Xk]A ) and ~(Xk) such that 

ak(u , V) d;~(u, v)N e~/2. (2.4) 

We get a probability measure 2' on S k x S k concentrated on {(ui,uj)]i, j>= 1} if 
we define 2'(ui,u~)=2(EixEj).  2' has marginals ~(X~IA) and ~(X~). Further- 
more using (2.4) 

~ 7 k ( U , v ) d ~ ' ( U , V ) =  2 ~ O'k(Ui~uj)d'~(U,l)) 
i,j Ei x Ej 

<=~ ~ (~k(U,V)+e~/2)d2(u, v) 
i,j E~ x Ej 

2 -- S ~ d;~ + ~ /2  <= sk. 

Thus we have constructed a sequence (X'k)k>_l of discrete, ~-measurable ran- 
dom variables satisfying ak(Xk, ' �9 2 Xk) < mm (ek/4, pff4) and 

inf S ak(U, V) d2'(u, v) < e~ 
2" 

where infimum is taken over all Borel probability measures 2' on S k x Sg with 
marginals ~(X~[A) and ~(X~) for sets A as considered above. By the first part 

y,  of the proof there is a sequence ( k)k__>l of independent random variables such 
that ~(Yk')=~2(X~) and 

P[Gk(X'~, ~')----> ~k] _--< ek + ~ _  1- 

The proof is finished following exactly Philipp's arguments in [16] p. 176. 
We just indicate the changes in the quantities ek, rlk, Pk, (Sk" By (1.3) we get for 
any Borel set E ~ S k 

~(r~') (E) _-< Ok(E ~/~)  + 6k. 
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Using the Strassen-Dudley theorem one constructs a probabil i ty measure 2" on 
S~ x S k with marginals s and G k such that  

2'({(u, v)[ak(U , v) > 3 pk/2}) < 6 k. 

This implies that there is a sequence (Yk)k>_~ of independent  r andom variables, 
s = Gk and 

P[ak(Xk, Yk) > 2 Pk + ekJ 

< P [ak (Xk, X'k) > pk/43 + P [ak (X'k, Yk') > ek] + P [ak (Yk', Yk) > 3 pk/2] 

3. Inequalities for Moments 

In this section if not  specified more precisely B will mean  a separable Banach 
space with norm []. I[, X----(Xk)k~ z a strictly s tat ionary B-valued stochastic pro- 
cess defined on a probabil i ty space (~,gA, P) and (~k)k~Z a fixed family of 
countably generated sub-a-algebras of 9.I such that  x k is ~k-measurable (k6Z). 
For  m<=n we shall write ~7~ for the a-algebra generated by {~k[m<--_k<=n}. 
Given a set A6~i, P(A)>0, P(.  IA) denotes condit ional  probabil i ty given A. 

Besides of the Banach space norm H-I[ various other  norms will be used. 
H. H, denotes the norm in B* and Jl. Hr stands for E-norm,  i.e. if ~ LIxllrde<~ 
for some B-valued r andom variable x we write 

liX[Ir=(J lixilr dP) 1/~ ( r> l ) .  

[I. [1r will also be used for the usual E-norm,  i.e. if j[h[rdp<oQ for some real- 
valued r andom variable h then 

lihllr=(~lhlr dP) 1/~ ( r>  1). 

Lemma3.1. Let h be a real-valued random variable measurable with respect to 
9A~ ,, for some m > O and having finite r-th absolute moment for some r >  1. Let g 
be a uniformly continuous, bounded function g: B n ~ IR  with modulus of con- 
tinuity c(z) and bound Igl < C. Then, if X=(Xk)k~ z is very weak Bernoulli at rate 

(~(n))n_>_ 1, IE[h g(Xl, ..., X,)] - g [ h ]  E[g(x I . . . .  , x,)31 
(3.1) 

< ]LhqLr(Ic(z) + 2 C ~(n) ~- 1[~+ [2 C[ ~ e(n)) 1/~. 

Here  s is defined by r -  ~ + s-  ~ = 1 and z > 0 is any real number.  

l 

Proof. We may assume that h is of the form h = ~ a~ 1a~ for a par t i t ion of sets 
i=1 

A~gX~ satisfying P(A~)> 0. Then  using H61der's inequality 

I E [h g (x i . . . . .  x,)] - E [hi  E [g (x~, ..., x ) ]  [ 

l P(Ai) = 2 ai{~g(Xl  . . . . .  Xn) dP  (. IA,)-~g(x 1 . . . .  ,x,)dP} 
i=1  

/ l 

< [IhI[~ \=1(i ~ [~ g(xl  . . . .  ' x " )dP( ' lA i ) -Sg(x l '  "'"x")dP]~ P(A'))/~" 
\1 
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Since D chosen according to Defini t ion 1 is an e lement  of  9X~ we can assume 
- taking intersections if necessary - tha t  A~ ~ D or A~ ~ D = for each i. 

Consider  the c a s e  Ai~D. Deno te  ~((x 1 . . . .  ,x,)) by # and ~((Xl, ...,xn)lAi) 
by ft. F u r t h e r m o r e  let 2 be a measure  such that  

then 
#.(X,  X I A , ) = ~ a . d 2  

15 g(x l ,  ..., x.) dP(. IAz) - 5 g(x~, ..., x.) dPI 

= I ~ g(v) d # ( v ) -  ~ g(u) d~(u)l 
B n B n 

_-< ~ If (u)-g(v) l  d,~(u, v). 
B n x B ~ 

(3.2) 

Split t ing this integral in the two parts  where {a .<z}  and {a .>z}  we get the 
bound  c(z )+  2 C 2({a.  >~}). By the Cebygev-Markov  inequali ty and (1.10) 

,,~({O'n >" "C}) ~ "C - 1  ~ o n d ) ~ ' c  - 1  g(n). (3.3) 
Therefore  

[E [ h  g (x  1 . . . . .  x , ) ]  - E I - h i  E [-g ( x  1 . . . .  , x , ) ] l  

<llhllr( ~ Ic(z)+2Cz-le(n) lsp(A~)+ ~ 12CISP(Ai)) 1/~. 
AicD AicD c 

(3.1) follows since P(D=)<=s(n). [] 

Consider ing less general functions g will allow us to deduce sharper  

bounds.  In  the limit theorems to be p roved  g enters always in the form g x~ . 
Wri te  ~ - t ]  

Sn = E xi" 
i = 1  

L e m m a 3 . 2 .  Let X=(xk)k~ z be a stationary B-valued process which is very weak 
Bernoulli at rate (s(n)).=> z. Suppose I/Xo] I < C with probability 1. Let h be a real- 
valued random variable measurable with respect to 2[~ for some m>O and 
having finite r-th absolute moment for some r > 1. Then for g~B* and n > 1 

I E [h g(S.)] - E [h] E [g (S.)] I 

II h / l r  IIgll, ((n ~(n)) s + (2 n C) s s(n))a/s 
(3.4) 

where s is defined by r- 1 + s-  1 = 1. I f  X is strictly very weak Bernoulli at rate 
(s(n)).>_l and x o is integrable then for h and g as above 

IE [h g(s . )]  - E [h] E [g(S,)] I =< II h dl~ II g II, n ~(n). (3.5) 

Proof Let D=D(n,m,O)~9.I~ be a set chosen according to Defini t ion1 then 
for any  Aeg~~ A c D ,  P ( A ) > 0  
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I~ g(S.)dP(. I A ) -  ~ g(X,)dPI 

( (i ) )) = ! g "= U i - - g  V i d / ~ ( ( U l , . . . , U n ) , ( V l , . . . , V n )  ) 
B n B n t 1 i = 1 

--<llg[I, ~ ~ Ilui-vilbd,~((u~,...,u,),(Vl,...,v,)) 
B n x B  n i=l 

=llgl l ,  j" na,(u,v)d2(u,v)<llgll,ne(n). 
B n x B n 

Here  again 2 is a measure  satisfying (3.2). N o w  we take the same repre- 
sentat ion for h as in the p roof  before and apply H61der's inequality, then 

I~ [ h g (S,)] - E [hi E [g(S.)] ] 
t \1/~ 

_-< II hlb~ i_~1 IS g(S.) dP(. I A i ) -  j" g(S,) dPI s e(Ai) ) 

(3.5) follows immediate ly  since if X is strictly very weak Bernoulli, the set D 
has probabi l i ty  1, i.e. the est imate above applies to each of the A i. In  order  to 
derive (3.4) we split the sum according to A iC D or A I C D  ~ and use the trivial 
es t imate [g(Sn)l < [Igll, n C in the latter case. Thus we get the bound  

IIhL.{ ~ (Hgll, ne(n))'P(Ai)+ ~ (211gll,nC)Sp(Ai)} l/s, 
A i c D  A i c D  C 

(3.4) follows since P(D=)<e(n). [] 

Lemma3 .3 .  Let X=(xk)k~ z be a stationary real-valued process which is strictly 
very weak Bernoulli at rate (e(n)),> l given by (1.12). Suppose x o has mean zero 
and finite variance then for any N > 1 and M = 2 N or M = 2 N + 1 

(2(1 - CM)) a/2 l] SNII 2 < II SMII 2 < II S,,ll 2(2(1 + CM)) 1/2 (3,6) 
where 

c2N= Co/llaNl[2, c2N+1 = 2  Co/LlSNl]2+ Ilxoll2/2 IISNI] 2 

and C o is the constant implied by ~ in (1.12). 

Proof. Consider  the case M = 2 N  first. We use L e m m a 3 . 2  with r = 2 .  Then  (3.5) 
yields 

E [ ( i _  ~+lXi )  (i~=lXi)] ~llSNll2C o. (3.7) 

Therefore  by s tat ionari ty  

2N 

_-<2 IISNII 2 + 2  I[SN][2 C 0. 

This gives the upper  inequality. The  lower inequali ty follows in the same way 
if we use the representa t ion  S N = S2N - (S2N -- SN). 
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[ (  o ) z N + ,  xl 
Now let M = R N + I .  Applying again (3.5)to E E x i ~ ~ xi) | and 

i - - - - N + l  \ i = 1  / 4  [(o )] 
t o  E i= 2N+IXi X 1 we get 

N ( 2N+ 1 

IIS2N+ 1 II ~=211Sx][ 22+ II x2s .  1 I[ 2 + 2 E  [(i~1 xi) ".i_ ~x+l xi)] 

-= N + I  

< 2  IISNII2 + Ilxoll~ + 4  HSNII2 Co 

= IIsNI122(2(1 + 2 Co/llSNII 2 + II Xo II ~/2 IrSN II 2)). 

The lower bound in (3.6) can be derived similarly. [] 

Lemma 3.4. Let X=(Xk)k~ z be a stationary real-valued process which is strictly 
very weak Bernoulli at rate (e(n)),>_l given by (1.12). Suppose x o has mean zero, 
finite variance and lira Var(S,)= oo then 

n ~  oo 

Var(S,) = n h(n) (3.8) 

where h(n) is a slowly varying function of the integral variable n. 

Proof. We have to show that for every k >= 1 

lim Var (S,k)/Var (S,) = k. (3.9) 
n~o9 

If we define y]= ~, x o_ 1~+~ for j =  1, ..., k then by stationarity 
i=1 

k - 1  

Var(S~k)=k Var(S,)+ 2 Y', E[yI(Y2 +. . .  + Yt+ fl]. 
l = l  

By (3.5) 

Therefore 
k~ 2 [El-yl(y2 + " "  + Yz+ 1)3] =< ~ Xk in e(ln) =< (Var(Sn)) 1/2 C o. 

Var(S~k)=k Var(X~)+o(Var(S.)). [] 

Proposition3.5. Let X=(xk)k~ z be a stationary real-valued process which is 
strictly very weak Bernoulli at rate (e(n))n>=l given by (1.12). Suppose x o has 
mean zero, finite variance and lira Var(Sn) = oo then there exists a finite positive 
value ~2 such that ~ 

lira n-  1 Var(S~)= r (3.10) 

Before proving this Proposition we restate a lemma from Bradley [-3] 
(Lemma 2). Define under the assumptions of the Proposition above 

g ( n )  = n -  1/2 Ils,[I 2 (3.11) 
then the following holds 
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Lemma3.6. Given any e>0  and any positive integer Lo, there are positive 
integers N and L with L>  L o such that for all l, L <I<_2L one has 

(1 - ~) g(N) <= g(l) < (1 + e) g(N).  

The proof of this lemma is the same as in [3], since the basic ingredient 
used there, namely 

(3.12) lim g(mN)/g(N) = 1 
N~ec 

for all m > 1 holds under our assumptions by Lemma 3.4. 
Again as in [31 we choose 0 < A  < 1 sufficiently small that if (a . ) ,~  

sequence of real numbers such that ~ ]a,] <A then 
n > l  

1S a n y  

11- I~ (l +a,)] <2 ~ ]a,] and ] l - I ~ ( l + a , )  11<2 ~ ]a,[. 
n > l  n > l  n > l  n > l  

Proof of Proposition3.5. Let 0 < e < A  be given and denote by C o the constant 
implied by ~ in (1.12). Let r > 2  be a fixed integer and C > 0  a constant to be 
determined later. Since lim Var(S,)= oe we can choose L o > 0  sufficiently large 

n~oo 
such that Lo ~ <e/4 and for all N > L  o 

and 

1 - 2  Co/HSN][2 -]]XoH 2/2 ][SN]] 2 >2-l / r ,  (3.13) 

I[SNH 2 > C (3.14) 

Ilxoll 2/2 IISNIL2 ~ Co. (3.15) 

By Lemma3.6 there exist positive integers H and L with L > L  o such that for 
all 1, L _< I < 2 L one has 

(1 - e) g(H) =< g(/) < (1 + e) g(H). 

Now let m be any integer m > 2 L  then 2ML<_m<2U+IL for some M. There 
exist integers Jo,J~ . . . . .  Ju such that m=JM, L<Jo<=2L and for all n=0,  
1 , . . . , M - I ,  J,+ 1 = 2 J ,  or J ,+l  = 2 J , + l .  By (3.6) 

g(J,+ 0 < g(J,)(1 +3 Co/[]Sj.[] 2) 1/2 

where we made use of (3.15). Introducing (3.13) in the lower half of (3.6) and 
making use of (3.14) we see that ]]Ss.[I 2 ~ 2n(r-1)/2r C. Therefore 

g ( J n +  1) ~ g(J,)(1 + 3 Co/C 2 "('- 1)/2r)1/2 

and 

g(m)<g(Jo) (1 +3 Co/C2 "(r-~)/er) . 

Now we choose C such that ~ 3 Co/C 2 "('- 1 ) / 2 r <  e/4 then 
n=0 

g(rn) < g(Jo)(1 + e) 1/2 < g(H)(1 + e)2. (3.16) 
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Using the lower half  of (3.6) we get 

g(J,+ 2)>=g(Jn)(ZJJJ,+ ~)~/2( 1 - 3 Co/[[Sj.[] 2) 1/2 

> g ( J , ) ( 1 - 2  -("+ 1) Loa)(1 - 3 Co/C2 "(~- 1~/2r)1/2 

o r  

(n ]~0  \1/2 g(m)>=g(Jo) ( 1 - 2 - ( " + 1 ) / - o l ) ( 1 - 3  Co/C2"(r-1)/2r)) �9 
l 

By the choice of L o and C 

g(m) > g(Jo) (1 - e) > g(H)(1 - ~)2. (3.17) 

This together  with (3.16) shows that  lira g(m) exists, which proves (3.10). []  
m ~ o o  

Proposition3.7. Let X=(xk)k~ z be a stationary real-valued process which is 
strictly very weak Bernoulli at rate (e(n)),=> 1 given by (1.12). Suppose x o has 
mean zero, finite variance and lira Var(S,) = ~ then 

n ~ o o  

m ~ V a r ( S ~ ) - ~ 2 ~ m  -1/2 (3.18) 

where a 2 = lira n -  1 Var(S,). 

Proof Since lira g(m) exists and is positive by (3.10) we can choose constants 
m~oo  

0 < C a < C  2 such that C x < g ( m ) < C  2 for all m. Let  C o be the same constant  as 

before and let L be a positive integer such that  C o 2 ."/2 / C ~ L < A .  Given 
n=O / 

an integer m we write 2~tL2<m_<2M+IL 2 and for each n = 0 , 1  . . . .  we set J, 
= 2" m. By (3.6) 

g(J,+ 1) < g(J,)(1 + Co/ C ~ L 2~"+ a~)/2) 1/2. 

Since lim g(m) 2 = o  -2 this implies 
?t/~ oo 

.g(m)2 ~ ~r2 ffI (1 + Co/C 1 L2 ("+M)/2) 1 

n ~ O  

Using the lower half  of (3.6) we get 

g(m)2 ~ O -2 f i  (1 -- Co/C 1 L 2  ("+ ~vt)/2)- 1 

Both estimates together  yield 

[ g ( m ) 2 - o 2 [ ~ 2 0  -2 ~ Co/C1L2("+M)/2=O(m-1/2). [] 
n=O  

L e m m a  3.8. Let X=(xk)k~ z be a stationary real-valued process which is strictly 
very weak Bernoulli at rate (e(n)),> 1 given by (1.12). Suppose x o is centered and 
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bounded with probability 1 and lira Var(S,) = oo then for any O< (5 < 1 
tl ~ oo 

rl " j2+,~1 
E t k ~ l x  k ] ~ n  1+a/2. (3.19) 

Proof. Write for short a.=E1,1S.I 2+a] and an=E1,1S. I2] 1/z for any n > l .  From 
Proposition 3.5 we know that 

2 = a2 n(1 + o(1)) (3.20) O- n 

for some a 2>0. Besides of S .=  x i we use S .=  ~ x i then by stationarity 
i - -1  i - -n+ l 

we get as in Doob 1'81, P. 226 

a 2 . < 2 a . + E [ S  ~ I~.1 a] + g [ISnl ~ S.]-2 (3.21) 
+2  E[IS.I ~+a IS.I] +2E[IS.I  IR.Ii+a]. 

Let C o again be the constant implied by < in (1.12). If A~0~[~ P(A)>0  
and 2 is a probability measure satisfying (3.2) then 

I~l s ,  I dP(. I 1 ) - j  IS.ldPI 

< S n ~~ v) d~(u, v)_-< n ~(n)-_< Co. 

We may assume that 
f )  1 

k= -~n + X k 
= 2 ai 1Ai (3.23) 

1 i = l  

for a partition of sets Aie9.1~ satisfying P(Ai)>O. Then by stationarity and 
HSlder's inequality 

IE [IS,~I ~+'~ Ig~l] - E 1,JS,.,I *+',]  EI-IS.I]I 

al +~ P(Ai) = . {~lS, I d P ( . I A i ) - ~ l S ,  ldP} 
1 i = 1  

<a~ +a I~lS. IdP( . IAi)-~lS. ldPl2/(x-a)r(Ai)  =o .  
i 

In the last inequality we assumed cr > 1 which is true for sufficiently large n. 
Since EEIS,,I l+a] <al. +~ and El'IS.l] <o-~ we get 

g[IS.I z+als.I]--<(Co+ _2+a 1) o, . (3.24) 

/1 

Let C be the bound for x 0 then k=~x k =<n C and we can apply the elementary 

inequality l y e - z 2 j < 2 n C l y - z l  which holds for O<y,z<=n C. Then similar to 
(3.22) 
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IS IS, I 2 dP(. I A ) -  ~ IS, I 2 dPI 

<_2nC ~ - a~• k 1 vk d2(u 'v )<2nCC~ 

We introduce this in the following estimate where (3.23) and H61der's in- 
equality are used 

IEI-IS.I a 1fi7.123 -EEIS.I a] E fkr 
1 

a[~ IS, I 2 dP(. ]Ar - SIS, I = dP[ P(A 3 < aa, 2 n CC o. <=Za, 
i = 1  

By (3.20) the last term is bounded by %-2+a4 C C O a -2  for large n. Since E [[S,I a] 
a and E[1~.123 <~.~ we deduce __< o-, 

EEl&? Is, Iz3 __<(1 + 4  CC o a 2) %-2+a. (3.25) 

The following inequality I lYl I + a -  Izll+~l <(1 + a)(n C)~llxl- lYll which holds for 
0 < y, z < n C implies together with (3.22) 

I~ IS, P +a dP(. IA) -~  IS.I 1 +a dPI <(1 + b)(n C) a C o. 

Therefore by H/51der's inequality 

IEI-IS.] IS.l~+a3 -EElS . I ]  E j . I i +  all 
l 

< F, lar IS IS.P +a dP(. I A I ) - S  IS.I l+a del P(A~) 
i = 1  

< 1+2a( < a . ( l + a ) ( n C ) a C o = a .  , l + 3 )  CaCo2a a 2a. 

2 In the last line (3.20) is again used. Our assumptions lima~ = ~ and b < l  
n ~ o o  

imply lim al. - a =  ~ .  Therefore the last term above is less than %-2+a for n large 
n ~ o o  

enough. We conclude 
EEIS.I tS.I l+a ] _<2 %-2+a . (3.26) 

Now we consider the remaining summand in (3.21). 

EES~ I~,l a] =<~0 "2(1 ~)(EEIS.I 2 IS.13) a. 

Using (3.22) we easily derive 

2 ~ 2 2 lEES. IS.l] -E[S.] El-INn/][ < C o a  .. 
Therefore 

The last term is bounded by 2a .  2+~ for large n. Thus 

E[IS.I 2 IS.lq -<2 o.-2+~ (3.27) 
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Introducing (3.24)-(3.27) in (3.21) we get for some constant C '>  0 

azn<-2an + C' _2+6 _ o n �9 

Now define b ,=a , /a  2+~ then since lim 2 2 a2n/a . =2 the last inequality implies 
n ~ o o  

that there exist constants 2, 0 < 2 < 1  and C " > 0  such that for all n 

b 2 < 2 b  + C "  n n " 

Hence 

sup b2r < b 1 + C"(1 - 2)- 1 < oo. (3.28) 
r 

The deduction of anna ~ 2 + 6 _  % for some constant a > 0  from (3.28) is routine (see 
Doob [-8] p. 227 or Ibragimov-Linnik [13] p. 343). Proposition3.5 has to be 
used here. This proves the lemma. [] 

Let us mention that essentially by using (3.5) it is easy to prove the 
following inequality for higher moments 

Remark. Let X=(Xk)k~ z be a stationary real-valued process which is strictly 
very weak Bernoulli at rate (e(n)),>_l given by (1.12). Suppose x o is centered 
and bounded then for any integer 1>2 

E Xk ~ n  l 1. 
k 1 

4. Proof  of Theorem 2 

The existence of 0 - 2  w a s  shown in Proposition3.5. Define for every n > l ,  N 
=N(n) = [n13/16], l=  l(n)= [n 3/16] and 

jN  

X j =  ~ , x ,  (l_-<j<l). 
v=(j  1 ) N +  1 

Furthermore we consider the following sub-a-algebras 

and as in Theorem 1 

jN 
~} = V ~,, (1 __<j__< l) 

v =  ( j - -  1 ) N +  1 

kN 

%= V ~}= V ~ (l<k<O. 
j<k v = l  

Let k and AegiS_ 1, P (A)>0  be given. Then according to Definition 1 

inf ~ a Nd2<e(N) 
2 ~ N  N N  x N N 
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where ~3 N is the class of  Borel probabi l i ty  measures  on IRNxlR ~ with mar -  
ginals ~((X(k 1)N+ 1, "", XkN)) and  s z)u+ 1, .- . ,  xkN)IA). Let  2 ~ 3  N be a mea-  
sure such that  ~ a N d 2 < e ( N  ) and define T: IRNx 1RN~IR x IR by T((u 1, ...,UN), 

(v 1 . . . .  ,vu) )=  ul, n -1/2 v i . Then  T(2) has marginals  !3(n-1/2Xk) 
i= 

and ~(n-1/2  XkIA  ) and 

l u - v ldT (A) (u , v )  
NxN 

N 
= ~ ,  • ~ ,  n -~/~ ~ Y~=(u~-v3 d,~((u~, . .  

<n-1/Z N e (N)<  Con- l~  2 

�9 , UN)~(/)I~-..~ UN) ) 

where C O means  the constant  implied by ~ in (1.12). Since constants  are of  no 
impor tance  in these est imates we assume C o = 1 / 2 .  By T h e o r e m  1 applied to 
the sequence (n-1/2 Xk)l _<k~ there exist independent  r a n d o m  variables  n - 1 / 2 ~  
such tha t  s  1/2 Xk ) = s  1/2 Yk) and 

p[ln-1/2 X k - n  1/2Ykl~n 1/4]<_n-1/~ 

Note  that  we need here only the special case of  T h e o r e m  1 where G k = ~2(Xg) 
and Pk = CSk = qk = 0. The  last inequali ty implies 

7z ~ n -1/2 ~ X k ,Sd n -1/2 Yk <= l n - I / 4 < n - 1 / 1 6  (4.1) 
k=l k=l 

F r o m  the definit ion of X k and  Propos i t ion  3.5 we derive 

[ • E n 1/2 X k _ n - 1 / 2  x ,  
k=l  v= l  

- n-IN 23 

= n - i N [  E Xv ] ~ n - l ( n - l N ) ~ n - l ( l + N ) ~ n - 3 / 1 6  
v = l  

which immedia te ly  implies 

The following es t imat ion for the P roho rov  distance of certain distr ibutions is 
due to Yurinski i  [22]. We restate it in slightly refined form from I-4], Prop. 5.1. 

Proposition. Let  X~ . . . .  , X ,  be independent lRd-valued random variables with 

mean zero and E[llXill2+~ I f  #n denotes the distribution of  n -1/z ~ X i 
i=1 

and v, the Gaussian measure with mean zero and the same covariance as #,, then 

7Z(#n, Vn) ~ C n 6"/9 dl/3 (/52+,5") 2/9 

where f52+6 ,=n- i  ~ E[llXill2+O "3 and c is an absolute constant. 
i=1 
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The bound actually given in [22] (and [4]) is more complicated. We will 
apply this Proposition to the random variables (1/n)l/2Y k (1 <k__<l). By Lem- 
ma 3.8 

E[l(llW/2 ~12+~'] ~ 1 

for any 0<  6 '<  1. If ?2 denotes the variance of ( l /n) l /2Y 1 we can conclude using 
5 '=  3/4 

1 

rc (~ (n -1 /2k2_ lYk ) ,N(O,?2 ) )~n -1 /64 .  (4.3) 

In the next two steps we use results of Dehling. 

Theorem([4], Th.7). Let  # and v be two Gaussian measures on ]Ra with mean 
zero and covariance operators S and T. Then the following estimation holds 

~c(#, v) _< C ][IS -T] [ [  1/3 dl/6 (1-4-[log IllS - T][I- a d[U2) 

where C is an absolute constant and [[[. Ill is defined by 

d 
llIRlll = sup 2 I(R e,, eSI 

(el) i= 1 

and the sup is taken over all orthonormal bases (ei) for IR d. 

2 __0.2 2 the variance of N 1/2 I11. Proposition 3.7 implies "c N We denote by ~N 
~ N  -lIe. So if we replace the estimation in the theorem above by ~z(#, v)< C o 
IllS- Till 1/4 d 1/~ we get 

7r(N(0, z~), N(0, 0.2)) ~ N 1/s ~ n- 1/1 o. (4.4) 

The last link in our chain of estimates is a direct consequence of 

Lemma ([4], Lemma2.1). Let  X and Y be lRCvalued square-integrable random 
variables with mean zero. Then we have the following estimation for the Prohorov 
distance of  the corresponding Gaussian measures 

(N(0, cov X), N(0, cov Y)) < (E [ II x - Y II 2])1/3.  

Therefore 

g(N (O, ?~), N (O, "c~v)) < (E [l(I/n) 1/2 Y1 - N -  1/2 I11123) 1/3 

=(n l(n-(Xnl)l/2))2/3 (E[ X-1/2v~=lx v ] ) .  

By Proposition 3.5 and the definition of N and l we conclude 

rc(N(O, -2 ~N), N(0, r~)) ~ (n 1(1+ N)) 2/3 A n- 1/s (4.5) 

Theorem2 follows from (4.1)-(4.5). [] 
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5. Proof of Theorem 3 

We define N k = [k I + ~ ~ ] (k > 1) where ~c is the exponent  f rom T h e o r e m  2 and set 

t k= ~ N / a s w e l l a s  
i<k 1 tk+l 

X k = N ~  1/2 ~ x i. (5.1) 
i--tk+ 1 

Since (Xk)k~ z is strictly s ta t ionary  T h e o r e m  2 implies 

~(~(G), g(0, 0-2))__< C'N~- ~ 

for some cons tan t  C ' > 0  which can be assumed to be  1 for our  purposes.  
Therefore  ~(Xk) and N(0,0- 2) satisfy a s sumpt ion  (1.3) with pk=6k=N[- 'q  Fur-  

tk 
the rmore  given a set A ~ _ I =  V ~j ,  P ( A ) > 0  there is a Borel probabi l i ty  

j= l  
measure  2 on ~r  x ~N~ with margina ls  ~ ((xt~ + ~ . . . .  , x,~ + ~)) and 
~((xt~+ 1 . . . .  , xt~ + ~)]A) such that  

Nk 

SN~ -1 ~ I~,-~,ldZ(~,0<-~(n~). 
f = l  

If  T is defined on ]R N~ x ]R N~ by 

T((~, . . . , ,~), (~1, .-., ~ ) )  = Ns ~/2 y~ ~, NZ 1/~ Y~ ~ 
i ~ l  i=1  

then T(2) has margina ls  R(Xk) and f~(XkIA) and 

S lu-vldT(~)(u,,O 
R x R  

Nk 

<=N~ -~/~ ~ Y~ l.~-~,ld~(.,O<=CoN~ ~/2. 
RNk • Ig.Nk i - 1 

Again  we can assume that  C O = 1/2. This means  that  we can apply  T h e o r e m  1 
with ek=N[ -1/4 and G = 0 .  Wi thou t  loss of  generali ty there exists a sequence 
(Yk)k_> a of  independent  N(0, a2)-distr ibuted r a n d o m  variables  satisfying 

P[IXk- -  ~1 > 2 Nk ~-t- Nk - 1/4] < N~ 1/4 + Nk-~ ~ Nk-~<= k -(~+~) 

which implies by the Borel-Cantel l i  L e m m a  

IX~-- YkI~2N~-'~+N~-I/4~Nk -~ a.s. (5.2) 

Fo r  any  Brownian  m o t i o n  (X(t))t>=o with var iance 0 -2 the r a n d o m  variables 
(tg+ x- tg)-1/2(X( tk+ 1)--X(tk)) have the same dis t r ibut ion as Yk' Therefore  with- 
out  loss of  generali ty we can assume that  there exists a Brownian  mo t ion  
(X(t))~>=o with var iance a 2 satisfying 

(~k+ 1 - - t k ) -  1/2 ( X ( t k +  1 ) -  X ( t k ) ) ~  ~Yk ( k  ~ 1). 
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Now 

If we sum over k and make use of the relation 

a.s. 

we get 

k 
2 NJ 1/2-K<=k(l+~-l)(1/2 K)+I--kl /2-K+I/2~ tl/2-K/2 

- ~  1 a . s .  j=l  

For any t > 0  choose k such that tk<t<tk+ 1 then 

I ~  x~-X(t ) l  
v<t 

= vt-~l xv--X(tk) v=/k+ 1 Xvd- + ~, ]X(t)--X(tk)]. 

Therefore our proof  is finished if we show that there is a constant ~ > 0  such 
that with probability 1 

t x v  max ~ ~ (5.3) 
tk<t<~tk+l V=tk+ 1 

and 

sup IX(t)--X(tk)] ~ t~/2-'. (5.4) 
tk<t<tk+l 

With the help of Lemma3.8 the first of these two statements is shown anal- 
ogous to the proof  of Proposition 2.2 in [14]. (5.4) finally follows directly from 
Fernique's theorem [11]. [] 

6. Proof  of Theorem 4 

Let X be a very weak Bernoulli process. For  a fixed integer N and any keZ 
kN 

we define Xk=(X(k 1)N+I,...,XkN) and ~ =  V ~v. Then X k is an S N- 
v=(k--1)N+ l 

valued ~ -measu rab le  random variable. Define a N on SNx S N as before. Given 
an e > 0  we choose N according to Definition 1 such that for any k >  1 there 

k 
exists a set Dkffg~= V 5) such that P ( D ~ ) < e  and if AffO~_l, ACDk_I, 
P(A) > 0 then j -  1 

inf ~aNd2<e 
2~N 
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where ~3. is the class of all Borel probability measures on S N x S N with 
marginals P-(Xk) and ~(XklA ). 

By Theorem 1 there exists a sequence (Yk)k>__l of independent random vari- 
ables such that !~(Yk)=~(Xk) and for all k >  1 

P[aN(Xk, Yk) > (2 01/2] < (2 e)1/2 _iv g. (6.1) 

Let Y be the process generated by the Yk and let C denote the bound for o- 
then by (1.8) for any n>  1 

1 S 
k= l  S N x S  N 

Splitting this integral in the part where a s>(201 /2  and its complement 
{~rN<(2e) l/z} we get by (6.1) 

fi, N(X, Y) < (C  + 1)(2 01/2 + C e. 

From this the result follows. [] 

Acknowledgment .  I am grateful to E. Berger for valuable comments. 
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